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Abstract. The availability of large language models and open-vocabulary
object perception methods enables more flexibility for domestic service
robots. The large variability of domestic tasks can be addressed with-
out implementing each task individually by providing the robot with
a task description along with appropriate environment information. In
this work, we propose LIAM — an end-to-end model that predicts ac-
tion transcripts based on language, image, action, and map inputs. Lan-
guage and image inputs are encoded with a CLIP backbone, for which
we designed two pre-training tasks to fine-tune its weights and pre-align
the latent spaces. We evaluate our method on the ALFRED dataset, a
simulator-generated benchmark for domestic tasks. Our results demon-
strate the importance of pre-aligning embedding spaces from different
modalities and the efficacy of incorporating semantic maps.

1 Introduction

With the rapid evolution of deep learning research, particularly in the natural
language domain, we have witnessed the emergence of enormous Transformer-
based models capable of generating high-quality texts and synthetic images [1,
2]. They hold much potential for open-ended robotic applications, like domestic
service tasks, but cannot be directly applied because robotics involves additional
modalities, such as images and actions.

In 2021, OpenAI released the foundation model CLIP, which uses a con-
trastive learning paradigm to connect text and images [3]. Representations of
textual and visual inputs are learned by contrasting similar and dissimilar pairs.
CLIP features are suitable for open-vocabulary zero-shot image categorization.

Many robotics applications soon utilized CLIP-based models for different
open-vocabulary tasks [4]. Vision-Language-Action models like OpenVLA [5]
predict the next action based on visual inputs. Research in models predicting en-
tire action transcript sequences based on language instructions and visual inputs
is still in its early phase. Training a model that understands all relevant modal-
ities and has strong generalizability is challenging and requires a considerable
amount of data.

In this work, we introduce the end-to-end model LIAM, which receives inputs
from the modalities Language, Images, Actions, and Maps and predicts action
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sequences. Two CLIP-like self-supervised training paradigms are designed to
pre-align two or more different embedding spaces during the pre-training stage,
enhancing the model’s ability to understand and process multimodal inputs. We
utilized semantic maps as an additional modality directly in addition to textual
and visual input, where the map modality is designed to serve as a knowledge
base for the model. We evaluate our model with the ALFRED Challenge [6],
a benchmark task that requires a robot to understand and execute complex
natural language instructions in a simulated environment. The code and pre-
trained models to reproduce the results are made publicly available: https:
//github.com/AIS-Bonn/LIAM.

2 Related Work

Open-vocabulary approaches have garnered significant attention in the field of
computer vision. In the past decade, most vision downstream tasks were trained
via datasets with a fixed number of classes. The CLIP model, with its contrastive
learning paradigm, brings a promising solution for inferencing open vocabulary
vision tasks. After embedding the text and image using separate encoders, CLIP
is trained by maximizing the similarity score of the representation of correspond-
ing image and text pairs [3].

A massive amount of work is built on CLIP models for different down-
streaming tasks, e.g., object detection [7, 8], semantic segmentation [9, 10], action
prediction [11, 12]. These approaches have designed similar methods adapted to
their specific vision downstream tasks. For example, GroupViT first uses a group-
based approach for semantic segmentation by introducing learnable group tokens
to the ViT architecture ([10]). During inference time, each group is assigned the
semantic label with the highest similarity score representing the text input.
To tackle the Vision-Language Navigation (VLN) and Vision-Language Manip-
ulation (VLM) tasks, there are two main approaches. I. An End-to-End model
trains a model that can accept all modal inputs simultaneously and make predic-
tions of current action for the agent [6, 13]. For example, Episodic Transformer
(E.T.) is an end-to-end attention-based transformer model that consists of three
modality-specific encoders and one multi-modality fusion encoder [13]. II. Mod-
ular Methods propose a pipeline of learned modules for tackling the challenge of
understanding the environment and the tasks [14, 15]. FILM proposes a language
processing module, which converts the task description into an action transcript
using pre-defined templates. A semantic mapping module processes egocentric
RGB images into a 2D semantic map. Furthermore, a semantic search policy
predicts the possible distribution of objects’ locations. A deterministic policy is
designed to predict the action decision based on the predicted action transcript
and the predicted semantic map.

Most end-to-end models for VLM tasks primarily use language and images
as inputs. In this paper, we also generate a semantic map following the FILM
approach and incorporate it as an additional modality input.

https://github.com/AIS-Bonn/LIAM
https://github.com/AIS-Bonn/LIAM


LIAM: Multimodal Transformer for Language, Images, Actions and Maps 3

Fig. 1. Model architecture of LIAM. The blue blocks are all layers that were frozen
during the end-to-end model training; the orange blocks are the parts that were trained.

3 Main Approach

We now introduce the LIAM model, including the pre-training stage and the
action generation. An overview of the model is given in Figure 1. The model
architecture is adopted from the Episodic Transformer [13], but we replace the
image and text encoders with CLIP encoders and employ a semantic map [15].
To manage the high computational cost, we freeze the weights and biases of the
CLIP backbone during end-to-end model training, ensuring efficient resource
utilization.

All experiments are conducted using ALFRED (Action Learning From Real-
istic Environments and Directives) [6], a recent simulator generated benchmark
for learning a mapping task, from vision (egocentric RGB image) and natural
language input to an action transcript for a domestic service robot. ALFRED’s
challenge provides the following annotations: an initial state of the simulated
room, language instructions, and an expert demonstration trajectory. Language
instructions are provided as global instructions, e.g., "Pick up the alarm clock
and turn on the lamp. <<goal>>" and a list of sentences for sub-goal instruc-
tions. The annotation consists of a sequence of discrete actions, the object’s
mask, whenever the interaction with objects is involved.
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Fig. 2. An example of the ground truth
from one mini-batch for alignment of
visual and action embedding space.
One action corresponds to two consec-
utive frames.

Fig. 3. Ground truth for alignment of vi-
sual and language embedding space. One
frame sequence corresponds to one lan-
guage instruction.

3.1 Contrastive Alignment Pre-training

CLIP was initially trained using data gathered from the Internet, resulting in
bias and significant performance differences across different datasets in zero-shot
inference [3]. Given that the ALFRED dataset is simulator-generated, it devi-
ates slightly from reality. Hence, a pre-training stage to align the latent space of
image and action becomes imperative.
We first pre-aligned the CLIP image encoder and action embedding via con-
trastive learning. The learning objective of the model is to match the correct
pair of action embedding and image embedding. Unlike CLIP, where one image
has one corresponding label, in our case, two consecutive images have one cor-
responding label, which denotes an action. Figure 2 shows an example of the
ground truth of one mini-batch. Unlike the original CLIP, which forms an N ×
N affinity matrix (N denotes the batch size), our approach counts the number of
unique actions that appear in each mini-batch instead and forms all the actions
occurring as the column of the matrix. Each row denotes the representation of
two consecutive frames. The matrix entry (i, j) has the value one if the i-th
frame’s representation corresponds to the action class j.

In our approach, we used f(·, ·), a 1D convolution layer along with global
average pooling, to compute a fused representation of two consecutive images.
We embedded actions with an embedding layer that embeds all 14 classes (12
classes + 2 special tokens) into 768-dimensional dense vectors. After having the
normalized representations of both frames Ie and action classes Ae, we computed
a cosine similarity score s of both vectors and fine-tuned the CLIP backbone
following CLIP’s approach. With ai ∈ Ae, It ∈ Ie, the similarity matrix P is
defined as:
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We notated text, action, and image with the letters T, A, and I. I2A denotes
"image-to-action," and all later mentioned abbreviations (X2X) follow this pat-
tern. Function f(·, ·) denotes the fusion function of two consecutive images at
time step t and t + 1 as described above. τ is the temperature, a learnable
parameter scales the similarity score. Following CLIP, we initialized the tem-
perature with a value of 0.07 and use 100 as an upper threshold to clip the
temperature value during the training stage, preventing the scaling factor from
becoming too large [11] and 0.01 as a lower threshold bound to prevent dividing
by zero error.

Following ActionCLIP [11], we used the KL divergence loss to fine-tune the
CLIP backbone. The total loss of the contrastive alignment pre-training is the
average of both image-to-action and action-to-image loss:

LImage-Action =
1

2
E(x,y)∽D

[
KL

(
PI2A(I), QI2A(I)

)
+KL

(
PA2I(A), QA2I(A)

)]
,

where Q(·) denotes the ground truth similarity matrix.

3.2 Triple Contrastive Pre-training

Our contrastive learning pre-aligns the latent space of the vision and action
embedding. However, the alignment of the language embedding space with other
latent spaces is neglected. To address this, we introduced a triple contrastive
pre-training stage. This method not only aligns the vision and action embedding
spaces but also aligns the language embedding space with them. This mutual
training ensures that the loss can be back-propagated to all encoders. In addition
to Figure 2, Figure 3 shows the example of the ground truth of aligning the CLIP
text encoder and image encoder. The training objective is straightforward: the
representation of the language instruction and its corresponding frame sequence
should be similar to each other. We first computed the representation of every
single frame (N frames) using the CLIP image encoder and further processed
this sequence of representations in two ways.

Considering the computing resource for the image sequence representation,
we chose the parameter-free approach to compute the mean value of all CLIP
embeddings of all frames to get the sequence representation. For every two con-
secutive frames in this list, we used the 1D convolution layer to get the represen-
tation of both frames as the same methodology described above in Section 3.1.
Thus, the visual embedding space is aligned simultaneously with both text and
action embedding space. As shown below, we define cross-entropy loss LText-Image
for learning the bidirectional pairing of visual and text sequences following the
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original CLIP. For aligning action and image, we continued using KL divergence
loss LImage-Actiondiscussed in Section 3.1:

LText-Image = − 1
2N

(∑N
i=1 log

(
exp(Sii/τ)∑N

j=1 exp(Sij/τ)

)
+
∑N

j=1 log

(
exp(Sjj/τ)∑N
j=1 exp(Sij/τ)

))
,

where S is the similarity matrix. The total loss of triple contrastive alignment
is defined as:

Ltotal = (1− α)× LText-Image + α× LImage-Action.

We introduced α as a hyperparameter for weighing both losses. This hyperpa-
rameter gives us more flexibility. We assigned (α = 0.8) in the total loss.

3.3 Action Generation

We embedded text and visual input using independent CLIP encoders, which are
now pre-aligned. The map is embedded using a trainable projection layer (FC
layer + GELU). We first applied positional encoding and modal-type encoding
to each representation. The learnable modal-type encoding, first introduced by
VILT [16], brings extra information and clarifies different modality types to the
Transformer model; it also avoids the need for explicit separation tokens like
“[SEP].”
After all the representations are concatenated, we fed it further to a multi-
modality fusing layer (2-layer Transformer encoder) to learn a general repre-
sentation. The multimodal Transformer is a comprehensive model that aims to
integrate all different modalities into one global representation, namely language,
visual frames, action sequence, and semantic map in our case. We use causal at-
tention following E.T. [13]. The attention mask follows these rules: Language
tokens should attend to the language itself. Visual frames are allowed to attend
to all language tokens, but they can only attend to all the frames, actions, and
semantic maps before the current time step t. The same rules are applied to
action tokens and semantic maps. Sinusoidal positional encoding is also applied.

Ultimately, we employed a fully connected layer to predict an output sequence
based on all the tokens of visual representations, which have the same number
of mappings of actions so that we can train the model with the ground truth
action sequence.

3.4 LIAM Pipeline

In this section, we define our input and output mathematically to explain our ap-
proach more deeply. Given the following inputs: Tokenized language instructions
[L1, . . . Lm], image sequence [I1, ..., In], action sequence [A1, . . . , An], semantic
map sequence [M1, . . . ,Mn], where language tokens have length m, and all other
modalities have length n. For an image sequence I1, . . . , In, only n - 1 actions
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are involved. We append "«stop»" as the last action. Four different encoders en-
code all input to their latent space and output Fl, Fv,Fa and Fm as the feature
representation:

Fmod = Fmod +modType +modPos, for mod in L, I, A, M.

F 0
total = [FL;FI ;FA;FM ]

F
l

total = LN(MA(F
l−1

total)) + F
l−1

total, l = 1, ...,L

F
l

I = F
d

total[m+ 1 : m+ 1 + n]

O = F
d

ID.

After applying modal-type and positional encoding to each feature representa-
tion, we concatenate them into F 0

total. The multi-modal Transformer encoder has
L layers, each with Multi-headed Attention (MA), Layer Normalization (LN),
and residual connections. We then extract the visual part of the total repre-
sentation (from index m + 1 to m + 1 + n) for action sequence prediction.
The final action sequence is obtained by multiplying this sliced matrix with a
trained linear layer D. The end-to-end model is trained using cross-entropy loss
between the generated action sequence and the ground truth action sequence.
For predicted action sequence P = [â1 . . . ân] and ground truth Q = [a1 . . . an],
the cross-entropy loss is defined as:

Laction = −
n∑

i=1

13∑
c=1

ai,clog( ˆai,c),

where c represents the action class out of 14 classes (12 classes + «stop» +
«pad»). However, the «pad» token is masked out during the computation of the
loss value.
Following E.T. [13], we also use auxiliary losses in the training. First, we predict
the object class for each frame ("NoObject" is also a class). The predicted object
class is a list with the same length as the action. Similary to the action, for
predicted object sequence Po = [ô1 . . . ôn] and ground truth Q = [o1 . . . on], the
cross-entropy loss is defined as:

Lobject = −
n∑

i=1

85∑
c=1

oi,clog( ˆoi,c),

where c represents the object class out of 85 classes (84 object classes + NoOb-
ject).
We also predict the goal progress with the initial thoughts for giving the model
a better understanding of the current progress of the current trial. The ground
truth Qgp of the goal progress is computed by

Qgp =

{
i+ 1

n
| i ∈ {0, 1, 2, . . . , n− 1}

}
,
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Table 1. Matching accuracy of image-to-text (I2A) and text-to-image (T2I) pairs.

Models Validation Test

ACC (I2A) ACC (T2I) ACC (I2A) ACC (T2I)

Contrastive alignment of image and action

MobileCLIP S0 (Zero-shot) 7.51 - 7.32 -
MobileCLIP S0 38.34 - 43.21 -
OpenCLIP-RN50 (Zero-shot) 5.63 - 5.51 -
OpenCLIP-RN50 61.41 - 58.78 -
OpenCLIP-ViT-B-32 (Zero-shot) 5.84 - 8.26 -
OpenCLIP-ViT-B-32 65.45 - 61.58 -

Triple contrastive alignment

MobileCLIP S0 (Zero-shot) 3.21 35.04 3.34 33.03
MobileCLIP S0 80.28 60.22 68.97 35.95
OpenCLIP-RN50 (Zero-shot) 3.76 31.51 4.78 34.61
OpenCLIP-RN50 70.56 32.67 65.54 51.82
OpenCLIP-ViT-B-32 (Zero-shot) 3.89 45.62 5.67 37.65
OpenCLIP-ViT-B-32 88.22 75.43 65.98 40.69

where n is the length of the ground truth action for the current trial. For pre-
dicted goal progress P gp, we use Mean Square Error (MSE) loss, defined as:

Lgp =
1

n

n∑
i=1

(Qgp
i − P gp

i )2.

The total loss is then defined as:

Ltotal = Laction + αLobject + βLgp,

where α, β are hyperparameters for weighing the auxiliary loss. We set all weights
to 0.1 in our experiments.

4 Experiments

We now present results from the pre-training stage, and report quantitative and
qualitative results.

4.1 Pre-training Stage

We pick three different CLIP backbones: MobileCLIP-S0 (54.7 million param-
eters), OpenCLIP with Resnet-50 backbone (114.1 million parameters), and
OpenCLIP with the vision transformer backbone (152.7 million parameters).

Table 1 presents the accuracy score of correct matching pairs among the mini-
batches. Firstly, we can clearly see that no CLIP model can correctly match
two consecutive visual images with their corresponding actions in a zero-shot
manner. As discussed before, CLIP is a model that is sensitive to the dataset.
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Table 2. Results for the end-to-end model predicted sequence and the ground truth.

Models Valid Seen Valid Unseen

Accuracy F1 score Accuracy F1 score

Zero-shot CLIP encoder 73.00 58.64 71.87 49.31
+ Semantic Map 78.08 71.69 76.49 59.54

Contrastive-aligned CLIP 76.97 64.17 79.56 44.02
+ Semantic Map 79.30 56.94 81.51 39.52

Triple-contrastive-aligned CLIP 77.52 72.15 76.89 64.57
+ Semantic Map 77.98 72.63 75.79 67.02

However, both image-action contrastive and triple contrastive alignment can be
adequately trained and show significant accuracy gains in matching correspond-
ing pairs of two consecutive images and action or pairs of the image sequence
and text sequence. We use batch size 64 for image-action contrastive alignment
training, batch size three, and additionally, constraint each sequence to length
21 (during validation) for triple-contrastive alignment to keep a fair comparison
between both accuracy scores. We observe that using zero-shot inference, the ac-
curacy for text sequence and image sequence matching is around 33%, and the
accuracy for two image frames and action matching lies between 3% and 8%.
Both scores denote the random guessing from the model. After fine-tuning, the
accuracy of predicting the correct image and text sequence pair is increased us-
ing MobileCLIP backbone and CLIP VIT-B-32 backbone to 60.22% and 45.62%,
however still not entirely correct out of the mini-batch. We observe that triple-
contrastive alignment indeed benefits accuracy in matching the correct action
label of the consecutive images using all three backbones. Overall, based on its
performance in the action-image matching task, we decided to use pre-aligned
CLIP VIT-B-32 as the backbone to extract the features of our input.

4.2 Quantitative Results

In our experiments, we used OpenCLIP with ViT B-32 as our backbone, which
we found to be the most suitable in our experiments. From Table 2, first, we ob-
serve that the fine-tuning of the CLIP backbone brought benefits in increasing
the accuracy and the F1 score. Although the improvement in accuracy is not sig-
nificant, e.g., 73.00%, 76.97%, 77.52% in the seen data, 71.87%, 79.56%, 76.89%
in the unseen data, respectively. When the triple contrastive pre-alignment is ap-
plied, the F1 score improves by 8% on seen data and by around 20% on unseen
data, compared to the contrastive alignment approach. Second, the semantic
map improved the model’s performance for the zero-shot backbone and triple-
aligned backbone, showing the potential of using the map as an extra modality
to enhance the model’s spatial understanding rather than solely given the ego-
centric RGB images. The backbone fine-tuned with image-to-action alignment
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Fig. 4. Example task: "Look at the basketball in the light from the lamp". The given
step-by-step instructions are as follows: ’Walk to the foot of the bed.’ -> ’Pick up the
basketball from the floor.’ -> ’Go to the desk to your left.’ ->’Turn on the lamp.’

has an acceptable accuracy score but a relatively low F1 score; this indicates
that the model still suffers from the imbalanced data problem.

4.3 Qualitative Results

Figure 4 shows the decision of our agent for the task, "Pick up the basketball
and turn on the desk lamp in the bedroom." The agent can comprehend most of
the sub-goal instructions and correctly find and pick up the basketball beneath
the bed. Furthermore, the agent rotates left twice and goes to the desk. However,
this task eventually failed because of the model’s wrong prediction of the lamp’s
location (which should be on the other side of the desk).

5 Conclusion

In this paper, we introduced LIAM, a multimodal model incorporating natural
language input, egocentric RGB image input, action history, and an accumu-
lated semantic map. Because all the modality-specific encoders encode inputs
in their own latent space, we designed two pre-training tasks to pre-align the
embedding spaces. This pre-training objective aims to maximize the agreement
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of the action representation and the global representation of two consecutive
images. However, the pre-training task does not consider the alignment of the
text encoding backbone. We introduced a triple contrastive alignment to ad-
dress this issue. The agreement between the image sequence representation and
the text sequence representation, the two-frame representation and the action
representation are expected to be maximized.

Our model outperforms our baseline, using the OpenAI-released CLIP model
and no map as an additional modality. We showed the importance of pre-aligning
the embedding spaces from different modalities. In addition, using semantic maps
as a modality to the end-to-end model brought benefits as well.

Future work holds immense potential for further enhancing our model. One
avenue could be integrating the segmentation model inside our training stage and
the semantic map generation stage. Furthermore, the methodology for encoding
the map spatial information is another area that needs to be further investigated.
We are particularly intrigued by the potential of considering maps as a knowledge
base modality to the vision-language models.
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