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Interactive Shaping of Granular Media Using Reinforcement Learning
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Abstract— Autonomous manipulation of granular media,
such as sand, is crucial for applications in construction,
excavation, and additive manufacturing. However, shaping
granular materials presents unique challenges due to their
high-dimensional configuration space and complex dynamics,
where traditional rule-based approaches struggle without ex-
tensive engineering efforts. Reinforcement learning (RL) offers
a promising alternative by enabling agents to learn adaptive
manipulation strategies through trial and error. In this work,
we present an RL framework that enables a robotic arm with
a cubic end-effector and a stereo camera to shape granular
media into desired target structures. We show the importance
of compact observations and concise reward formulations for
the large configuration space, validating our design choices with
an ablation study. Our results demonstrate the effectiveness
of the proposed approach for the training of visual policies
that manipulate granular media including their real-world
deployment, outperforming two baseline approaches.

I. INTRODUCTION

The ability to manipulate granular media such as sand
has many applications in robotics, ranging from construction
and excavation [1]-[8] to additive manufacturing [9]. Unlike
the manipulation of rigid bodies, the shaping of granular
media is accompanied by unique challenges due to their
particle nature. Accurate modeling and control of such
media, requires accounting for complex interactions that may
vary depending on the material composition. To successfully
shape such media, an agent must continuously adapt its
manipulation strategy in response to material deformation.
Applying traditional modeling approaches requires extensive
engineering efforts due to the large configuration space of
deformable objects and media [10].

Reinforcement learning (RL) provides an alternative for-
going the need to predict the precise consequences of ma-
nipulations to the granular media, allowing the agent instead
to adaptively react to the way the manipulation unfolds
by learning optimal strategies through trial and error. This
allows the robot to interact with the state of the medium
in a closed loop (see Fig. 1). Although RL has been
successfully applied to the dexterous manipulation of rigid
objects [11], recent research suggests its potential for ma-
nipulating deformable objects, including cloth handling [10]
and fluid control [12]. However, the application of RL to
the interactive manipulation of granular media has not been
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Fig. 1: The robot’s task is to manipulate the granular media with its cubic
end-effector to shape it as close as possible to desired goal configurations.
The configurations are abstracted as height maps and the robot reconstructs
the height map corresponding to the current configuration from depth ob-
servations. Our approach closes the loop between partial visual observations
and goal-oriented manipulation, accounting for the dynamics of collapsing
granular media during the manipulation.

explored sufficiently, likely due to two key challenges. First,
finding a compact observation space for granular media is
difficult. Rigid objects can often be represented efficiently
using their poses, but granular media exhibits an effectively
infinite configuration space, requiring a high-dimensional
representation. Second, designing an effective reward func-
tion is challenging. While object manipulation tasks often
leverage distance-based rewards to guide learning, shaping
rewards this way for granular media results in very sparse
rewards since most random manipulation actions lead to
configurations further away from the desired goal, which can
result in an agent that avoids interactions with the granular
media altogether.

In this work, we address these challenges by studying how
the Markov decision process (MDP) of granular media ma-
nipulation can be defined to make RL algorithms sucessfully
applicable. To this end, we make the following contributions:

o« We develop a novel reward formulation that fosters
fast and stable convergence of RL training towards
functional granular media manipulation behaviors.

o We demonstrate that RL policies can be learned from vi-
sual observations by converting high-dimensional depth
images to compact height map representations.

« We demonstrate that the resulting formulation allows
for zero-shot transfer of trained policies to a real robot.
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II. RELATED WORK

Manipulating granular media like sand is an active re-
search field in robotics tackling challenges in simulating
contacts for locomotion [13]-[15], retrieving objects [16],
grading [17], sweeping [18], [19], trenching [20], and ex-
cavating [1]-[8], [21]. The scale of the proposed pipelines
varies from sweeping a limited amount of grit stones [18] to
shaping entire landscapes [22].

A. Simulating Granular Media

Modeling contact interactions between robots and gran-
ular media is challenging due to the amount of individual,
simulated particles [23]. Exact methods like finite element
methods (FEMs) or discrete element methods (DEMs) are
suitable to simulate material deformations and physically
accurate behavior of granular media. While FEM is less
computationally expensive than DEM, it does not capture
the granularity of particle interactions, as it treats materials
as continua. Although both simulate a larger variety of phe-
nomena than rigid body simulations, their required extensive
computations can hinder their application in robotics [13].
Therefore, Xu et al. [16] use relatively big and coarse
particles to reduce their total amount. This minimizes the
computational cost, but it makes the model less accurate.

Another way to save computational cost is to model parti-
cles as a large graph and selectively activate small subgraphs
to predict how local robot-terrain interactions deform the
granular medium, as proposed by Liu et al. [21].

Kim et al. [24] as well as Pavlov and Johnson [20] go one
step further by focusing on deformations on the surface of
granular media, rather than computing the behavior of each
particle. They proposed a sand model using a height map
that mimics the collapse of sand piles based on the angle
of repose. If the angle of repose between two height map
cells is surpassed, the excess sand is distributed to adjacent
cells until the angle condition is met again. As their model
is both computationally efficient and physically realistic, we
base our granular media simulation on the same model.

B. Robotic Manipulation of Granular Media

A common construction task is the grading of sand, e.g.,
to build roads. Miron et al. [17] leverage imitation learning
to control a bulldozer to level sand piles modeled as two-
dimensional multivariate Gaussian distributions.

Instead of leveling piles, Alatur et al. [18] proposed to
form them by teaching a robot to sweep grit stones and
wooden chips on a table. By extending a classical motion
planner with optimal transport, their robot is able to arrange
predetermined pile shapes.

Another well-researched construction task is excavating
granular media. Schenck et al. [1] learned predictive models
with highly-tailored convolutional neural network (CNN)
architectures based on an experimental data set. This allows
to predict the dynamics of scooping and dumping actions.
Jin et al. [2] tackled the excavation task with the offline
RL algorithm Implicit Q-Learning (IQL) and trained on a
prerecorded data set with six different terrain types. IQL

allows them to outperform sub-optimal demonstrations in the
data set, but it requires new data to adapt the policy to new
terrain types.

Several authors have used an autonomous walking exca-
vator called HEAP [25]. Using this heavy machinery, they
proposed multiple approaches ranging from classical path
planning focusing on the overall landscaping system [4],
[22], [26] to an RL-based approach [5]. In the latter, they use
Proximal Policy Optimization (PPO) with general advantage
estimation (GAE) to train a controller to adaptively dig in
different soil types. Further RL-based excavation approaches
for heavy machinery have been proposed by Kurinov et
al. [7] using Proximal Policy Optimization with Covariance
Matrix Adaptation (PPO-CMA), as well as by Osa and
Aizawa [6] using Qt-Opt, a sample efficient variant of Q-
learning trained from depth images.

For extraterrestrial missions, being able to reuse existing
equipment is a crucial advantage due to the saved weight.
Therefore, Pavlov and Johnson [20] proposed the idea to
dig trenches with rover wheels instead of a dedicated end-
effector. Kim er al. [24] built upon Pavlov’s experimental
results and they proposed three methods to dig trenches of
constant depths. Among them, a classical A*-based planner
performing single strokes and a learned approach based on
Deep Deterministic Policy Gradient (DDPG) combined with
Hindsight Experience Replay (HER) performing multiple
strokes.

Apart from weight restrictions, extraterrestrial systems can
suffer domain-shift issues due to partially known environ-
mental conditions when training on earth and then deploying
to outer space. In particular, vision-based systems strug-
gle with unforeseen conditions. To overcome this problem,
Zhu et al. [3] proposed an adaptive, vision-based scooping
strategy leveraging meta-learning on a deep Gaussian process
and show that despite the domain shift, depth images allow
to learn the scooping task.

Yet another challenge is to move the robot itself within
granular media, especially on steep, inclined surfaces. That
is why, Karsai et al. [14] and Kerimoglu et al. [15] explored
gaits to manipulate local granular terrain to improve the
climbing and turning performance of a wheeled-legged robot
using Bayesian optimization. In addition to direct terrain ma-
nipulation, Hu ef al. [27] proposed to indirectly manipulate
objects by creating small avalanches within granular media.
They actuated a robot’s leg to trigger the collapse of piles,
while a vision transformer is trained to capture the avalanche
dynamics.

Using Kim et al.’s [24] efficient sand model allows us
to train an RL agent in an online manner overcoming
shortcomings of suboptimal demonstrations in the data set
as in [2]. We adopt the idea of using height maps as
observations, but instead of a stroke-based approach, where
end-effector motions are limited to straight lines between two
z-y coordinates at a fixed z height in the granular medium,
we let the agent freely decide which motions to take in any
Cartesian direction at each step. Also, we do not limit the
agent to binary heights so that our agent can shape structures
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Fig. 2: Overview of our approach: We employ a training process to enable agents to manipulate granular media using sensory inputs. We train a visual
policy via reinforcement learning to realize goal shape configurations using the difference between the current and the desired goal height map. The
current height map is reconstructed from depth images. The height map difference is fed into our height map encoder and concatenated with the robot’s
proprioception. The resulting policy controls the end-effector to shape the granular media.

of varying depth. To perceive the state of the granular media,
we make use of depth images like [3], [6], but we extract
the relevant state information by representing them as height
maps, which is computationally more efficient.

III. METHOD

In this section, we present our RL framework that learns
how to move a robotic end-effector (EE) in granular media
to create diverse goal shapes.

A. Overview

Fig. 2 provides an overview of our learning framework.
Using observations from a physics simulation, we train a vi-
sual policy to manipulate granular media using the difference
between the reconstructed current height map and the height
map representing the desired goal configuration.

B. Task Description

The goal of the agent during one episode is to form the
granular media according to a physically viable goal shape.
We focus on shapes that deepen an initially flat surface. The
shape is given in the form of a height map as shown in
Fig. 2. When a training episode starts the robot is initialized
to a random start configuration with the EE laying within
a virtual cuboid of 30x30x5cm?, which is located 2cm
above the granular media. The granular media is initialized
as a flat bed at a height of 6 cm. From the starting position,
the agent has to move the EE through the media to shape
it to resemble the goal height map as much as possible. An
episode terminates after a fixed number of time steps Nep.
At the end of an episode, we reset the environment and the
agent receives a new goal height map.

C. Architecture

The underlying idea of RL is to model and optimize
transitions from one state to the next s; — S;y1 as an
MDP. In this process, the reward r; = r(s, a;) incentivizes
the RL agent to take actions a; = my(s;) at the time step
t with respect to a policy ms. Commonly, pairs of tuples
(8¢, at, 7, Se+1) summarize states and actions. The agent’s
goal is to maximize the cumulative return R = ZZ.T:t A=,
of the ~y-discounted rewards.

RL Algorithm: In this work, we use the off-policy algo-
rithm Truncated Quantile Critics (TQC) [28] with two critics
and 25 quantiles, which showed the best training convergence
among three tested RL algorithms (see Sec. IV-C). To assure
the agent’s exploration, we add Gaussian noise from a
process A with a standard deviation o_ to the actions, so
that a; = 7y (st) + N (0,0c,).

Action Space: Per time step, our agent moves the robot’s
EE in continuous action increments (Ax, Ay, Az) using an
operational space controller (OSC) [29]. At each step the
agent can move the EE in increments of up to 4 cm in each
direction or it can keep it still at the current position. We
normalize all actions to values in the interval [—1, +1].

Observation Space: The task-relevant information in-
cluded in the observation space is shown in Tab. I. We
normalize all observations to values in the interval [—1, +1].
For the EE, we include its current (z., y., 2. )ge and previous
position (z,, Yp, 2p)Eg S0 that the agent can adequately scale
the inputs for the OSC. Furthermore, we use the difference
height map Hy = Hy — H,, obtained from the goal H,
and the current height map H.. During the reconstruction
process of the current height map, we convert the current
depth image I. into 3D points and fit a grid on top of the
ones within the granular media. The mean of all points that
fall into one grid cell define the resulting cell elevation.
To indicate the current EE position and the goal area in
the same compact representation as the current height map,
we create two Boolean masks of the same shape. The true
values in the EE mask Mgg represent the two-dimensional
projection to the zy-plane of the EE’s base shape, while the
true values in the goal mask M, represent the grid cells that
are unequal to the initialization height of the goal height map.
To reduce the observation size, we combine the difference
height map with the two masks using our height map encoder
(see Fig. 2). It ensures that the information of the EE’s
current position and the goal area is available in the same

TABLE I: Observation space.

Observation Notation Size
Current EE position (zc, Ye, 2¢)BE 3
Previous EE position (Tp, Yp, 2p)EE 3
Difference height map Hy
EE mask MEgg } 64
Goal mask My




Fig. 3: We employ the distance dp, of the EE position pgg to the closest
point belonging to the goal area p, to guide the agent towards regions that
require manipulation through a dense reward signal (see Sec. III-D).

space as the height map elevation data. To achieve that, we
first stack the difference height map with the EE mask. Then
we extract feature vectors of size 64 from both, the stacked
observation and the goal mask using a CNN and amplify the
stacked features within the goal area by multiplying them
with the sigmoid function of the goal mask, which works like
a gating mechanism. The resulting feature vector of size 64 is
concatenated with a vector of all other EE observations. The
height map encoder is designed for inputs of size 32 x 32.
Depending on the available manipulation area and goal area
size, we reduce the input size by padding the outer cells with
zero. In our implementation, all height maps and masks have
a grid cell size of 1x1cm? and we limit the height map
elevation values to [0 cm, 20 cm].

D. Reward Function

Unlike rigid-body tasks, where distances to goal positions
are well-defined and straightforward to compute, the high-
dimensional configuration space of granular materials make
reward shaping significantly more challenging. A random
manipulation is often more likely to increase the distance
to the goal configuration than to reduce it, resulting in an
unbalanced reward signal where most actions are penalized,
ultimately discouraging exploration. To mitigate this, we pro-
pose two complementary reward components that together
provide informative and balanced feedback to guide the
agent’s learning, ultimately shaping the cells in the goal area,
which we define as the set of grid cells where the target
height map differs from the initial (flat) configuration.

Granular Media Shaping: The first component directly
incentivizes reducing the discrepancy between the current
and the goal state of the granular media. We consider two
formulations for this reward.

The delta reward provides feedback proportional to the
reduction in distance between the current and goal configu-
ration. Reducing this distance leads to positive rewards. The
reward is given by:

Taetta = O - (dp1 — dy), (1)

where a. is a scaling factor and d is the mean absolute
difference between the goal height map and the truncated

current height map. It is defined as:
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where hg; and hc; denote the height at a grid cell ¢ in
H, and H., respectively, hg is the initial height level of the
granular medium, and N is the number of grid cells. Note
that for d, the height values of the current height map H, are
cut off at the initial flat height of the granular media as the
goal height map H, only contains negative shape imprints.
In other words, piled-up granular medium is disregarded.

While 74e5¢, iS intuitive, its formulation can discourage
exploration by penalizing intermediate actions that happen
to increase the distance to the goal, but lead to it on the
long run. To address this challenge, we draw inspiration
from reward shaping techniques that have been employed for
6D object reposing [30]. The so-called progressive reward,
rewards the agent for making progress relative to the best
configuration reached so far within the current episode,
rather than relative to the immediately preceding time step.
In this case, the agent receives a reward when it changes
the granular medium into a configuration that is closer to
the target configuration than all other ones that have been
reached before within the episode. Likewise, we penalize
the agent for reaching configurations further from the target
than the furthest one reached so far within the same episode.
The progressive reward is defined as:

Tprog = ac-max(czclosest—cz, 0)—af~min(cio—ci§’mhest, 0), (3)

where d° is the mean absolute difference of the current and
the goal height map outside the goal area, -josest and “furthest
denote the closest and furthest reached distances inside the
current episode, respectively. This formulation avoids cycles
of positive return.

For both proposed rewards 7geitq and 7,04, We use the
scaling factors a, = 5,000 and a5 = 1, 000.

Goal Area Movement: To encourage the agent to move
its EE towards the region of interest and to stay within this
area, we add a further reward term using the distance of the
EE to the goal area. The agent is incentivized to bring its
EE close to this area using a distance-based penalty, with
a binary bonus for reaching the region. Formally, we define
the reward as:

Tm = — tanh(am . dm) + Lreacheds “)

where d, is the minimum Euclidean distance between the
EE and the goal area, computed as visualized in Fig. 3 and
1 cachea 18 an indicator function that returns 1 when the EE is
inside the goal area and O otherwise. We use a value of oy, =
10 to control the steepness of the distance-based penalty.

The total reward is computed as the sum of the goal
movement reward and the shaping reward:

T="7Tm+Ts, (5)

where s {rdeita; Tprog }-



IV. EXPERIMENTAL EVALUATION

To demonstrate the performance of our RL approach
to shape granular media compared to two baselines, we
performed experiments with different goal height maps. We
further tested different reward formulations and environment
state observability modes. Additionally, we conducted an
ablation study of the feature extractor and the choice of RL
algorithm. More details of our method, the supplementary
video, and our code are available on the paper website'.

A. Baselines

We implemented two different baseline approaches for
comparison, which we detail in this section.

Random Baseline: For the random baseline (RAND), at
the start of each evaluation episode we place the robot’s EE at
a random start position uniformly sampled within the goal
mask M, and at the surface of the granular medium. The
robot then executes random actions for N, time steps, after
which the episode strictly terminates.

Boustrophedon Coverage Path Planning Baseline: For
this baseline (B-CPP), we utilize Boustrophedon decompo-
sition [31] combined with Coverage Path Planning (CPP),
following the approach of Terenzi and Hutter [26]. First,
we perform a flood fill on the Boolean goal mask M, to
extract connected regions. We then compute the centroid
of each region and solve the traveling salesman problem
on these centroids by performing a greedy nearest-neighbor
search [32]. Within each region, we generate parallel sweep
lines spaced by the EE’s footprint and alternate direction on
each pass to minimize the traversal overhead. Note that if the
footprint partially covers a cell, it is rounded to a whole cell.
For each grid coordinate in a sweep, we extract the target
height and assemble a sequential list of waypoints. During an
evaluation episode, the robot moves its EE to each waypoint
following the order of the list, terminating once the full plan
is executed. Hence, the length of an episode is defined by
the number of waypoints.

B. Experimental Setup

We evaluate the effectiveness of our policies, by ran-
domly selecting out of 400 distinct goal height maps in
the beginning of each episode. We distinguish between
heuristic baselines, policies trained in a privileged setting
with full state observability, and policies using observations
that are obtainable in the real world, consequently suffering,
e.g., from occlusions. Tab. II lists all relevant RL training
parameters.

For all experiments, we use the 6-DoF robotic arm URS5e,
equipped with a custom, cubic end-effector (with dimen-
sions of 2x2x15cm?), and an external ZED 2i camera,
as shown in Fig. 1. However, our approach is applicable to
any robotic arm, since our policies learn EE movement
increments instead of robot joint positions. Furthermore,
we rely on the RL algorithm implementations of Stable-
Baselines3 [33], and the OpenAl Gym toolkit [34], as well as

Paper website: https://humanoidsbonn.github.io/granular_rl/
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Fig. 4: From left to right, we show the reconstructed 3D scene in simulation,
the reconstructed height map after the manipulation, and the goal height map
the agent aims to achieve. From top to bottom, the given goal shapes are
an exemplary rectangle, an L, a polygon, and a fresco fragment’s negative.

robosuite [35] that is based on MuJoCo [36] for simulation,
and the Robotics Toolbox for Python [37].

Goal Height Maps: We evaluate on a wide range of
different shapes represented as goal height maps: 100 rect-
angles, 100 L-shapes, 100 polygons, and 100 negatives of
archaeological fresco fragments. The goal area of the shapes
are up to 10x10cm with varying heights of up to 3 cm.
We randomly place the shapes within the granular media,
resulting in various configurations of each shape. All target
shapes are designed such that they are not achievable by the
agent executing a single stroke through the granular media.

To generate the fresco fragment goals, we place three-
dimensional scans of fresco fragments from the RePAIR
dataset [38] into granular media such that their painted sur-
faces are parallel and 5 mm above the surface of the granular
media. Fig. 4 shows an examplary 3D render of an utilized
fresco fragment, which was scanned by archaeologists.

On the real robotic system, we initially measure the mean
height of the goal area and fit the goal shape onto the surface
of the granular media. This results in an adjusted goal height

TABLE II: RL notations and training settings.

Notation TQC/SAC/TD3  Description

Nep 40 Number of steps per episode

Nerie 2 Number of critics

Bg 1-10° Experience replay buffer size

Bg 256 Minibatch for each gradient update
It 3.10~¢4 Learning rate

vy 0.99 Discount factor

e, 0.2 Std. deviation of exploration noise e
T 0.005 Soft update coefficient




Goal
height map H,

a) The agent is forming the given goal height map in the simulated environment (top). The resulting current reconstructed
height maps (bottom) include occlusions of the end-effector. At the start of the episode (left) the granular medium is perfectly
flat and in the end the desired goal shape is visible in it (right).

Goal
height map H,

b) We deploy the agent to the real robot in a zero-shot manner, without any additional training. From top to bottom,
we show the raw camera view of the box filled with the granular medium, the reconstructed 3D scene in simulation, and
the reconstructed height map that the agent observes, while it manipulates the granular medium to match the desired goal
configuration. Note that the granular medium is not perfectly flat like in the simulated scenario. Despite noisy observations

from the depth camera, the agent is able to create the desired rectangle shape in the real world.

Fig. 5: Manipulation of the granular medium by a visual, goal-conditioned RL agent in simulation (top) and on the real robotic system (bottom).

map that considers the unevenness of the media’s initial
surface.

Note that the larger the task, the completion time scales
in proportion to the dimensions of the goal area. Hence,
while larger shapes are trainable, the chosen dimensions are
a trade-off between training time and showcasing the agent’s
capabilities.

Metrics: Based on the difference between the goal height
map and the current height map at the end of 100 evaluation
episodes, we calculate the absolute mean cell height differ-
ence d (Height Diff.) within the goal area. Furthermore, we
determine the percentage of grid cells within the goal area
that have been changed (Changed) by the EE.

C. Experimental Results

The policies optimize the reward components discussed
in Sec. III-D, iteratively refining its manipulation strategy to
shape the granular medium into the desired configuration.
The results presented in the first column of Tab. III, show
that our best policy (DELTA) achieves a remaining absolute
mean cell height difference d of up to 3.4mm over all
goal area cells, which is close to the privileged setting, and
outperforming two baselines. This indicates that the trained
policy exhibits proficient manipulation behaviors, given that

the agent has to learn the dynamics of collapsing cells to
reach the desired goal configuration.

Qualitative Results: For a qualitative assessment, we
visualize rollouts of the policy, displaying the resulting height
maps in Fig. 5. The rollouts show the robot forming a rectan-
gle shape in simulation and in the real world. Furthermore,
Fig. 4 shows the qualitative results of several goal shapes
ranging from a simple rectangular shape to a complex shape
resulting from the negative of an archaeological fragment.

Quantitative Results: To understand the effectiveness of
our proposed reward design, we compare the performance of
our trained policy using the delta reward (DELTA) against
the progressive reward (PROG) and the reward ablation
where we remove the goal area movement reward (NO-
M). First, removing the goal area movement reward leads to
a policy that entirely avoids manipulation behaviors, since
discovering strategies that shape the granular medium to
match the desired configuration are challenging to discover
without any guidance. As a result, the policies perform
no better than a random baseline (RAND). Second, even
though the Boustrophedon Coverage Path Planning baseline
(B-CPP) changes all goal cells, our approach has 31 %
higher accuracy in achieving the target heights than the B-
CPP baseline. Third, using the reconstructed height map H®



TABLE III: Quantitative evaluation results.

Metric Reconstructed Height Map HR Privileged Height Map H® Baselines
DELTA (OUR) PROG NO-M DELTA PROG NO-M RAND B-CPP
a) Height Diff. [mm] || 3.4+1.1 45+19 6.0+ 1.8 3.3+1.0 45+1.8 6.1+1.9 7.2+25 48+1.0
b) Changed [%] 1 9744104 98.2+ 7.7 3.4+12.8 95.54+149 98.7+5.6 1.0+6.7 53.6 £33.8 100.0+ 0.0

The metrics are based on the manipulated cells within the goal area during 100 evaluation episodes. We distinguish between an evaluation setting using the
the reconstructed height map HR (left) containing occlusions and the privileged height map H® (center). On average DELTA achieves the lowest values
for the Height Diff. metric compared to both baselines (right). While B-CPP changes all goal cells, the trained RL agents relying on either one of the two
reward formulations (DELTA and PROG) change more cells to the correct height. When removing the goal area movement reward (NO-M), the agents
learn to completely avoid manipulations, which leads to the second highest Height Diff. mean values, lower than the random baseline (RAND), but higher

than the B-CPP baseline.

TABLE IV: Feature extractor ablation results.

Metric ‘ DELTA (OUR) ABL-CNN ABL-IMG
a) Height Diff. [mm] || 3.4+1.1 3.7£1.2 46+1.7
b) Changed [%] 97.4+104 97.7+6.2 95.0£12.5

Our visual feature extractor (DELTA) shows the best performance for the
Height Diff. metric compared to two ablated versions using CNN-based
extractors without the gating mechanism (ABL-CNN) and relying on pure
depth images (ABL-IMG) instead of the reconstructed height map HR.

in simulation leads to similar performance as relying on
the privileged height map HY, while only the former is
deployable to the real world. In summary, our results indicate
that the full reward formulation significantly accelerates
learning and improves the final performance compared to
the ablated version (NO-M).

Feature Extractor Ablation: To analyze the effective-
ness of our feature extractor described in Sec. III-C, we
compare its performance to two ablated versions: The first
one (ABL-CNN) does not contain the gating mechanism
and uses a three-channel CNN for the height map and the
two mask observations instead. The second ablated version
(ABL-IMG) also uses a CNN-based encoder, but instead of
the reconstructed difference height map it directly uses the
depth image from the camera together with the two mask
observations. The quantitative results in Tab. IV show that
using our feature extractor with the delta reward achieves the
best performance compared to both ablated versions, with a
mean height difference of 3.4 mm. Relying on pure depth
images (ABL-IMG) prevents the trained agent from learning
suitable features, such that it is not able to correctly lower the
goal cells, resulting in a mean height difference of 4.6 mm.

RL Algorithm Ablation: Furthermore, we compare the
performance of the TQC algorithm with two other com-
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Fig. 6: Using three different seeds, the RL training with TQC [28] results
in higher mean rewards compared to SAC [39], while TD3 [40] does not
converge showing poor performance.

monly used off-policy RL algorithms, namely Soft Actor-
Critic (SAC) [39] and Twin Delayed Deep Deterministic
Policy Gradient (TD3) [40], using the same training param-
eters (see Tab. II) and three different seeds. Fig. 6 shows
the mean rewards with three different training seeds. Note
that the mean reward values are based on 25 evaluation
episodes. Training with TQC leads to a fast convergence and
it outperforms SAC in terms of mean rewards. Using TD3
does not converge to positive rewards, validating our design
choice to utilize TQC.

Real World Transfer: Finally, we zero-shot deployed the
agent trained in simulation to the real robotic system. Fig. 5b
shows one qualitative episode with an exemplary rectangle
shape. The performance of our agent in the real world
is similar to the one in simulation (compare Fig. 5a and
Fig. 5b), which demonstrates that our agent can successfully
be deployed on a real robot.

V. CONCLUSION

Manipulating granular media requires interactive behav-
iors that adapt to changes in the medium’s state in a closed-
loop fashion. However, traditional modeling approaches re-
quire extensive engineering efforts to shape granular media
due to its high-dimensional configuration space and its
deformable nature. Overcoming these shortcomings with
reinforcement learning has remained a challenge. In this
work, we addressed this by developing suitable observation
representations and reward functions that together enable a
stable and efficient training.

Our approach outperforms two baselines in terms of target
shape accuracy, achieving the lowest difference between
the desired and final medium configuration. Furthermore,
we demonstrated that policies trained entirely in simulation
using depth-based observations can transfer zero-shot to real-
world robotic systems, underscoring the applicability and
robustness of our method.
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