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Abstract. Visual motion estimation is challenging, due to high data
rates, fast camera motions, featureless or repetitive environments, un-
even lighting, and many other issues. In this work, we propose a two-
layer approach for visual odometry with stereo cameras, which runs in
real-time and combines feature-based matching with semi-dense direct
image alignment. Our method initializes semi-dense depth estimation,
which is computationally expensive, from motion that is tracked by a
fast but robust feature point-based method. By that, we are not only
able to efficiently estimate the pose of the camera with a high frame
rate, but also to reconstruct the 3D structure of the environment at im-
age gradients, which is useful, e.g., for mapping and obstacle avoidance.
Experiments on datasets captured by a micro aerial vehicle (MAV) show
that our approach is faster than state-of-the-art methods without losing
accuracy. Moreover, our combined approach achieves promising results
on the KITTI dataset, which is very challenging for direct methods, be-
cause of the low frame rate in conjunction with fast motion.

1 Introduction

For the autonomous navigation of mobile robots, a robust and fast state esti-
mation is of great importance. Many mobile robots contain cameras since they
are inexpensive and lightweight and can be used for a variety of tasks, including
visual obstacle detection, 3D scene reconstruction, visual odometry, and even
visual simultaneous localization and mapping (SLAM).

Visual odometry (VO) describes estimating the egomotion solely from im-
ages, captured by a monocular or stereo camera system. A variety of VO meth-
ods exists that can be classified into feature-based and direct methods. Most VO
methods are feature-based and work by detecting feature points and matching
them between subsequent frames. In contrast, direct VO methods estimate the
camera motion by minimizing the photometric error over all pixels. As the mini-
mization over all pixel is computationally more demanding than determining the
reprojection error of sparse feature points, direct methods are often slower than
feature-based methods. In this work, we propose a novel approach that combines
direct image alignment with sparse feature matching for stereo cameras. By com-
bining both approaches, we are able to process images with high frame rate and
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Fig. 1: Semi-dense 3D reconstruction of KITTI 00: Top left: Camera image. Bot-
tom: Semi-dense 3D reconstruction with colored camera trajectory (key frames
blue, feature-based tracked frames pink). Top right: Bird’s eye view of the com-
plete reconstructed scene.

to fill gaps caused by large motions. Due to the distinctiveness of the tracked
features, our method performs well on datasets with low frame rates, which is
often a problem for direct methods since they need sufficient image overlap. Our
work is based on LSD-SLAM [5], which is a fully direct method for monocular
SLAM that is real-time capable on strong CPUs due to its semi-dense approach.

We extend LSD-SLAM to stereo and restrict semi-dense tracking to key
frames to achieve a higher frame rate. To estimate the motion between key
frames, we employ a feature-based VO method and use the estimated motion
as prior for the direct image alignment. Thus, we restrict the search space for
direct image alignment and gain real-time performance even on CPUs for mobile
applications.

2 Related Work

VO methods estimate egomotion using only images of a single or of multiple
cameras. They can be classified into feature-based, direct and hybrid methods.

2.1 Feature-based Methods

The general pipeline for feature-based VO methods can be summarized as fol-
lows: Features are detected and either matched or tracked over time. Based
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on these feature correspondences, the relative motion between two frames is
computed. To compensate for drift, many methods make use of pose-graph
optimization. Popular feature-based methods are MonoSLAM [4] and Parallel
Tracking and Mapping (PTAM) [12]. PTAM is a widely used feature-based
monocular SLAM method, which allows robust state estimation in real-time
and has been successfully used on MAVs with monocular cameras [23]. Recently,
ORB-SLAM [14] has been proposed as a monocular visual SLAM method that
tracks ORB features in real-time. When using monocular methods, additional
sensors are needed to estimate the absolute scale of a scene. In contrast, stereo or
multi-camera VO methods [11, 18, 17] do not suffer from scale ambiguity. Recent
feature-based methods also incorporate readings from an inertial measurement
unit (IMU) as high-frequency short-term estimates between frames [1, 13].

In our work, we rely on an efficient feature-based library for stereo visual
odometry [11], which provides a good trade-off between accuracy and runtime.

2.2 Direct Methods

In contrast to feature-based methods, which abstract images into a sparse set of
feature points, direct methods use the entire image information in order to min-
imize the photometric error. Therefore, these methods are computationally very
intense and thus much slower than feature-based methods. Direct approaches
exist for stereo, RGB-D and monocular cameras [5, 6, 3, 20, 21]. They often need
to use GPUs to achieve real-time performance [16, 19]. By using only pixels with
sufficient gradient, LSD-SLAM [5] reduces the computational demand and real-
time monocular semi-dense SLAM becomes possible with a strong CPU. This
approach has been extended to stereo cameras recently [6].

2.3 Hybrid Methods

For the 3D environment reconstruction, direct methods have the advantage of
estimating a dense map, while feature-based methods can only rely on sparse
features that have been tracked. Dense direct methods are computationally de-
manding and are often executed as a final step for estimating a globally con-
sistent dense map after pose tracking with sparse interest-points succeeded. To
speed up global optimization, already tracked sparse feature-points can be used
as initialization for dense mapping [15]. A recent semi-direct method uses direct
motion estimation for initial feature extraction and then continues by using only
these features [8].

In contrast to this, we continually combine feature-based and semi-dense
direct tracking over time, taking advantage of the fast tracking from the feature-
based method and the accurate alignment of image gradients from direct meth-
ods. The feature-based tracking result is immediately fed to the direct tracking
at runtime as initial guess.
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3 Method

Our method is mainly based on the monocular version of LSD-SLAM that we
extended to work with stereo cameras. By using stereo cameras instead of a
monocular camera, the absolute scale of the scene becomes observable, eliminat-
ing scale ambiguity and the need for additional sensors. To ensure a high frame
rate, we restrict the semi-dense direct alignment to key frames only and estimate
the motion for all other frames by the feature-based method LIBVISO2 [11]. This
motion estimate is used as initial estimate for direct alignment of key frames.
The semi-dense environment mapping runs in a parallel thread.

3.1 Notation

We follow the notation of Engel et al. [5]. The monochrome stereo images cap-

tured at time i are denoted with I
l/r
i : Ω ⊂ R2 → R, with image domain Ω.

Each key frame KFi = {I li , Iri , Di, Vi} consists of the left and right stereo images

I
l/r
i , the semi-dense inverse depth map Di : ΩDi → R+, and the corresponding

variance map Vi : ΩDi → R+. The inverse of the depth z of a pixel is denoted
as d = z−1. Camera motions are represented as twist coordinates ξ ∈ se(3) with
corresponding transformation matrix Tξ ∈ SE(3). A 3D point p = (px, py, pz)

T

is projected into image coordinates u = (ux, uy, 1)T by the projection function

π(p) := K (px/pz, py/pz, 1)
T

with intrinsic camera matrix K. Thus, the inverse
projection function π−1(u, d) maps a pixel with corresponding inverse depth to

a 3D point p = π−1(u, d) :=
(
(d−1K−1u)T , 1

)T
.

3.2 LSD-SLAM

The processing pipeline of LSD-SLAM [5] consists of the three main components:
Tracking, depth map estimation, and global map optimization. Tracking is based
on maximizing photo-consistency and thus minimizing the photometric error
between the current frame and the most recent key frame using Gauss-Newton
optimization:

E(ξ) := IKF (π(p))− I(π(Tξ p)) , (1)

where p is warped from IKF to I by ξ. New frames are tracked towards a key
frame and the rigid body motion of the camera ξ ∈ se(3) is estimated. In the
depth map estimation, tracked frames are then used to refine the existing depth
map of the key frame by many small-baseline stereo comparisons. With each
new tracked frame, the depth map of the key frame is refined by either creating
new depth hypotheses or improving existing ones. New key frames are created
when the distance exceeds a certain threshold and are initialized by propagating
depth of the previous key frame towards the new frame. Once a key frame is
replaced, it is added to the pose-graph for further refinement and loop closing.
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3.3 LIBVISO2

LIBVISO2 [11] is a fast feature-based VO library for monocular and stereo cam-
eras. Similar to other feature-based methods, it consists of feature matching over
subsequent frames and egomotion estimation by minimizing the reprojection er-
ror. Features are extracted by filtering the images with a corner and blob mask
and performing non-maximum and non-minimum suppression on the filtered im-
ages. Starting from all feature detections in the current left image, candidates
are matched in a circular fashion over the previous left image, the previous right
image, the current right image, and back to the current left image. If the first
and last feature of such a circle match differ, the match is rejected. Based on all
found matches, the egomotion is then estimated by minimizing the reprojection
error using Gauss-Newton and outliers are removed using RANSAC.

3.4 Semi-dense Alignment of Stereo Key Frames

We build upon the open source release of monocular LSD-SLAM and extend
it with stereo functionality. In contrast to monocular visual odometry, stereo
allows to compute absolute depth maps and, thus, does not suffer from scale
drift. By extending LSD-SLAM to stereo, we combine the existing depth map
computation over time with instant stereo depth from the current image pair.
While monocular LSD-SLAM uses a random initialization and has to bootstrap
over the first frames, we take advantage of using stereo cameras and initialize
our method with absolute depth values. We use ELAS [10] to compute the depth
map of the initial key frame. The following key frames are registered with their
previous key frame by minimizing the photometric error as well as the depth
error. While in the monocular case, absolute depth is not observable, with stereo
cameras absolute depth is observable for every incoming stereo image pair. This
allows us to minimize the depth error in addition to the photometric error. Hence,
for direct tracking with stereo, we extend the minimization of the photometric
residual rp to take the depth residual rd into account:

rp(p, ξ) = ‖IKFi
(π(p))− Ij(π(Tξ p))‖ ,

rd(p, ξ) =
∥∥DKFi

(π(p))−Dstereoj (π(Tξ p))
∥∥ , (2)

where ξ is the camera motion from the i-th key frame to the new j-th frame and
Dstereoj is the initial instant stereo depth map of the j-th frame. The minimiza-
tion is performed using a weighted least squares formulation and solved with the
Gauss-Newton method. The residual is formulated as stacked residual r and is
weighted with a 2× 2 weight matrix W :

r(ξ) =
∑
p∈ΩDi

(
rp(p, ξ)
rd(p, ξ)

)
; W (ξ) =

∑
p∈ΩDi

(
w(rp(p, ξ)) 0

0 w(rd(p, ξ))

)
, (3)

where both residuals are weighted with the Huber norm denoted as w(·).
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Fig. 2: Overview of our hybrid approach. While direct tracking is only performed
on key frames, feature-based tracking is performed for frames in between. The
output of the feature-based odometry serves as prior for the direct tracking.

3.5 Hybrid Odometry Estimation

Our idea is to take advantage of the different strengths of both approaches and,
thereby, combine fast feature matching with precise semi-dense image alignment
for efficient and reliable state estimation. The modular structure of our approach
is illustrated in Fig. 2.

We initialize the first key frame with a dense depth map computed by ELAS.
Subsequent frames are then tracked towards the key frame incrementally using
feature-based LIBVISO2. The relative poses of the tracked frames are concate-
nated and form the relative pose of the camera to the key frame:

ξfeat = ξin ◦ ξin−1 ◦ · · · ◦ ξi0 . (4)

The current absolute pose of the camera at step j and key frame i can be
retrieved by:

ξij = ξKF i ◦ ξij−1 . (5)

We perform feature-based odometry as long as the motion is sufficiently
small. As soon as the motion exceeds the motion threshold εmotion, we perform
direct registration again and the previous key frame is replaced with the new
frame:

εmotion =
1

n

n∑
k=1

√(
uki − uki−1

)2
, (6)

where n is the number of matched feature points and (uki ) and (uki−1) are cor-
responding feature matches between the current and the previous image. The
motion ξfeat serves as initial estimate for the direct registration of the new frame
towards the key frame:

ξKF i+1 = ξKF i ◦ ξfeat . (7)
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Fig. 3: Computed semi-dense depth maps for KITTI datasets (sequences 00 and
01). Color depicts estimated distance to the sensor.

This allows us to track larger motions faster and more robustly. The depth
map of a new key frame is initialized by instant stereo correspondences and
then fused with the previous depth map by propagation as described in the next
section. Once a new key frame is initialized, we start feature-based matching
again.

3.6 Map Update

The depth map of each key frame is updated with instant stereo measurements
as well as with propagated depth from the previous key frame. If a new key
frame is created, the depth map is computed by instant stereo from the left and
right images. For this, we use a simple but fast block matching along epipolar
lines. Corresponding pixels are found by minimizing the sum of absolute dis-
tances (SAD) error over a 15×15 pixel window. The variance ω for each depth
hypothesis is determined as described by Engel et al. [7].

After initializing the depth map with stereo measurements, the depth esti-
mates are refined by propagating depth hypotheses of the old depth map to the
new frame:

pnew(p) = RC,KF p+ tC,KF , (8)

where p is the 3D point in the old key frame. The rotationRC,KF and translation
tC,KF describe the coordinate transformation from the key frame coordinate
system KF to the candidate coordinate system C. If the residual between the
instant and propagated depth is high, the depth value with smaller variance is
chosen. Otherwise both estimates—dstereo and dprop—are fused to a new depth
estimate dnew as a variance-weighted sum:

dnew = (1− ω) dstereo + ω dprop . (9)

Fig. 3 shows the resulting semi-dense depth maps for two KITTI sequences.

4 Evaluation

For the evaluation of our hybrid approach, we perform experiments on two
challenging stereo datasets: The well-known KITTI-dataset [9] and the Eu-
RoC dataset [2]. The datasets differ in terms of frame rate, apparent motion,
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Table 1: ATE Results on KITTI Dataset.

KITTI Absolute Trajectory Error RMSE (Median) in m
Sequence Ours LIBVISO2 ORB-SLAM S-PTAM

00 6.15 (5.02) 29.71 (18.49) 8.30 (6.04) 7.83 (6.30)
01 61.74 (55.48) 66.54 (60.46) 335.52 (303.79) 204.65 (157.10)
02 19.47 (15.80) 34.26 (27.36) 18.66 (15.03) 20.78 (17.28)
03 0.67 (0.58) 1.67 (1.54) 11.91 (9.19) 10.53 (10.41)
04 0.72 (0.49) 0.80 (0.66) 2.15 (1.73) 0.98 (0.88)
05 5.78 (4.69) 22.14 (19.07) 4.93 (4.73) 2.80 (2.24)
06 4.37 (3.53) 11.54 (10.26) 16.01 (15.56) 4.00 (4.01)
07 2.63 (1.77) 4.41 (4.37) 4.30 (3.65) 1.80 (1.53)
08 8.75 (7.26) 47.67 (34.84) 38.80 (18.12) 5.13 (4.26)
09 5.55 (4.07) 89.83 (77.57) 7.46 (6.91) 7.27 (4.61)
10 1.87 (1.68) 49.35 (36.00) 8.35 (7.55) 2.08 (1.70)

mean 10.70 (9.12) 32.54 (26.42) 41.49 (35.66) 25.74 (20.26)
mean w/o S 01 5.60 (4.49) 29.14 (23.02) 12.09 (8.85) 7.85 (6.57)

and stereo baseline. All experiments have been conducted on an Intel Core i7-
4702MQ running at 2.2 GHz with 8 GB RAM. The processing is performed on
the original image resolution of the rectified images of 1241×376 and 752×480,
respectively. We compare the quality of our combined approach in terms of accu-
racy and runtime to LSD-SLAM [5] and LIBVISO2 [11], as well as to two more
state-of-the-art methods: S-PTAM [18] and ORB-SLAM [14]. The results of the
referred methods have been obtained using the provided default parameters. As
ground truth for all sequences is available, we employ the evaluation metrics by
Sturm et al. [22] and measure the absolute trajectory error (ATE) by computing
the root mean squared error (RMSE) over the whole trajectory. Additionally,
for the monocular systems, the scaling factor is estimated to obtain the abso-
lute scale of the camera trajectory. For an intuitively accessible visualization,
trajectories are always shown in bird’s eye perspective.

4.1 Accuracy

In terms of accuracy, we achieve similar results as current state-of-the-art stereo
methods. As our method is a pure odometry method, it accumulates drift over
time, especially at large rotations, where direct alignment of key frames becomes
more demanding.

The KITTI benchmark is very challenging for direct methods, as it contains
fast motions up to 80 km/h in combination with a low frame rate, which causes
inter-frame motions up to 2.8 m per frame.

The results of our evaluation on the KITTI dataset are shown in Table 1.
Unfortunately, LSD-SLAM fails on all sequences of the KITTI dataset. This
is probably caused by too large inter-frame motion for a pure monocular direct
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Fig. 4: Comparison of LIBVISO2 (left), direct (middle) and the proposed hybrid
odometry (right) on KITTI Sequence 00. Our method accumulates less drift.

method, as sufficient scene overlap is important for successful tracking. Moreover,
it can be seen, that all methods lack performance on Sequence 01, resulting in a
very high ATE. Sequence 01 contains images from driving on a highway, thus it
is hard to find re-occurring feature points in subsequent frames. When averaging
over the eleven training sequences, our method ranks first, followed by S-PTAM,
ORB-SLAM, and LIBVISO2. However, the bad results from Sequence 01 greatly
affect the final average computation, which is why we also show mean values
omitting this sequence.

Unfortunately, to our knowledge there is no other publicly available direct
method other than LSD-SLAM to compare with. However, as LSD-SLAM fails
on the KITTI sequences, we compare our hybrid approach to its fully direct
version without feature-based initial estimates. In particular, we compare our
hybrid approach to its building blocks—LIBVISO2 and direct stereo tracking—
separately. Fig. 4 shows the estimated trajectories of the three methods ex-
emplary on the KITTI 00 sequence. It can be seen that our hybrid approach
accumulates less drift than the pure feature-based or direct method. The di-
rect tracking performs worst on this dataset, because it fails at tracking large
inter-frame motions and strong rotations without a good initial estimate.

Table 2: ATE Results on EuRoC Dataset.

EuRoC Absolute Trajectory Error RMSE (Median) in m
Dataset Ours LIBVISO2 LSD-SLAM ORB-SLAM S-PTAM

V1 01 0.25 (0.18) 0.31 (0.31) 0.19 (0.10) 0.79 (0.62) 0.28 (0.19)
V1 02 0.24 (0.16) 0.29 (0.27) 0.98 (0.92) 0.98 (0.87) 0.50 (0.35)
V1 03 0.81 (0.76) 0.87 (0.64) X 2.12 (1.38) 1.36 (1.09)
V2 01 0.22 (0.13) 0.40 (0.31) 0.45 (0.41) 0.50 (0.42) 2.38 (1.78)
V2 02 0.31 (0.25) 1.29 (1.08) 0.51 (0.48) 1.76 (1.39) 4.58 (4.18)
V2 03 1.13 (0.97) 1.99 (1.66) X X X

mean 0.49 (0.41) 0.85 (0.71) 0.53 (0.48) 1.23 (0.94) 1.82 (1.52)
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Fig. 5: Comparison of LIBVISO2 (left), Mono LSD-SLAM (middle) and our hy-
brid odometry (right) on dataset V2 01 with ground truth from a Vicon motion
capture system. Our method is much closer to the ground truth.

In addition to the evaluation on the KITTI dataset, we perform further ex-
periments on the recently released EuRoC MAV dataset [2] that contains WVGA
stereo images, captured with 20 Hz on an Asctec Firefly hex-rotor. We choose
six trajectories with different difficulties from the two Vicon datasets V0 and
V1. The data has been collected from flights in a room that is equipped with a
Vicon motion capture system, providing 6D ground truth poses. Each dataset
contains three trajectories with increasing difficulty: Easy ( 01), medium ( 02),
and difficult ( 03). The easy trajectories have good illumination, are feature rich,
and show no motion blur, only low optical flow, and low varying scene depth.
They capture a static scene. The difficulty increases in the medium trajecto-
ries by adding challenging lighting conditions, high optical flow, and medium
varying scene depth. However, they still show a static scene and a feature rich
environment without motion blur. In contrast, the difficult scene contains ar-
eas with only few visual features and more repetitive structures. Moreover, they
add motion blur and more challenging lighting conditions. The MAV performs
very aggressive flight maneuvers resulting in high optical flow and highly vary-
ing scene depth in a non-static scene. The resulting ATE values for this datasets
are listed in Table 2. As the difficult datasets V1 03 and V2 03 contain very
dynamic movements and fast rotations with an MAV, LSD-SLAM often loses
track after a few seconds and is then unable to re-localize for the rest of the
trajectory. This is denoted as failure (X). Similarly, S-PTAM and ORB-SLAM
lose track for the difficult trajectory V2 03. This dataset shows very challenging
conditions with strong motion blur and fast aggressive maneuvers. Moreover, the
absence of sufficient visual features makes it hard for the feature-based methods
to succeed.

Table 2 shows that our approach outperforms the other methods in terms
of accuracy and robustness, and reliably recovers the motion for all test se-
quences. Additionally, it can be seen, that the results of LIBVISO2 are improved
on every trajectory. On average, our hybrid odometry achieves a higher accu-
racy, with 0.49 m ATE, than LSD-SLAM (0.53 m), ORB-SLAM (1.23 m), and
S-PTAM (1.82 m). LSD-SLAM, ORB-SLAM and S-PTAM often suffer from fast
motions in combination with rotations, and temporarily lose track. In addition,
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Table 3: Average runtimes of all evaluated methods.

Dataset Method Tracking Mapping Total (VO)

KITTI

Ours 26.5 ms 36.6 ms 63.1 ms
LSD-SLAM - - -
ORB-SLAM 30.7 ms 254.0 ms 284.6 ms

S-PTAM 71.1 ms 5.7 ms 77.4 ms
LIBVISO2 33.8 ms - 33.8 ms

EuRoC

Ours 22.6 ms 39.6 ms 62.2 ms
LSD-SLAM 27.6 ms 85.6 ms 113.2 ms
ORB-SLAM 17.9 ms 159.2 ms 177.1 ms

S-PTAM 47.3 ms 1.5 ms 48.8 ms
LIBVISO2 24.8 ms - 24.8 ms

we compare results of our hybrid odometry to fully feature-based and direct
methods, shown exemplified on dataset V2 01 in Fig. 5. While the results from
LIBVISO2 and LSD-SLAM show ATEs of approximately 40 cm, our method
yields an error of only 22 cm.

In summary: We achieve similar or better accuracy on different challeng-
ing datasets as current state-of-the-art stereo methods. Moreover, our combined
approach performs better than both—feature-based and direct—odometries on
their own.

4.2 Runtime

We evaluated the average runtime of our method over all datasets on full resolu-
tion. As the tracking of new frames and the map building run in distinct threads,
timings are given for each part separately in Table 3. On the KITTI dataset, our
average runtime for tracking new frames lies below 30 ms. Hence, our approach
is significantly faster than recent direct stereo methods [6] and reaches real-time
performance. With higher frame rate—as in the EuRoC dataset—we achieve
even better results because we need to do direct tracking less often.

4.3 Qualitative Analysis

A major advantage of using a direct approach for tracking is an accurate semi-
dense 3D point cloud, which contains every pixel with sufficient gradient. Thus,
our odometry not only estimates the current pose of the camera, but also builds a
3D map of the environment, which can be used for additional tasks, like obstacle
avoidance. Fig. 6 shows an example of recovered scene depth at near distance
and Fig. 1 displays the reconstructed scene of a longer odometry segment from
the KITTI dataset 00.
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Fig. 6: Left: Camera image. Right: Reconstructed semi-dense 3D point cloud.

5 Conclusions

In this paper, we proposed a novel hybrid visual odometry method that combines
feature-based tracking with semi-dense direct image alignment. Our method
fuses depth estimates from motion between key frames with instantaneous stereo
depth estimates. The performance of our method has been evaluated in terms of
accuracy and runtime on two challenging datasets. Our experiments show that
for tracking egomotion between image frames, we achieve accuracies similar to
the state-of-the-art at high frame rate without the necessity to reduce the im-
age resolution. Due to the feature-based tracking as prior for semi-dense direct
alignment, our method is computationally less expensive than direct methods,
but still takes advantage of all image points with sufficient gradient for pre-
cise keyframe registration. The distinctiveness of the tracked features makes our
method also more robust against large inter-frame motion than direct methods.

In future work, we plan to incorporate high frequency IMU readings and to
evaluate other feature-based tracking priors, e.g. ORB features. Moreover, since
our method accumulates drift over time, we plan to extend our method by a
SLAM backend to enhance accuracy and robustness.
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