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Abstract. We present an approach to continuous motion planning with
multiresolution in time. Our approach is based on stochastic trajectory
optimization for motion planning (STOMP) and designed to decrease the
optimization time in order to enable frequent replanning. Since service
robots operate in environments with dynamic obstacles, it is likely that
planned trajectories become invalid over time. Thus, it is not necessary to
provide trajectories with a uniform high resolution. Our multiresolutional
approach implicitly considers the uncertainty of the future by providing
a trajectory with a gradually coarser schedule, which is refined trough
replanning. In addition to employing temporal multiresolution, we speed
up trajectory optimization by initializing replanning with the previous
plan. The proposed multiresolution STOMP is evaluated in simulation
in comparison to the original STOMP implementation. Our experiments
show that multiresolution STOMP reduces the planning time and, hence,
is able to avoid dynamic obstacles.
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1 Introduction

Service robots directly work next to human users in household or working en-
vironments while performing their tasks such as, e.g., fetching objects. In order
to assure safety during robot movement, motion planning has to be employed to
provide collision-free and feasible trajectories. Since environments shared with
humans are dynamic, the planning has to consider not only static obstacles
and possible self-collisions, but also dynamic obstacles. Due to the motion of
dynamic obstacles as well as the movement velocities of the robot itself, the
planning process needs to be fast and, similarly, frequent replanning is required
to rapidly adapt to changes in the environment. Apart from this, the planned
motions should not only be feasible but also smooth, because otherwise, the
movement of the robot becomes non-predictable for human users and violations
of joint limits may occur. In spite of motion planning being computationally
expensive, it is necessary to have a motion planner which is capable of meeting
these requirements.
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In this paper, we present an approach to continuous motion planning based
on the motion planning algorithm STOMP by Kalakrishnan et al. [1]. The al-
gorithm employs stochastic trajectory optimization and, unlike other sampling-
based motion planning algorithms, the resulting trajectory is already smooth and
does not need further filtering. Although it converges slightly slower compared
to gradient-based optimization methods, it is able to overcome local minima be-
cause of its stochastic approach. Overall, it is reasonable to use STOMP as a
starting point for employing fast and efficient motion planning. Since frequent
replanning depends on a fast execution of the planning process, the runtime of
the STOMP algorithm has to be decreased. We utilize the uncertainty of the
future state of the dynamic environment and employ multiresolution in time
to reduce the computational complexity of the calculations made for planning.
Moreover, the trajectory used for initializing the planner can be extracted from
previous plans, which accelerates replanning. By not only including the robot
arm but also additional joints into the planning process, it is also possible to
increase the probability of finding feasible trajectories. We demonstrate our ap-
proach by employing it on our domestic service robot Cosero and evaluating it
in simulation.

After discussing work related to ours, we give a brief system overview in
Sec. 3. In Sec. 4, we detail our approach to continuous motion planning. We then
present the experiments conducted for evaluation and their results in Sec. 5.

2 Related Work

Previous work on motion planning is extensive, as planned motion is an essential
ability required by every type of robot. The research platform PR2 by Willow
Garage, for example, employs a whole planning pipeline integrated into their
middleware ROS [2]. A number of interchangeable motion planning algorithms in
this pipeline are taken from the Open Motion Planning Library (OMPL) [3], in-
cluding Kinematic Planning by Interior-Exterior Cell Exploration (KPIECE) [4].
While the basic functionality for motion planning is provided, it is, however, in-
evitable to modify the components in order to enable features such as frequent
replanning.

In addition to those sampling-based motion planning algorithms, the Co-
variant Hamiltonian Optimization and Motion Planning (CHOMP) is available,
which is a gradient optimization algorithm presented by Ratliff et al. [5]. It uses
trajectory samples, which initially can include collisions, and performs a covari-
ant gradient descent by means of a differentiable cost function to find an already
smooth and collision-free trajectory.

A planning algorithm based on CHOMP is the Stochastic Trajectory Op-
timization for Motion Planning (STOMP) by Kalakrishnan et al. [1]. STOMP
combines the advantages of CHOMP with a stochastic approach. In contrast to
CHOMP, it is no longer required to use cost functions for which gradients are
available, while the performance of STOMP stays comparable. This allows to
include costs with regard to, for instance, general constraints or motor torques.
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Since STOMP is designed and implemented to only being executed once in a
while, the algorithm is not able to consider dynamic obstacles, unless it is ac-
tively called consecutively to generate a new plan from scratch.

Another algorithm derived from CHOMP is ITOMP, an incremental tra-
jectory optimization algorithm for real-time replanning in dynamic environ-
ments [6]. In order to consider dynamic obstacles, conservative bounds around
them are computed by predicting their velocity and future position. Since fixed
timings for the trajectory waypoints are employed and replanning is done within
a time budget, generated trajectories may not always be collision-free.

Other interesting approaches include elastic strips by Brock and Khatib [7]
and the motion planning employed for the robot Rollin’ Justin by the German
Aerospace Center (DLR) [8]. Both make use of whole-body motion planning and
reactive control by means of potential fields, while elastic strips uses the latter
to conform the planned trajectories. Since reactive behavior does not take the
near future into account, failures occur with both elastic strips and the DLR
motion planning and therefore, complete global replanning becomes necessary.

Integrating a multiresolutional approach into planning with regard to the
environment representation or with respect to time is not new. In our prior work
both approaches of local multiresolution path planning were proposed for mobile
robots [9]. In both cases, different resolutions are nested hierarchically, leading
the precision to decrease gradually.

In terms of motion planning for end-effectors, He et al. also follow the idea of a
multiresolutional planning by proposing a multigrid CHOMP [10]. In contrast to
our approach from [9], all of the time steps are first computed in a low resolution
and are subsequently upsampled by adding intermediate points between time
steps from the coarser resolution, thus leading to a uniformly spaced trajectory.
They also utilize the fact, that the optimization algorithm converges faster, if
an already near-optimal trajectory is given as initialization.

Their idea of a multiresolutional trajectory does not appeal to us, because
they have to plan multiple times, yet they end up with uniform spaced timesteps
in a high resolution. Moreover, frequent replanning has to be executed in order
to consider dynamic obstacles. In contrast, utilizing our previous work provides
a finished plan, which is refined during replanning.

In this paper we therefore adopt our previous approach for multiresolution in
time in combination with frequent replanning while reusing previously planned
trajectories as an initialization to speed up convergence.

3 System Overview

Our domestic service robot Cosero [11] was built following an anthropomorphic
design approach. It consists of a mobile base with an omni-directional drive,
a movable torso attached to a vertical linear actuator, two anthropomorphic
arms each equipped with a gripper, and a communication head (see Fig. 1). The
vertical torso motion allows Cosero to manipulate objects on elevated surfaces,
but also to grasp objects from the ground. In addition, its trunk can be rotated
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Fig. 1. Domestic service robot
Cosero during the RoboCup 2013
competition in Eindhoven.

Fig. 2. A set of initial trajectories with mul-
tiresolutional spacing for the seven joints in the
robot arm.

around the vertical, which yields a larger workspace and concurrently improves
the interaction with a user. For perceiving the environment, Cosero is equipped
with four laser-range finders and a Microsoft Kinect RGB-D camera in its head.
The robot possesses a total of 32 joints, which are driven by Robotis Dynamixel
actuators and are revolute, except for one vertical prismatic joint. Each of its
anthropomorphic arms has 7 DOF and an attached end effector with 2 DOF
utilizing two parallel fingers on each opposing side. Each arm is able to handle
a maximum payload of 1.5 kg.

In prior work—mobile bin picking [12]—we employed ROS’ planning pipeline
for motion planning. After generating a feasible grasp for one out of a pile of
objects in a bin, motion planning is employed for moving the end effector over
the box and subsequently, to a pre-grasp pose. On that account, motion planning
is performed by means of lazy bi-directional KPIECE [4], which is included in
OMPL. Finally, the planned motion is executed by the robot and the desired
object is grasped. In this application the robot plans once for each call and
subsequently executes the planned trajectory without renewed collision checking.

4 Motion Planning

In order to realize frequent replanning, it is crucial to accelerate the execution
speed of the motion planning. One approach for reducing the number of calcu-
lations and thus speeding up runtime is multiresolution.

4.1 STOMP

Unlike sampling-based motion planners, STOMP defines the given motion plan-
ning problem as an optimization problem. Accordingly, the goal is to find a
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trajectory, which minimizes the costs calculated by a predefined cost function.
As an input STOMP gets a start and a goal configuration x0, xN ∈ RJ , with J
being the number of joints. The output of the algorithm is one trajectory vector
θ ∈ RN per joint, discretized into N waypoints. Besides a cost function STOMP
has to be initialized with a joint trajectory, e.g., an interpolation between start
and goal configuration. The optimization problem STOMP solves iteratively is
defined by

min
θ̃

E

[
N∑
i=1

q(θ̃i) +
1

2
θ̃>Rθ̃

]

with θ̃ = N (θ,Σ) being a noisy joint parameter vector with mean θ and covari-
ance Σ. q(θ̃i) is a predefined cost function calculating the costs for each state
in θ̃. θ>Rθ describes the sum of squared accelerations along the trajectory with
R being a matrix representing control costs. STOMP now attempts to solve the
defined optimization problem by means of a stochastic optimization method. As
a result it is possible to minimize the predefined cost function q(θ̃), even though
it might not be differentiable and therefore, no gradients are available for this
function.

4.2 Multiresolution in Time

Whereas environments with only static obstacles are constant throughout time,
dynamic environments change regularly due to dynamic obstacles as well as the
motion of the robot itself. Consequently, the future state of a dynamic envi-
ronment is uncertain, as obstacles might appear or move suddenly. The mul-
tiresolutional approach takes advantage of this property by implicitly taking the
uncertain future into account. It is assumed that while a planned trajectory is
executed, the future waypoints might become invalid. Hence, it is not necessary
to have a trajectory with a high uniform resolution throughout time. In order to
reach a goal configuration, it suffices to plan the initial segments of a trajectory
with high temporal resolution and to decrease temporal resolution with distance
from the starting time.

As this results in a smaller number of time steps, less calculations have to
be conducted with a multiresolutional spacing, thus leading to a computational
advantage compared to the uniformly discretization of the trajectory length.
Certainly, the planned multiresolutional trajectory is not as precise and smooth
as the uniformly spaced one and, hence, it would be difficult to execute the
entire trajectory directly. This is not done, however, but the multiresolutional
trajectory is refined gradually by means of frequent replanning.

By default, the duration of a trajectory is uniformly discretized into a number
of timesteps. When utilizing multiresolution, the time intervals differ in their
length with regard to the duration of the whole trajectory. With an increasing
duration, the resolution of the time intervals decreases. As a result, the lengths
of the time intervals increase by means of a pre-defined function determining the
growth of duration between timesteps.
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In contrast to the original STOMP implementation which uses a fixed tra-
jectory duration of 5 s, we calculate the duration and therefore the number of
waypoints online for each new planning problem. Since the start and goal con-
figurations are given, the angular distance between the configurations can be
calculated for each joint. By means of the maximum speed of the built in Dy-
namixel actuators without load and the weight of the construction parts an
educated guess of 0.3 rad/s regarding the average velocity of the actuators can
be made. As a result, the duration of a new trajectory can be calculated by

d =
maxj∈J(|xj,N − xj,0|)

v
+∆, (1)

where J is the number of joints, xj,0 and xj,N are the start and goal configu-
rations for a specific joint and v is the average velocity of the actuators. Due
to the fact, that the goal configuration cannot be reached by means of a linear
interpolation when obstacles are blocking the way, an extra time padding ∆ is
added to the calculated duration.

In order to determine a multiresolutional trajectory, a minimum trajectory
discretization as well as a function for determining the growth of the time in-
tervals is needed. Although this function can be chosen arbitrarily, the length of
the time intervals should not become too large in order to avoid an insufficient
number of waypoints for collision avoidance. To determine the size of the time
intervals δt, we use a linear function defined by

δt(x) = 0.01t+ r, (2)

with r being the minimum resolution for discretization, which we chose as 0.05 s.
When initializing a new trajectory, the intermediate points between the start

and goal configuration are filled by means of Bézier splines. An example mul-
tiresolutional trajectory for all of the 7 joints of the robot arm is shown in Fig. 2.

As the smoothness of the trajectory is measured by the acceleration along the
trajectory, differentiation matrices are pre-defined in the original implementation
for the purpose of calculating the first, second and also third order of derivatives.
When applying the multiresolutional approach each waypoint in the trajectory
has a different, multiresolutional spacing to its neighbors. Thus, the finite differ-
encing filters have to be computed for each point separately with regard to the
multiresolutional waypoint spacing. In order to get the derivatives for each way-
point, the algorithm for finite differencing by Fornberg is employed [13]. Finally,
the fourth order of accuracy of each of the orders of derivative is used to build
the multiresolutional differentiation matrices. Since the trajectories are newly
created for each planning problem, this computation also has to be executed for
each planning problem.

4.3 Frequent Replanning

STOMP is a motion planning algorithm, which performs local optimization and
therefore, primarily finds locally optimal trajectories as opposed to finding global
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Fig. 3. The idea of moving the start index when replanning. s and g are the start and
goal configurations, s′ is the new start index at time ti and ε represents the mean time
needed for replanning.

solutions. Thus, its performance changes depending on the initial trajectory sup-
plied for optimization. As the sampled noise used for optimization lies within a
fixed interval, the impact of the exploration steps in each iteration is limited.
Consequently, the further away an initial trajectory is from the locally optimal
trajectory, the more iterations are needed to converge to it. The original imple-
mentation of STOMP always uses a new trajectory, which is created by Bézier
splines interpolation, as an initialization for the optimization process. This works
good if no obstacle is in the vicinity of the robot, but with an obstacle near it,
the optimization process has to start from scratch when replanning.

We assume that planning takes place frequently and also consecutively, as the
robot might directly repeat tasks or replan while executing a task. Meanwhile,
static and even dynamic obstacles in the workspace of the robot most likely stay
in the same position or area. Hence, the previously planned trajectory is very
probably similar or near to the locally optimal trajectory and therefore, reusing
the previous plan leads to a quicker convergence of the optimizer, as the old
trajectory only has to be refined.

Combining frequent replanning with reusing previously planned trajectories
as an input for optimization leads to two different cases:

I) When replanning is executed with a different goal, the trajectory is newly
created and initialized without reusing the previously planned trajectory.

II) Using the former trajectory as an input for planning to the same goal results
in the problem of choosing a new start configuration concerning time. Since the
robot starts executing the planned trajectory right after it was published, the
new starting point needs to be ahead of the current time. In order to find the
new starting point, the elapsed time since the prior trajectory was published is
determined and an additional value ε is added to this duration as a time padding
for of the mean time needed for finishing one planning cycle. This guarantees a
smooth transition between the old trajectory being in execution and the newly
optimized part. Eventually, the complete duration is increased to the next ex-
isting index as shown in Fig. 3. When using multiresolutional trajectories, not
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only the start index must be moved, but the entire trajectory needs to be re-
sampled to maintain the local multiresolution property. As illustrated in Fig. 4,
the gradual increase of resolution leads to a refinement of the plan.

4.4 Adding Joints

It is expedient to include additional joints into the planning process, as more
degrees of freedom might lead to better solutions or even finding a solution at
all, when planning only with the arm and endeffector fails. In case of our robot
Cosero, the torso yaw joint and the prismatic torso elevator joint can be added,
which increases the workspace of the robot drastically.

Adding supplementary joints to the planning with regard to the STOMP
implementation is not difficult and can be realized by means of configuration
files. However, appending joints might lead to side effects within the planner
with respect to the kinematic chain of the robot.

Although many different possibilities for avoiding collisions are gained, the
extra joints and therefore additional dimensions in c-space, increases the calcu-
lations needed for collision detection, inverse and forward kinematics and the
optimization process itself. Consequently, the optimization slows down but due
to the acceleration by the multiresolutional approach, constant replanning as
well as incorporating additional joints is possible without any problems.

5 Evaluation

For evaluation, our multiresolutional STOMP implementation is compared to the
original STOMP with regard to overall runtime, success in avoiding static and
dynamic obstacles, the number of needed iterations and length of trajectory.
In addition, LBKPIECE is used as a reference data for finding feasible grasp
positions in a shelf experiment. The experiments are executed in simulation
within the ROS environment on a desktop computer with an Intel Core i7 940
quadcore CPU with 2.93 GHz and 24 GB RAM.

In order to evaluate the approach of using a previously planned trajectory as
an initialization of the optimization process, we compare our multiresolutional
STOMP implementation with this feature enabled with our STOMP utilizing the
standard initialization used by the original STOMP. In the experiment depicted
in Fig. 5, first an obstacle is placed outside of the vicinity of the robot. Then
the dynamic obstacle is slowly approaching the robot and subsequently, after a

Fig. 4. Moving a multiresolutional trajectory for two timesteps requieres resampling.
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(a) (b) (c)

Fig. 5. The avoidance of a dynamic obstacle by means of frequent replanning. The
obstacle moves towards the robot and the plan is optimized with respect to the obstacle.

Table 1. Comparison of our multiresolutional STOMP with and without using previ-
ously planned trajectories as an initialization while avoiding a dynamic obstacle. The
minimum number of iterations is set to 19 for this experiment.

standard initialization initialization with old trajectories

Success 100% 100%

No. of waypoints 27 27

Duration 4.55 s 4.55 s

Iterations 22.44 19.04

Overall runtime [s]
0.23 0.21

±0.036 ±0.025

short time of adjusting to the obstacle, leaves its vicinity again. This is done
manually once within 500 planning cycles.

The results of the experiment are shown in Tab. 1 as well as Fig. 6. Overall,
both versions of our implementation find feasible and collision-free trajectories
in each planning cycle. Nevertheless, both, the average number of iterations as
well as the average overall runtime of our planner version without the initial-
ization with recent trajectories, are higher than the respective values of our
STOMP with initialization. While the number of iterations of our multiresolu-
tional STOMP version without initialization is high most of the time, in which
the dynamic obstacle was moved to and away from the robot, the other plan-
ner version again only shows single peaks for every time a larger movement was
executed. This indicates, that our multiresolutional planner using the standard
initialization not only needs many iterations for newly adapting to an occur-
ring obstacle in each planning cycle, but also needs more iterations to return to
the plan without an obstacle present. The experiment demonstrates, that the
frequent replanning in order to avoid dynamic obstacles is successful, especially
when combined with the reuse of previously planned trajectories as an initial-
ization to the optimization of the STOMP algorithm.
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Fig. 6. The number of iterations until convergence with and without initializing with
the recent trajectory. The moving of the obstacle was executed manually. Hence, the
planning cycles with obstacles moved in and out of the vicinity differ slightly.

Table 2. Comparison of LBKPIECE, original STOMP and our multiresolutional
STOMP when planning within the shelf. The success represents the rate for finding
feasible plans.

KPIECE original STOMP multiresolutional STOMP

Success 96.94% 72.22% 86.96%

Overall runtime [s] N/A 1.71 ± 0.73 0.81 ± 0.32

In another experiment both, the original STOMP implementation and ours,
are compared in a shelf scenario (cf. Fig. 7a). For this purpose, we built a stan-
dard shelf with measurements of 39×149×149 cm and 16 cases in simulation
and placed the robot in front of it aligned to the center of the shelf. In a first
step, we then utilized LBKPIECE with an extended terminating condition of
120 s allowed planning time in order to get reference data regarding the inverse
kinematic solutions of the robot as well as the existence of a feasible path. The
planning is executed for each combination of start and goal cases, if a valid
inverse kinematics solution was found for both configurations. Results for two
example start cases are depicted in Fig. 7b. Subsequently, the planning is con-
ducted with both STOMP implementations.

The results of the experiment are shown in Tab. 2. Overall, our multires-
olutional STOMP implementation has a higher success rate than the original
STOMP implementation while needing less overall runtime. Although the mul-
tiresolutional trajectory has to be refined in terms of frequent replanning, the
replanning is executed during the movement of the endeffector. Moreover, as
shown in Tab. 1 employing the initialization of previously found trajectories ac-
celerates the overall runtime when replanning, which especially benefits more
difficult scenarios. As a result, our multiresolutional STOMP is able to success-
fully plan obstacle free trajectories within a reasonable runtime.
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(a) The model of Cosero standing
centered in front of a shelf.

(b) Two examples for found plans by
the LBKPIECE algorithm from two
different start cases within the shelf.

Fig. 7. The setup of the shelf experiment in simulation is shown in Fig. 7a and two
example results of planning with LBKPIECE are depicted in Fig. 7b.

Table 3. Comparison of the lengths of a uniform and a refined multiresolutional tra-
jectory provided for one example planning problem including an obstacle.

Joints uniform [rad] multiresolutional [rad]

Shoulder pitch 0.92 0.75

Shoulder roll 0.18 0.17

Shoulder yaw 1.34 1.32

Elbow pitch 0.41 0.35

Wrist yaw 0.53 0.53

Wrist pitch 0.20 0.19

Wrist roll 0.25 0.16∑
3.83 3.47

In order to compare the quality of multiresolutional solutions, an example
planning problem including a simple obstacle was used to calculate the length of
the resulting trajectories of our STOMP implementation with uniformly spaced
timesteps and multiresolutional time intervals. Since the multiresolutional tra-
jectory is refined with every new replanning, only the waypoints in high resolu-
tion are used for the calculation. The result is shown in Tab. 3. This example
demonstrates, that the quality of multiresolutional trajectories is comparable to
the quality of uniform trajectories.

6 Conclusions

In this paper, we presented an approach for continuous motion planning based on
the motion planning algorithm STOMP. In order to enable frequent replanning
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and additional joints for planning, multiresolution in time is used to decrease
the runtime of the planning process. Moreover, a good guess for an initial trajec-
tory is used to accelerate the optimization process. We evaluated the proposed
approach in experiments in terms of overall runtime, success in avoiding static
and dynamic obstacles, and trajectory length. Our experiments demonstrated
that the proposed changes to the original STOMP method are beneficial.

One possibility for future work would be to extend the upper body motion
planning presented in this paper to a whole-body motion planning by combining
it with the navigation of the robot base. Moreover, a sequential planning for
both arms could be integrated in terms of consecutively determining the goal
configurations of both arms by means of inverse kinematics and subsequently
solving the motion planning problem with STOMP.
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