
A Comparison of Prompt Engineering Techniques
for Task Planning and Execution in Service Robotics

Jonas Bode, Bastian Pätzold, Raphael Memmesheimer, and Sven Behnke

Abstract— Recent advances in Large Language Models
(LLMs) have been instrumental in autonomous robot control
and human-robot interaction by leveraging their vast general
knowledge and capabilities to understand and reason across a
wide range of tasks and scenarios. Previous works have inves-
tigated various prompt engineering techniques for improving
the performance of LLMs to accomplish tasks, while others
have proposed methods that utilize LLMs to plan and execute
tasks based on the available functionalities of a given robot
platform. In this work, we consider both lines of research by
comparing prompt engineering techniques and combinations
thereof within the application of high-level task planning and
execution in service robotics. We define a diverse set of tasks
and a simple set of functionalities in simulation, and measure
task completion accuracy and execution time for several state-
of-the-art models. We make our code, including all prompts,
available at https://github.com/AIS-Bonn/Prompt_Engineering.

I. INTRODUCTION

Since the unveiling of OpenAI’s ChatGPT in Novem-
ber 2022, the rapid emergence of Large Language Models
(LLMs) as a major contributor to human-machine interaction
has been rippling through society. With advances in scaling,
instruction tuning, and alignment, models like GPT [1],
[2], Gemini [3], Llama [4], or Mistral [5] can seemingly
understand tasks presented in natural language and respond
with answers in natural language that are often appropriate.

In this work, we investigate approaches that leverage these
advances for robot control and human-robot interaction [6]–
[9], as well as prompt engineering techniques that aim to
increase performance across various benchmarks [10]–[12].
In particular, we focus on comparing and combining prompt
engineering techniques for the application of task planning
and execution in the context of service robotics.

Many applications require autonomous robots to perform
tasks in complex, cluttered, dynamic, or unknown environ-
ments. In order for such a robot to adapt to new tasks
and environments, an expert is often required to understand
the task logic and translate it into an implementation based
on the robot’s capabilities. This severely limits speed and
flexibility for robot deployment. LLMs promise to relax this
requirement while allowing for intelligent replanning during
task execution. To this end, we focus on the challenging
field of service robotics [13], [14], requiring robots to interact

All authors are with the Autonomous Intelligent Systems group, Com-
puter Science Institute VI – Intelligent Systems and Robotics, Lamarr
Institute for Machine Learning and Artificial Intelligence, and Center for
Robotics, University of Bonn, Germany; s6jobode@uni-bonn.de

This work has been funded by the German Ministry of Education and
Research under the grant no. 16SV8683, project: Transferzentrum Roboter
im Alltag (RimA).

Feedback

Task Execution

 Environment Robot

Action

Action Planning

User Task:
"Bring me an apple." LLM:

Action Set:
drive_to_location
find_object
grasp_object
place_object

Environment
& Robot State
Prompting
Technique

Fig. 1: Overview of our simulated experimental setup to
evaluate task completion. The user specifies a task in natural
language. The action set describes the robot capabilities. Task
planning and action selection are performed by prompting an
LLM. The robot-environment simulation executes the action
and provides feedback in form of a changed state.

with non-expert operators in open-ended, highly unstructured
environments designed for and shared with humans.

To use an LLM for task planning, one must provide all
the necessary information about the environment, the task,
and the robot capabilities in textual form. Similarly, for
task execution, the implementation of the robot’s high-level
functionalities must be robust and general enough to account
for unknown features of the environment and unexpected
events during task execution. In this work, we obviate these
problems by employing a simulated environment depicted
in Figure 1 to systematically examine the effect of prompt
engineering techniques on task completion across several
types of tasks and state-of-the-art LLMs.
The contributions of this paper are as follows:

• We derive an LLM-based method allowing zero-shot
task execution by sampling relevant action sequences
from sets of pre-defined actions received via natural
language commands from non-expert operators.

• We thoroughly investigate and evaluate the feasibility
and effectiveness of integrating LLMs with various

https://github.com/AIS-Bonn/Prompt_Engineering
behnke
Schreibmaschine
IEEE-RAS 23rd International Conference on Humanoid Robots (Humanoids), Nancy, France, 2024.



prompt engineering techniques for long-horizon tasks
in the domain of service robotics.

II. RELATED WORKS

Using LLMs for high-level robot task planning and for
low-level execution control are hot research topics [15], [16].

A. Using LLMs for Robot Task Planning & Execution

In recent years, LLMs have been explored and adopted
across a wide range of applications, motivated by harnessing
the world knowledge extracted from the vast text data sets
they have been trained on.

Vemprala et al. [6] are among the proponents for high-
level robot task planning using GPT. They outline the design
principles of a robotics pipeline that integrates GPT to plan
and implement task execution given an objective in textual
form. They define a function library that implements various
core functionalities for a given robot platform. They then
let GPT generate code that implements a task given by a
(non-technical) user based on this function library. Finally,
the user can provide feedback and corrections to the code
before approving it, allowing the robot to execute it. Their
pipeline is evaluated in various domains such as manipula-
tion, aerial navigation, and logical reasoning. This approach
can generate complex code that incorporates appropriate
branching to handle unexpected events during task execution,
provided that the library functions support such information.
However, the generated code must explicitly anticipate any
such cases beforehand, as the method does not allow for
dynamic replanning within GPT.

Ichter et al. [7] present a similar approach where a set
of core functionalities is implemented for a given robot
platform and exposed to an LLM input as context. Instead of
relying on human feedback, they assign affordance values to
all available functions and execute the highest-ranking one.
They recalculate the affordance values before each function
call to account for the current state of the robot and the
environment.

Another LLM-based method for robot task planning is
presented by Singh et al. [8], combining strengths in
common-sense reasoning and code understanding to gen-
erate executable plans. Their experiments demonstrate that
incorporating programming language features enhances task
performance and adapts well to diverse scenarios.

Ding et al. [9] propose a method for open-world task
planning and situation handling that dynamically integrates
commonsense knowledge into a robot’s action knowledge,
assesses the feasibility of progressing with the existing plan,
or determines to adapt the plan accordingly. They integrate
their approach on a real robot platform and demonstrate it
executing service tasks in a domestic environment.

B. Prompt Engineering Techniques

While LLMs are capable of performing tasks with zero-
shot prompting [17], they benefit from in-context examples
with few-shot prompting [2]. To further improve performance
on tasks requiring complex reasoning, a variety of prompt

engineering techniques have been introduced [10]. In this
work, we focus on comparing a selection of relevant and ap-
plicable prompt engineering techniques suitable for selecting
and dynamically adapting sequences of function calls from
a predefined library of functions to accomplish a given task.

Wei et al. [11] introduced Chain-of-Thought (CoT)
prompting, which aims to improve performance on com-
plex tasks by incorporating step-by-step reasoning into the
responses provided. For natural language responses, this is
easily achieved by modifying the original prompt to elicit
step-by-step reasoning in the response. In the context of
responses that contain function calls, we can first request
step-by-step reasoning in a natural language response with a
separate prompt before requesting one or multiple appropri-
ate function calls based on that reasoning.

Yao et al. [12] propose ReAct, which facilitates interleaved
planning and action generation. Instead of planning ahead
and then executing a complex multi-step plan without further
reasoning and adapting to intermediate results, they introduce
a discrete reasoning step between each action to ground
reasoning in the results of past actions and update action
plans accordingly.

III. DIALOGUE WITH A SIMULATED ENVIRONMENT

We investigate the effect of prompt engineering techniques
across multiple tasks in a simulated environment. In this
environment, the robot is provided with pre-defined functions
from which an LLM must select and execute the appropriate
ones to accomplish a task given in natural language. This
process is modeled as a conversation between the robot
and the LLM assistant. Once the LLM signals that it has
completed the task, we probe the environment to determine
if the target condition indicating task success is met.

A. Environment

In order to create an environment that allows an accurate
comparison of the effect of prompt engineering techniques,
we adopt the setting found at RoboCup@Home [18], [19],
which is a major international competition that focuses on
domestic service robots.

The arena is designed to replicate a typical domestic
dwelling with several rooms: A study room, a parlor, a
kitchen, and a bedroom. All tasks start with both robot and
operator located in the parlor. Each room contains multiple
objects, including common food and household items, with
which the robot can interact.

B. Action Set

We use the function-calling feature introduced by Ope-
nAI’s API for their GPT line of models [2], which is
adopted by other LLMs such as Mistral [5], as well as
several open-source inference pipelines. It allows for speci-
fying the signatures of the pre-defined robot functions as a
JSON schema. This exposes the function names, parameters,
and parameter types, along with the corresponding natural
language descriptions for all functions and parameters, to
the context of the LLM. The LLM can then refer to these



functions when generating natural language reasoning or
planning, and it can call any of the functions, including the
specification of parameter values, as JSON that can be easily
parsed and passed to the simulation. The simulation then
adjusts the state of the robot and environment accordingly,
and returns a natural language text to the LLM in response
to the function call, providing relevant information about
the success of the function and its effect on the robot and
environment states.
We define the same set of five functions for all tasks:

• drive_to_location(location_name): This
function moves the robot to the specified location. The
available options are the exact names of the four rooms
in the simulation: study, parlor, kitchen, and bedroom.

• find_object(object_name_list): The argu-
ment of this function is a list of strings that refer to
object names the robot will search for in the room it is
in. These object names must exactly match the object
names specified for each room in the simulation. For
each of the objects, the function returns the number of
instances found in the room.

• grasp_object(object_name): Once an object
has been found, this function lets the robot grasp the
specified object. Again, the name of the object must
exactly match an object available in the current room.
As an additional constraint, the robot can never carry
more than two objects at the same time.

• place_object(object_name): This function
makes the robot place the specified object that is being
carried in the current room that the robot is in.

• exit(): A call to this function signals that the task
objective has been accomplished and gracefully termi-
nates the simulation run to the target condition.

If the LLM returns an invalid function call with respect to
the specified JSON schema, the simulation run is considered
a failure. If the LLM specifies a function parameter that
is invalid with respect to the function being unable to
execute its intended objective, the function returns a response
briefly explaining the problem so that the LLM can adapt
and continue the simulation run. Each simulation run is
automatically terminated and tested for meeting the target
condition after 40 function calls have been executed.

C. Tasks

In our experiments, we define distinct tasks with varying
levels of complexity aimed at testing different types of
abilities. All tasks are designed to resemble realistic use
cases in the sense that they demonstrate a useful application
when implemented with a real robot platform, and are related
to tasks found in the RoboCup@Home [19] competition.
To demonstrate robustness and generalization, we randomly
assign the objects and their respective locations for each task.
We define the following four tasks:

1) Fetch: The Fetch task requires the robot to pick up an
object from another location and to return it to the user. Since
Fetch can be solved with a simple sequence of function calls,

it mainly tests whether the LLM, in combination with the
applied prompt engineering technique, is able to comprehend
the scenario, use the function-calling feature, and generate
valid JSON appropriate to solve the task. An example of
Fetch is: "Please get me a pen from the study".

2) Conditional: The Conditional task extends Fetch by
adding the requirement to gather knowledge about the en-
vironment during task execution and to adapt its behavior
accordingly. In particular, the robot is asked to search for an
object and return one of two other objects to the user. The
choice of the latter depends on the first object found. This
task therefore tests whether the LLM is capable of branching
logic. An example of Conditional is: "Check if there is a
spoon in the kitchen. If you find one, bring me a pen from
the study. If not, bring me a comb from the bedroom".

3) Equals: The Equals task requires the robot to make
a numerical observation and repeatedly retrieve an object
according to that observation. It therefore tests basic mathe-
matical ability and requires the execution of a logical loop.
This results in a long task that requires many function calls,
challenging the LLM to maintain focus on accomplishing the
task objective. An example of Equals is: "For every orange
in the kitchen, move a fork from the kitchen to the parlor".

4) Distribute: In the Distribute task, a given object must
be distributed so that every location in the simulation con-
tains at least one instance. The LLM must therefore not
only visit all locations, but also make numerous decisions
regarding the movement of objects and keep track of their
locations. An example of Distribute is: "Please distribute the
pens evenly so that each location contains at least one pen.
You can start with the pens in the study".

IV. EXPERIMENTS

A. LLM Variants

We focus on evaluating GPT [2] model variants, due
to the function-calling feature of the corresponding API,
and their top-of-the-line results on benchmarks regarding
this feature [20]. In particular, we use GPT-3.5-Turbo-0125
and GPT-4-0125-Preview, referred to as GPT 4 Turbo. We
evaluate each condition with respect to tasks and prompt
engineering techniques with 50 repetitions for GPT 3.5 Turbo
and 20 repetitions for GPT 4 Turbo due to budgetary con-
siderations. For both model variants and all tasks, we use
a temperature setting of τ = 0 to elicit factual responses.
All other model parameters are set to the default values
suggested by OpenAI.

B. Prompt Engineering Techniques

Our simulation procedure allows the robot to execute
tasks immediately after providing the LLM with the task
description along with the function definitions in an initial
prompt. Task completion then proceeds as a dialog of func-
tion calls generated by the LLM and corresponding function
responses generated by the simulation. This approach serves
as a baseline for investigating and comparing the effects of
various prompt engineering techniques on task completion
and time required. We focus on a selection of popular and



Adaptive Functions Chain of Thought (CoT) Reasoning and Acting Example in Prompt State Description

Filter actions

Robot State Action Set

LLM

LLM

Feedback User Task

LLM
Planning
Outline

done every
15 steps

LLM textual
reasoning

Feedback

LLM action
selection

History

Human-annotated Example

User Task

Current Task History

LLM

Append
state

to context

Robot State History

LLM

Fig. 2: Control flow diagrams of the five prompt engineering techniques examined. See Sec. IV-B for description.

TABLE I: Comparison of prompt engineering techniques using GPT-3.5-Turbo-0125.

Prompting Technique Fetch Conditional Equals Distribute
success rate mean time [s] success time [s] success time [s] success time [s]

Baseline 0.02 6.55 0.00 9.07 0.00 7.83 0.00 10.47
AF 0.22 3.99 0.00 6.41 0.00 5.23 0.04 11.99
AF + EiP 1.00 5.57 0.38 5.43 0.20 9.45 0.02 13.79
AF + CoT 0.46 5.66 0.02 5.61 0.00 6.65 0.00 8.25
AF + CoT + EiP 1.00 6.76 0.44 7.45 0.16 11.47 0.02 17.46
AF + ReAct + EiP 1.00 14.88 0.44 13.76 0.10 22.67 0.10 25.86
AF + StD 0.82 4.93 0.00 10.12 0.00 8.96 0.00 9.58
AF + CoT + EiP + StD 1.00 8.93 0.36 14.03 0.00 16.40 0.00 20.85
AF + ReAct + EiP + StD 1.00 20.69 0.72 41.71 0.14 28.37 0.00 68.19

AF – prompting with adaptive functions, EiP – example in prompt, StD – prompt with appended state description. See Sec. IV-B.

applicable prompt engineering techniques for task planning
and execution in the service robotics domain. Figure 2 gives
an overview of this selection.

We investigate (combinations of) the following five prompt
engineering techniques:

1) Adaptive Functions: Based on the robot’s state and its
knowledge of the environment, we can deduce that certain
functions cannot accomplish their intended objective. For
example, the robot cannot place an object if it is not currently
carrying at least one. Similarly, the robot cannot grasp
an object if it is already carrying the specified maximum
capacity of two objects. Since the tool-calling feature of the
targeted API provides the capability to specify the set of
available functions with each prompt, we can exclude such
functions accordingly. This approach effectively prevents the
LLM from calling those functions. While this is a useful
feature for guard-railing the system in general, we intend
to use it to reduce the number of failed function calls, and
instead focus the LLM’s attention on viable functions. We
refer to this technique as Adaptive Functions.

2) Chain-of-Thought (CoT): We integrate CoT [11]
prompting into our framework by asking the LLM to first
provide a textual step-by-step plan detailing how it intends
to complete the task given the available functions from the
function library. Only after such a plan has been generated,
we ask the LLM to call the appropriate functions based on
that plan. If the task execution turns out to require many
steps, we repeat this planning step every 15 function calls, to
ensure that the LLM is always operating according to a plan
in case the initial plan is not detailed enough or incomplete.

3) Reasoning and Acting (ReAct): While CoT can be
characterized as planning a task in advance, likely involving

multiple steps, and then executing the plan without explicitly
adapting the original plan or any further reasoning. This may
not be sufficient when unexpected or difficult-to-anticipate
events occur during task execution. To address this problem,
we use ReAct [12] to maintain a tight coupling between task
execution and reasoning, by explicitly enforcing the LLM to
alternate between the two with dedicated prompts. This also
has the advantage of making the decisions of the LLM easily
interpretable by looking at the generated reasoning in relation
to the generated behavior. This is a useful tool for manually
refining function and parameter descriptions.

4) Example in Prompt: Guiding the LLM with a human-
annotated example prior to actual task planning and execu-
tion, as suggested by Wei et al. [11] and Yao et al. [12], helps
to remove ambiguity regarding the interpretation of task
and function descriptions, and is often combined with other
prompting techniques. Specifically, we prepend a human-
expert generated example of a successful Equals task to the
context of the LLM, including the task description and all
function calls and responses. The example is designed to be
different from any evaluated experimental task.

5) State Description: Finally, we introduce a prompt
engineering technique that summarizes the robot’s state and
knowledge of the environment at the end of the context
for before each prompt. Since many tasks involve a long
horizon, it can be difficult for the LLM to accurately assess
this information when it is required to gather and deduce it
from the entire context. These summaries, which we refer to
as state descriptions, attempt to mitigate this challenge. To
reduce the number of tokens the LLM is prompted with, the
context will only ever contain a single state description at the
very end of the context. Thus, previous state descriptions are



TABLE II: Comparison of prompt engineering techniques using GPT-4-0125-Preview.

Prompting Technique Fetch Conditional Equals Distribute
success rate mean time [s] success time [s] success time [s] success time [s]

Baseline 1.00 11.57 0.90 14.72 0.85 23.65 0.45 37.38
AF 1.00 10.69 0.65 12.06 0.60 22.68 0.90 33.64
AF + EiP 1.00 11.21 1.00 16.03 0.70 21.57 0.65 31.97
AF + CoT 1.00 15.14 0.70 18.95 0.70 33.03 0.20 42.32
AF + CoT + EiP 1.00 15.07 1.00 20.69 0.65 26.26 0.80 36.89
AF + ReAct + EiP 1.00 31.05 1.00 31.44 0.95 66.45 0.70 64.25
AF + StD 1.00 10.45 0.90 12.63 0.65 32.05 0.90 29.57
AF + CoT + EiP + StD 1.00 15.52 1.00 20.63 0.80 28.80 0.75 36.44
AF + ReAct + EiP + StD 1.00 29.38 1.00 32.86 1.00 72.34 0.50 72.25

AF – prompting with adaptive functions, EiP – example in prompt, StD – prompt with appended state description. See Sec. IV-B.

removed from the context with each prompt.
A state description contains information about known

objects and their locations, as perceived by the robot. It also
details whether the robot is carrying any objects, if so, which
ones, and the location of both the robot and the operator.

V. RESULTS

For illustration, Figure 3 shows a sample transcript of a
Fetch task using GPT 4 Turbo and CoT prompting. The aver-
aged results of our experiments for all tasks and prompt en-
gineering techniques are shown in Table I for GPT 3.5 Turbo
and in Table II for GPT 4 Turbo. For all test conditions,
we report the success rate and the average time required
to generate a sample. Note that these times only reflect the
time spent waiting for LLM responses from the OpenAI
API, while the required time of robot actions and simulation
feedback can be considered negligible.

On the Fetch task, GPT 4 Turbo achieves a perfect
success rate for all prompting techniques. In compari-
son, GPT 3.5 Turbo requires more complex prompting tech-
niques to achieve a high success rate. The baseline for
GPT 3.5 Turbo fails to solve the task in almost all cases.
Using adaptive functions, CoT or state descriptions increases
the success rate. A perfect success rate for GPT 3.5 Turbo
is only achieved by providing an example. Similar results
can be observed for the success rate of the Conditional
task with GPT 4 Turbo. Again, a perfect success rate is only
achieved by providing an example. For the Conditional task
with GPT 3.5 Turbo, we observe a significant drop in the
success rate when an example is missing. This supports the
argument that LLMs are few-shot learners [2]. However, a
single example seems to be sufficient to accomplish the task
at hand.

We find that more complex prompt engineering techniques
do not necessarily lead to higher success rates. On the Equals
and Distribute tasks with GPT 3.5 Turbo, the techniques
without state descriptions outperform the corresponding tech-
nique with state descriptions. However, state descriptions do
not always have a negative impact. For the GPT 3.5 Turbo
Conditional task, the addition of state descriptions (AF +
ReAct + EiP + StD) achieves the highest success rate of 72%.
We also observe that using only adaptive functions achieves
the best success rate with GPT 4 Turbo for the Distribute task,

while achieving the worst success rate for the Conditional
and Equals tasks. There is also no clear favorite between
CoT and ReAct, as the success rates vary depending on the
task, model variant, and other prompt engineering techniques
used in conjunction.

Due to the additional prompts used in all prompting
techniques besides the adaptive functions, the measured task
completion time depends on the technique used. In general,
we observe that CoT and even more so ReAct show a
longer runtime due to the relatively large number of tokens
generated by the LLM for planning and reasoning compared
to function calls. Using state descriptions increases the time
even more for the same reason. Even though the adaptive
functions do not utilize additional prompts, we can see a
slight reduction in time compared to the baseline, because
the LLM is less likely to call functions that result in failures.
In a real application, the response time of an LLM can
significantly increase the execution time of a task, although
functions that require considerable time themselves provide
leeway to mask this problem.

We have successfully used GPT for task planning and
execution in several service robotics tasks. We show that the
use of appropriate prompt engineering techniques can effec-
tively improve performance. However, overall performance
is significantly dependent on the model variant used.

VI. CONCLUSION

In this work, we demonstrated the use of LLMs to un-
derstand user commands to plan and execute tasks given
an action set and an environment state in the context of
service robotics. We evaluated several prompt engineering
techniques in a simulated environment, across different tasks
and models. GPT 3.5 Turbo performed well on simpler tasks
using advanced prompt engineering techniques, but struggled
with complex scenarios. GPT 4 Turbo managed to complete
complex tasks with mixed reliability, while significantly
outperforming GPT 3.5 Turbo on simpler tasks.

We found that while CoT [11] and ReAct [12] improve
task completion rates, the best performance is achieved when
combined with an example of a successful completion of a
related task. This provides an opportunity for human expert
knowledge within a task domain or about the robot platform
to contribute to the tuning of a robot’s behavior.



user:
> Please bring me a sponge from the kitchen.
system:
> Briefly summarize the next steps to accomplish
the task in text form.
assistant:
> 1. Drive to the kitchen.
2. Search for a sponge in the kitchen.
3. Grasp the sponge.
4. Drive back to the parlor.
5. Hand over the sponge to the user.
6. Call the exit function to complete the
interaction.
system:
> From now on only use function calls to execute
the task.
assistant:
> drive_to_location: {"location": "kitchen"}
tool:
> You successfully arrived in the new location
kitchen.
assistant:
> find_object: {"object_name_list": ["sponge"]}
tool:
> The following items were found in the kitchen: 3
sponges
assistant:
> grasp_object: {"object_name": "sponge"}
tool:
> You successfully grasped the object sponge.
assistant:
> drive_to_location: {"location": "parlor"}
tool:
> You successfully arrived in the new location
parlor.
assistant:
> place_object: {"object_name": "sponge"}
tool:
> You successfully placed the object sponge.
assistant:
> exit: {}

Fig. 3: Transcript showing a Fetch task using adaptive
functions and CoT.

Augmenting robotic systems with the reasoning capabil-
ities of LLMs through prompt engineering techniques is
a promising area of research. It enables progress toward
general-purpose service robots capable of operating in chal-
lenging open-ended environments where classical approaches
to task planning and execution reach their limits. However,
to achieve this goal, work on prompt engineering techniques
will remain essential to enable safe and reliable task planning
and execution while providing adaptability to environments
and robot platforms.

REFERENCES

[1] OpenAI, ChatGPT, https : / / openai . com / blog / chatgpt,
Accessed: September 25, 2023.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P.
Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et
al., “Language models are few-shot learners,” in Advances in
Neural Information Processing Systems (NeurIPS), vol. 33,
2020, pp. 1877–1901.

[3] Google AI, Gemini API, https://cloud.google.com/vertex-
ai / generative - ai / docs /model - reference /gemini, Accessed:
March 15, 2024.

[4] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, et al., “Llama 2: Open foundation
and fine-tuned chat models,” arXiv:2307.09288, 2023.

[5] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford,
D. S. Chaplot, D. de las Casas, F. Bressand, G. Lengyel,
G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P.
Stock, et al., “Mistral 7B,” arXiv:2310.06825, 2023.

[6] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chat-
GPT for robotics: Design principles and model abilities,”
Microsoft, Tech. Rep. MSR-TR-2023-8, 2023.

[7] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman,
A. Herzog, D. Ho, J. Ibarz, et al., “Do as I can, not as I
say: Grounding language in robotic affordances,” in Conf.
on Robot Learning (CoRL), vol. 205, 2023, pp. 287–318.

[8] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J.
Tremblay, D. Fox, J. Thomason, and A. Garg, “ProgPrompt:
Generating situated robot task plans using large language
models,” in IEEE International Conference on Robotics and
Automation (ICRA), 2023, pp. 11 523–11 530.

[9] Y. Ding, X. Zhang, S. Amiri, N. Cao, H. Yang, A. Kaminski,
C. Esselink, and S. Zhang, “Integrating action knowledge
and LLMs for task planning and situation handling in open
worlds,” Auton. Robots, vol. 47, no. 8, pp. 981–997, 2023.

[10] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and
A. Chadha, “A systematic survey of prompt engineering
in large language models: Techniques and applications,”
arXiv:2402.07927, 2024.

[11] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter,
F. Xia, E. Chi, Q. Le, and D. Zhou, “Chain-of-Thought
prompting elicits reasoning in large language models,” in Ad-
vances in Neural Information Processing Systems (NeurIPS),
vol. 35, 2022, pp. 24 824–24 837.

[12] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan,
and Y. Cao, “ReAct: Synergizing reasoning and acting in
language models,” in International Conference on Learning
Representations (ICLR), 2023.

[13] J. Stückler, M. Schwarz, and S. Behnke, “Mobile manipula-
tion, tool use, and intuitive interaction for cognitive service
robot Cosero,” Frontiers Robotics AI, vol. 3, p. 58, 2016.

[14] R. Memmesheimer, J. Nogga, B. Pätzold, E. Kruzhkov,
S. Bultmann, M. Schreiber, J. Bode, B. Karacora, J. Park,
A. Savinykh, and S. Behnke, “RoboCup@Home 2024 OPL
winner NimbRo: Anthropomorphic service robots using
foundation models for perception and planning,” in RoboCup
2024: Robot World Cup XXVII, to appear, Springer, 2025.

[15] F. Zeng, W. Gan, Y. Wang, et al., “Large language models
for robotics: A survey,” arXiv:2311.07226, 2023.

[16] J. Wang, Z. Wu, Y. Li, H. Jiang, P. Shu, E. Shi, H. Hu, C. Ma,
et al., “Large language models for robotics: Opportunities,
challenges, and perspectives,” arXiv:2401.04334, 2024.

[17] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I.
Sutskever, et al., “Language models are unsupervised mul-
titask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[18] J. Stückler, D. Holz, and S. Behnke, “RoboCup@Home:
Demonstrating everyday manipulation skills in
RoboCup@Home,” IEEE Robotics and Automation
Magazine, vol. 19, no. 2, pp. 34–42, 2012.

[19] J. Hart, A. Moriarty, K. Pasternak, J. Kummert, A. Hawkin,
V. Hassouna, J. D. Pena Narvaez, et al., RoboCup@Home
2024: Rules and regulations, https : / / github . com /
RoboCupAtHome/RuleBook/releases/tag/2024.1, 2024.

[20] F. Yan, H. Mao, C. C.-J. Ji, T. Zhang, S. G. Patil, I. Stoica,
and J. E. Gonzalez, Berkeley function calling leaderboard,
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_
calling_leaderboard.html, Accessed: March 13, 2024.

https://openai.com/blog/chatgpt
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/gemini
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/gemini
https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1
https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

	Introduction
	Related Works
	Using LLM for Robot Task Planning & Execution
	Prompt Engineering Techniques

	Dialogue with a Simulated Environment
	Environment
	Action Set
	Tasks
	Fetch
	Conditional
	Equals
	Distribute


	Experiments
	LLM Variants
	Prompt Engineering Techniques
	Adaptive Functions
	Chain-of-Thought (CoT)
	Reasoning and Acting (ReAct)
	Example in Prompt
	State Description


	Results
	Conclusion



