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Fig. 1: We combine the strength of massively parallel reinforcement learning to produce proficient continuous control policies
with the guidance of human demonstrations to solve challenging manipulation tasks. To this end, we introduce a suite of
dexterous manipulation tasks together with a virtual reality teleoperation framework designed to enable human-like interactive
manipulation in contact-rich environments.

Abstract— Dexterous manipulation with anthropomorphic
robot hands remains a challenging problem in robotics because
of the high-dimensional state and action spaces and complex
contacts. Nevertheless, skillful closed-loop manipulation is re-
quired to enable humanoid robots to operate in unstructured
real-world environments. Reinforcement learning (RL) has
traditionally imposed enormous interaction data requirements
for optimizing such complex control problems. We introduce a
new framework that leverages recent advances in GPU-based
simulation along with the strength of imitation learning in
guiding policy search towards promising behaviors to make
RL training feasible in these domains. To this end, we present
an immersive virtual reality teleoperation interface designed for
interactive human-like manipulation on contact rich tasks and
a suite of manipulation environments inspired by tasks of daily
living. Finally, we demonstrate the complementary strengths of
massively parallel RL and imitation learning, yielding robust
and natural behaviors. Videos of trained policies, our source
code, and the collected demonstration datasets are available
at https://maltemosbach.github.io/interactive_
human_like_manipulation/.

I. INTRODUCTION

Anthropomorphic robot hands provide a versatile interface
to interact with a human-centric world. The ability to handle
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various objects and perform dexterous manipulation comes
natural to humans but remains an important open problem
in robotics. Prior work has tackled dexterous manipulation
with multi-fingered robot hands through several approaches.
Model-based trajectory optimization [15, 10] has demon-
strated strong performance in simulation, but assumes access
to accurate state information and dynamic models. These are
difficult to obtain for contact-rich interaction tasks, which
makes it challenging to apply these approaches to real-world
scenarios and novel objects [20]. Further, imitation learning
may be used, but it relies on high-quality demonstrations to
succeed. While these are straightforward to obtain for drone
flight or car driving [27], collecting proficient demonstrations
for anthropomorphic robots requires more involved teleop-
eration setups. Moreover, imitation learning cannot improve
upon the observed behaviors. Alternatively, RL has been used
for robot grasping [6, 5, 25, 19] and object manipulation [1,
20], but struggles with the high-dimensional continuous state
and action spaces posed by the tasks, leading to extremely
high sample complexity. So far, manipulation robots remains
far from reaching human-level dexterity.

To help closing the gap between robot and human ma-
nipulation abilities, we developed a novel framework for
learning-based dexterous manipulation, gym-grasp, compris-
ing various environments that represent tasks of daily living.
We integrate two approaches to address the high sample
requirements of RL methods on complex manipulation tasks.
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First, our simulation leverages Isaac Gym [12], which en-
ables massive parallelization of RL training, resulting in high
simulation throughput and empowering the performance of
on-policy algorithms. Second, we present a virtual reality
(VR) teleoperation framework, designed to enable skillful
manipulation in contact-rich environments. In addition to
immersive visualization, physical feedback from the environ-
ment is a crucial modality humans rely on during interaction
with objects [4, 21]. We therefore hypothesize that tactile
perception also impacts the quality of demonstrations and
integrate haptic feedback based on simulator contact forces
using a force-feedback glove. While massively parallel RL
has been used to synthesize robust policies for dexterous
control, prior works rely on dense rewards to guide policy
search towards the desired behaviors [1, 23]. We demonstrate
that imitation learning can be used to make this learning
paradigm feasible even for sparse-reward tasks.

The main goal of this work is to foster research in learning-
based dexterous manipulation through GPU-accelerated sim-
ulation and high-quality demonstrations and evince the com-
plementary strengths of both paradigms. In summary, we
present the following contributions:

• Dexterous Manipulation Benchmark. We introduce a
suite of dexterous manipulation tasks that supports high-
performance reinforcement learning via GPU-based
physics simulation [12].

• Virtual Reality Teleoperation. We present a system for
immersive VR teleoperation and evaluate the effect of
haptic feedback on user preference and task success.

• Human Demonstration Datasets. We provide human
demonstration datasets for the considered tasks to en-
able imitation learning and offline RL for dexterous
manipulation.

• Combining RL with Demonstrations. We show the po-
tential benefit of augmenting massively parallel RL with
demonstration data.

II. RELATED WORK

Robotic grasping and manipulation has been actively
studied for decades [26]. Many prior approaches attempt
to predict grasp poses either via analytical or data-driven
methods [8]. Analytical methods are primarily based on
mechanics, such as force-closure. They usually assume ac-
cess to the exact object geometry and friction coefficients
at contact points [16, 14]. Data-driven methods rely on
machine learning and some form of training data, but can
sometimes dispense with the very high demands of ana-
lytical methods for perfect observability of the work space
and known object models. Nevertheless, both variants are
fundamentally concerned with grasp synthesis, which is the
problem of finding a suitable configuration of the robot’s end
effector, as to grasp a target object. This is in stark contrast
to the dexterous manipulation observed in humans, which
continuously interleaves perception and action. Recent works
utilize RL to achieve such dexterous control. Kalashnikov et
al. [6] demonstrate that RL is able to synthesize a vision-
based grasping policy that can pick up unseen objects with

Markov decision process

Operator Physics simulation

Hand

Headset

Contact forces

VR camera

update pose

update view

haptic feedback

Fig. 2: Teleoperation framework overview.

a parallel gripper, at the cost of hundreds of thousands of
real-world grasp attempts. Further, Rajeswaran et al. [20]
explore the use of demonstrations for learning dexterous
manipulation policies, but do not consider tactile perception.
Chen et al. [1] study RL for in-hand reorientation and
demonstrate strong performance of parallelized learning in
GPU-based simulations.

Using teleoperation to collect demonstrations is an espe-
cially suitable paradigm for human-like robots due to the
similar morphology and straightforward control mapping.
Prior works have used vision-based teleoperation via motion
capture data [9] or hand pose estimation [18, 17, 3]. While
vision-based pose estimation has low hardware requirements,
it limits the workspace and cannot provide feedback from the
environment. Zhang et al. [27] demonstrate how consumer-
grade VR controllers can be used to teleoperate a PR2 robot,
but focus neither on anthropomorphic end-effectors, nor on
haptic feedback. Kim et al. [7] explore force feedback for
bilateral teleoperation, but operate with two-finger grippers.
Commercially available systems, such as the Shadow Teleop-
eration System [22] provide haptic feedback and could also
be used to collect demonstrations in contact-rich domains.
However, this requires expensive, specialized hardware. Our
system, on the other hand, enables haptic feedback during
teleoperation of an anthropomorphic hand based on inexpen-
sive VR-components and can be used with different robotic
hands.

Concurrently to our work, Chen et al. [2] introduced
a benchmark for bimanual hand manipulation based on
Isaac Gym. Unlike our work, their focus is on learning to
coordinate two hands and they do not consider learning from
human demonstrations.

III. VIRTUAL REALITY TELEOPERATION

In the following, we introduce our VR teleoperation sys-
tem and explain how it facilitates the collection of proficient
demonstrations on contact-rich manipulation tasks.



A. System Overview

Our operator interfaces combines the Vive VR system and
the SenseGlove DK1 force-feedback glove. Fig. 2 depicts the
interaction of the main components. The operator observes
the simulated scene through a dedicated camera in Isaac
Gym. We update the camera pose instantaneously to follow
the operator’s head movements tracked by the headset. For
each finger, the SenseGlove detects 4 DoF finger joint posi-
tions and features separately controllable force and vibration
feedback. We mount a Vive tracker on top of the glove,
providing sub-millimeter 6 DoF pose information at 90 Hz.
Fusing the information from both devices enables intuitive
control of the anthropomorphic robot hand. We employ a
clutch-like mechanism, where the user can move their hand
freely and only starts teleoperating the robot hand when
indicated via the keyboard. The pose of the operator and
robot hand then remain locked until the termination of the
episode.

While an update frequency of 90 Hz is recommended for
immersive VR operation, we may want to select actions
at a lower rate since RL and imitation learning become
increasingly challenging for long horizon tasks. We therefore
decouple the update frequency of the head-mounted display
and force feedback from the control frequency of the Markov
decision process (cf. Fig. 2). Accordingly, we divide the
simulation side into the actual physics simulation, which runs
at 90 steps per second to provide fast updates for the headset
and haptic feedback, and the MDP, which queries actions at
90
c Hz, where c is the control frequency interval. We found

a control frequency of 30 Hz to be sufficient for accurate
control by teleoperation and effective learning via RL.

B. Haptic Feedback

As touch is of crucial importance to humans when per-
forming dexterous manipulations, we incorporate this modal-
ity via force and vibration feedback. To allow the user to
feel the presence of objects, we determine the rigid-body
contact forces of the fingertips and decompose them into
the absolute force and a directional component, which acts
through the fingertip and prevents the hand from closing. The
component of the force acting against closing a finger, Feff ,
is mapped to the SenseGlove’s force feedback command,
which activates a braking system and increases the resistance
to closing the finger further. This mimics the resistance felt
when holding an object and is beneficial for grasping and
transporting objects. The absolute force magnitude values
are smoothed using a simple moving average low-pass filter.
We then map the high-frequency components of the absolute
force ||Fabs||−MA(||Fabs||), where MA refers to the moving
average, to the vibrational feedback. This results in feedback
responses for sudden increases in the contact force, such as
collisions, but no feedback for sustained contact.

IV. LEARNING DEXTEROUS MANIPULATION

A. Task Design

All implemented tasks feature a robotic arm and hand
that we have access to for real-world experiments (in future
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Fig. 3: Actuation of robot arm and hand. We actuate the
robot hand via the 6D target pose of the wrist and the
target joint angles of the fingers. Only the joints of the hand
marked in green can be actuated directly. The orange joints
are underactuated and positioned via equality constraints.

work). Specifically, a UR5 arm and Schunk SIH hand are
used. The actuation of the hand features 5 degrees-of-
freedom (DoF). Tendons are used to control the rotating of
the thumb and bending of the fingers, resulting in the coupled
control scheme depicted in the bottom right of Fig. 3, which
we replicate through the coupling of position targets in Isaac
Gym. The actuation scheme is shown in Fig. 3. Actions are
11-dimensional and are interpreted as the relative change to
the desired wrist pose (6 dimensions) and finger positions
(5 DoFs of the Schunk SIH hand). We compute the UR5
joint position targets from the desired wrist pose using the
Jacobian transpose method.

The selected manipulation tasks are shown in 4. All tasks
provide proprioceptive observations of wrist pose and finger
positions of the robot. On the OpenDrawer task, the agent
is informed about how far the drawer is opened, from
which the handle position can be inferred. Dense rewards
penalize the distance of the robot hand from the handle,
while continuously rewarding the opening of the drawer.
The task is solved once the drawer is pulled open by 0.2m,
which causes the environment to terminate. The OpenDoor
task provides the pose of the door handle and is completed
successfully once the door is opened by 45°. When dense
rewards are used, the agent is rewarded continuously for
how far the door is opened and the distance of the robot
hand to the door handle is penalized. On the PourCup task,
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Fig. 4: Dexterous manipulation tasks.

we provide the pose of the full cup. The agent is rewarded
proportional to the amount of particles poured into the bowl,
while the distance of the hand to the cup is penalized. The
LiftObject task exposes the pose of the object. When using
dense rewards, the agent is rewarded for positive changes to
the object height, while the distance of the robot hand from
the object is penalized. The task is completed successfully
and terminates once the object is lifted 0.2m above the table.
In addition to the dense reward functions described above, we
also investigate sparse rewards because we want to show how
imitation learning can be used to bridge the performance gap
between the two. Sparse rewards are 0 if a task is completed
successfully and -1 otherwise for all tasks.

B. Massively Parallel Reinforcement Learning

While GPU-based parallelization has been widely adopted
for neural network training, data collection in reinforce-
ment learning is still mostly performed via single CPU
simulations. Parallelizing data collection by running many
instances of a robot in a single simulation has the potential
to accelerate RL training by several orders of magnitude [12,
23]. We leverage the high-performance capabilities of Isaac
Gym to scale up our training on dexterous manipulation
tasks. To show the efficiency of our framework, we evaluate
the simulation throughput during RL training on a single ma-
chine with an AMD Ryzen 9 5950X CPU and NVIDIA RTX
A6000 GPU. All tasks run 16,384 parallel environments.
Note that the number of simulated steps is three times higher
than the MDP steps given in Table I because we maintain
the control frequency interval of three to obtain consistent
results for imitation and reinforcement learning.

TABLE I: Simulation throughput (MDP steps / s).

OpenDrawer OpenDoor PourCup LiftObject

58, 887± 1, 726 56, 513± 1, 442 21, 977± 507 58, 980± 1, 224

While the massive parallelization of agent instances in
a single simulation leads to rapid training, it also presents
unique challenges. Take the LiftObject task (see Fig. 4d), for
example. Since objects of arbitrary geometry may be used,
we drop them onto the table from a random seed pose to find
feasible initializations before starting the actual task. This
procedure cannot simply be repeated when an environment
terminates, since a step in the physics simulation to drop
the object would also advance the simulation in all other
environments. Instead, we only drop the objects at random
positions initially and then reset each environment to the
exact pose found at the beginning. The randomization of
object positions is therefore handled by the large number of
environment instances instead of the separate reset phase.

C. Imitation and Reinforcement Learning

We aim to demonstrate the complementary strengths of
imitation learning and massively parallel RL for dexterous
manipulation. RL models the agent-environment interaction
as a Markov decision process (MDP). An MDP is defined
by the tuple M = (S,A, R, T, γ), where S and A are
the sets of states and actions, T : S × A × S → R+ is
a state-transition probability function, which represents the
probability of transitioning to the next state st+1 ∈ S given
the current state st ∈ S and action at ∈ A, R : S ×A → R
is a reward function, and 0 ≤ γ ≤ 1 is a discount factor. The
state-action marginal of the trajectory distribution induced by
a policy π(at|st) is denoted as ρπ(st,at). The objective of
the RL problem is to maximize the expected sum of rewards
discounted over time J =

∑
t E(st,at)∼ρπ

[γtR(st,at)].
We employ proximal policy optimization (PPO) [24],

which is a state-of-the-art on-policy RL algorithm and base
our implementation on [11]. For imitation learning, we use
simple behavior cloning (BC) and leverage the implementa-
tion provided by Robomimic et al. [13]. Hence, we collect
demonstration data as state-action tuples (si,ai) and train the
policy to reproduce the expert actions for the same states.
Finally, we combine reinforcement and imitation learning
by incorporating the losses of both paradigms to form a
demo augmented policy gradient (DAPG) algorithm [20].
In contrast to the original variant, which employs a natural
policy gradient, we stick with the now widely used PPO
algorithm. The trade-off between both losses is weighed as
LDAPG = LPPO+λ0λ

k
1LBC , where k is the current training

epoch. We set λ0 = 50 and λ1 = 0.99 in all experiments.

V. EXPERIMENTS

We investigate the effectiveness of learning from demon-
strations collected by our teleoperation framework, as well
as the potential of utilizing demonstration data in massively
parallel on-policy RL. Therefore, we aim to address the
following questions:



Fig. 5: User study environment.

1) Can the demonstrations collected with our VR teleop-
eration system be used to train successful policies for
dexterous manipulation tasks?

2) How does learning from scratch in the massively
parallel regime perform on the selected tasks?

3) How does incorporating demonstration data into the
learning process impact the performance of on-policy
RL?

A. Experimental Setup

To answer the proposed questions, we selected a set
of challenging manipulation tasks that mimic real-world
problems that a humanoid robot might face (see Fig. 4). The
difficulty of these tasks depends on various factors. Open-
Drawer is the simplest task, as it requires only a single skill
and can be solved without very precise control of the fingers.
OpenDoor is more complex, requiring the concatenation of
the two skills of turning the handle and then pulling the
door open. PourCup requires delicate manipulation and has
a high risk of failure, since there is no way to recover if the
cup is spilled somewhere other than the target location. The
liquid in a real cup is represented by spherical particles, since
we are working with a rigid-body physics simulation. This
increased number of simulated bodies and contacts accounts
for the lower simulation throughput on this task compared
to the other environments (see Table I). The LiftObject task
requires precise positioning of the fingers to produce a stable
grip, as well as generalization to random initial positions and
orientations of the object to be lifted.

The neural network architecture is kept constant across
all evaluated methods. We represent the policy by an MLP
consisting of 3 hidden layers of 512, 256, 256 neurons.
Each RL agent is trained for 1000 epochs, where each
epoch consists of 32 steps in the 16,384 parallel environment
instances, resulting in a total 524 million steps.

B. Haptic Teleoperation User Study

First, we conduct a small user study to evaluate our teleop-
eration system. We analyze whether the system can be used
by operators without prior experience to solve manipulation
tasks. Further, we measure the influence of haptic feedback
on user preference and task completion. Six participants with
no prior experience operating the framework took part in our
study.

TABLE II: Success rates and completion times for the tasks
performed in the user study.

Haptic
feedback

Task Success rate Completion time [s]

Mean StdDev

✓
Stack cubes 0.83 35.17 9.98
Open door 1.0 6.47 1.82

Pour cup 1.0 13.86 3.46

✗
Stack cubes 1.0 43.26 22.13
Open door 1.0 9.37 5.26

Pour cup 1.0 15.63 3.56

The participants were asked to perform three tasks in the
environment shown in Figure 5. Specifically, the tasks were
to stack three cubes, open a door, and pour particles from
a cup into a bowl. A task was marked as a failure if a
maximum time of 3 min was reached or a non-recoverable
failure occurred, e.g. dropping a cube off the table or spilling
the cup. Each participant was asked to perform the tasks with
and without haptic feedback. The order of these two trials
was randomized to mitigate the influence of learning during
teleoperation.

Quantitative results of the user study in terms of success
rate on the tasks and the time required are shown in Table II.
During all trials, only a single failure occurred, where a cube
fell off the table. The high success rates for diverse tasks
show that the system is intuitive to use even without prior
experience. Lower completion times were observed in all
tasks when haptic feedback was enabled, highlighting the
added value of integrating this modality into teleoperation.
The task of stacking three cubes shows the highest standard
deviation in completion time, since the tower can be knocked
over during construction, requiring the user to start over.

After each trial, participants were asked to rate their
experience using seven-level Likert items. The results, shown
in Fig. 6, show that intuitive control of the robot arm and
fingers was generally rated highly. Haptic feedback had a
positive impact on whether users felt they were interacting
directly with the objects. However, the most pronounced
difference between the two modes of operation is evident in
the ability to recognize moments of contact. Users reported
that this feature of haptic feedback provided a more confident
sense of the exact position of the hand relative to other
objects.

C. Results and Analysis

In the following, we structure our analysis of the obtained
results by the questions posed at the beginning of this section.

1) Can the demonstrations collected with our VR teleop-
eration system be used to train successful policies for
dexterous manipulation tasks?

To assess this question, we collected datasets of 200
demonstrations for each of the investigated tasks, which
are split into 90% training and 10% validation data. We
then train simple behavior cloning policies to replicate the
observed demonstrations and use the validation loss to check
for overfitting. The success rates are shown in the first row
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Was it easy to control the robot?

Was it intuitive to control the arm?

Was it intuitive to control the fingers?

Was it easy to grasp an object?

Did you feel like you were handling the objects directly?

Was it easy to stack 2 cubes?

Were you able to detect the moments of contact?

With HF
Without HF

better

Fig. 6: Results of the user questionnaire. We depict the median, lower and upper quartile, lower and upper fence, outliers
(•), and the average value (×).

of Table III. Near perfect results can be achieved using
only imitation learning on the OpenDrawer and OpenDoor
task. For PourCup, the results are still strong considering
the complexity of the task and control space of the robot,
but performance is not as consistent. Lastly, despite using
only a single object geometry in this study, LiftObject is
the most difficult to learn from demonstrations alone. This
may be due to the fact that even for a human operator it
is not straightforward to grasp an object securely, resulting
in frequent regrasps or adjustments. Further, the general-
ization demanded by the random initialization of object
poses appears to make imitation learning substantially harder.
Overall, we were able to verify that the proposed pipeline
can be used to collect demonstration for an anthropomorphic
robot hand, but note that behavior cloning alone struggles to
produce robust policies for more involved tasks.

2) How does learning from scratch in the massively
parallel regime perform on the selected tasks?

We divide our analysis into the dense and sparse rewards
setting. While it is generally more difficult to learn from
sparse rewards, they are easy to specify. Providing dense
rewards, on the other hand, requires tedious reward shaping
and can bias learned behaviors towards unintended solutions.
The strong results of PPO for dense rewards across all tasks
studied suggest that massively parallel on-policy RL will find
proficient solutions to tasks of the studied difficulty as long
as a meaningful learning signal is present. In contrast, sparse
rewards were only sufficient to get satisfactory solutions
to the OpenDrawer task. While LiftObject and PourCup

make some progress towards solving the respective problem,
the results vary strongly between seeds. OpenDoor made
no learning progress across all seeds. In summary, sparse
rewards were sufficient for learning only in simpler tasks
where the solution can be discovered repeatedly through
random exploration. Tasks that require the combination of
multiple behaviors in succession along with precise actions
are very difficult to solve in this way, even with the vast
amounts of policy experience used in this study.

3) How does incorporating demonstration data into the
learning process impact the performance of on-policy
RL?

Finally, we analyze whether the integration of demonstra-
tions into the learning process is sufficient to provide RL
with the learning signal needed to generate robust policies.
The perfect results for all tasks reported in the bottom of
Table III confirm this hypothesis and highlight how the com-
plementary strengths of massively parallel RL and imitation
learning provide a powerful tool for solving challenging
manipulation tasks. In this way, on-policy training in GPU-
accelerated environments can be used to refine behaviors
for which imitation learning alone does not lead to the
desired robustness or generalization. For all tasks of the
investigated complexity, this paradigm was able to produce
robust policies, leading to no observed cases of failure in the
final test-rollouts.

In Figure 7 we show examples of the learned behaviors
for pure RL and DAPG on the PourCup task. An interesting
difference is that PPO learns an unexpected strategy, where

TABLE III: Success Rates of evaluated methods. We performed at least three runs with 100 test episodes per run of each
configuration.

Method OpenDrawer OpenDoor PourCup LiftObject

BC 1.0 ± 0.0 0.96± 0.02 0.76± 0.23 0.27± 0.03
PPO-dense 1.0 ± 0.0 1.0 ± 0.0 0.98± 0.01 0.97± 0.08
PPO-sparse 1.0 ± 0.0 0.0± 0.0 0.48± 0.48 0.14± 0.33

DAPG-sparse 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0



PPO

DAPG

Fig. 7: Different solution strategies employed by PPO and
DAPG on the PourCup task.

the particles in the cup are poured by knocking it over with
the palm of the hand in just the right way. Even though this
technically fulfills the objective of the problem, the intended
behavior has not been learned. DAPG, on the other hand, is
more likely to stick with the behaviors observed in the initial
demonstrations. How much the algorithm deviates from these
behaviors in favor of strategies that yield higher rewards is
determined by the weighting terms λ0 and λ1.

VI. DISCUSSION AND CONCLUSIONS

Our results show that adding demonstration data to the
learning process of massively parallel model-free RL can
leverage the complementary strengths of both approaches.
Guidance from expert demonstrations provides RL with the
training signal needed to make meaningful progress, while
highly-parallelized RL training can be used to refine the
behavior seen in the demonstrations. The purpose of this
work is to highlight this useful connection and provide tools
to foster research on the intersection of reinforcement and
imitation learning. In future work, we aim to transfer policies
learned in Nvidia Isaac Gym to a real robot setup. Therefore,
accurate pose estimation or operation from visual perception
directly will be required. Further interesting avenues for
future work are to learn from demonstrations in multi-object
environments, such as picking from cluttered bins, where
generalization of the observed behaviors is crucial or to
investigate whether a behavior cloning loss can be used to
bias the solution found by RL, for example for functional
grasps of objects. Lastly, our results showed that DAPG on
GPU-accelerated RL environments is capable of solving all
the manipulation tasks proposed here. Therefore, it would
be interesting to investigate more complex multi-step tasks,
such as removing an object from an initially closed drawer,
to better explore the limitations of this approach.
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[15] Igor Mordatch, Zoran Popović, and Emanuel Todorov. “Contact-
invariant optimization for hand manipulation”. In: ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA).
2012, pp. 137–144.

[16] Van-Duc Nguyen. “Constructing force-closure grasps”. In: The In-
ternational Journal of Robotics Research 7.3 (1988), pp. 3–16.

[17] Yuzhe Qin, Hao Su, and Xiaolong Wang. “From one hand to multiple
hands: Imitation learning for dexterous manipulation from single-
camera teleoperation”. In: arXiv preprint arXiv:2204.12490 (2022).

[18] Yuzhe Qin et al. “DexMV: Imitation learning for dexterous manip-
ulation from human videos”. In: arXiv preprint arXiv:2108.05877
(2021).

[19] Deirdre Quillen et al. “Deep reinforcement learning for vision-based
robotic grasping: A simulated comparative evaluation of off-policy
methods”. In: International Conference on Robotics and Automation
(ICRA). 2018, pp. 6284–6291.

[20] Aravind Rajeswaran et al. “Learning complex dexterous manipula-
tion with deep reinforcement learning and demonstrations”. In: arXiv
preprint arXiv:1709.10087 (2017).

[21] Grégoire Richard et al. “Studying the role of haptic feedback on
virtual embodiment in a drawing task”. In: Frontiers in Virtual
Reality 1 (2021), p. 573167.

[22] Shadow Robot. Shadow Teleoperation System. 2022. URL: https:
//www.shadowrobot.com/teleoperation/.

[23] Nikita Rudin et al. “Learning to walk in minutes using massively
parallel deep reinforcement learning”. In: Conference on Robot
Learning (CoRL). PMLR. 2022, pp. 91–100.

[24] John Schulman et al. “Proximal policy optimization algorithms”. In:
arXiv preprint arXiv:1707.06347 (2017).

[25] Andy Zeng et al. “Learning synergies between pushing and grasp-
ing with self-supervised deep reinforcement learning”. In: Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2018,
pp. 4238–4245.

[26] Hanbo Zhang et al. “Robotic Grasping from Classical to Modern: A
Survey”. In: arXiv preprint arXiv:2202.03631 (2022).

[27] Tianhao Zhang et al. “Deep imitation learning for complex manipu-
lation tasks from virtual reality teleoperation”. In: International Con-
ference on Robotics and Automation (ICRA). 2018, pp. 5628–5635.

https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://www.shadowrobot.com/teleoperation/
https://www.shadowrobot.com/teleoperation/

	Introduction
	Related Work
	Virtual Reality Teleoperation
	System Overview
	Haptic Feedback

	Learning Dexterous Manipulation
	Task Design
	Massively Parallel Reinforcement Learning
	Imitation and Reinforcement Learning

	Experiments
	Experimental Setup
	Haptic Teleoperation User Study
	Results and Analysis

	Discussion and Conclusions



