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Abstract— Every time a person encounters an object with a
given degree of familiarity, he/she immediately knows how to
grasp it. Adaptation of the movement of the hand according
to the object geometry happens effortlessly because of the ac-
cumulated knowledge of previous experiences grasping similar
objects. In this paper, we present a novel method for inferring
grasp configurations based on the object shape. Grasping
knowledge is gathered in a synergy space of the robotic hand
built by following a human grasping taxonomy. The synergy
space is constructed through human demonstrations employing
a exoskeleton that provides force feedback, which provides the
advantage of evaluating the quality of the grasp. The shape
descriptor is obtained by means of a categorical non-rigid
registration that encodes typical intra-class variations. This
approach is especially suitable for on-line scenarios where only
a portion of the object’s surface is observable. This method is
demonstrated through simulation and real robot experiments
by grasping objects never seen before by the robot.

I. INTRODUCTION

The object geometry is a key element for a successful

grasp. Based on geometrical variations, humans are able

to transfer previous knowledge of similar objects to new

observed instances and to perform new grasps. In this paper,

we aim to provide this capability to robots, i.e., grasp

adaptation according to the object shape. We do this by

inferring a postural synergy from a shape description of the

object. This shape description is obtained through a non-rigid

category-based registration that captures geometrical object

variations inside a category. This descriptor resides in a low

dimensional shape space of the category.

To describe the grasp configuration of the robotic hand, we

use postural synergies because of its lower dimensionality

compared to the number of Degrees of Freedom (DoFs) of

the hand. In this manner, we reduce the output dimensionality

of the learning approach presented here. The synergy space

is constructed following a human grasping taxonomy [1].

However, we do not rely on any visual sensory data or

any human-to-robot mapping, but we directly acquire the

joint space configuration of the robotic hand through a

teleoperated exoskeleton. Thus, we avoid errors coming from

camera calibrations and mappings to the robotic kinematics.
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Fig. 1. Grasping configurations of objects in a category are inferred
from a description of their shape. Grasping knowledge is encoded in a
synergy space and a grasping learner through human demonstrations using
an exoskeleton.

In addition, the exoskeleton provides the user with force

feedback which serves to assess the grasps qualitatively.

Moreover, the complexity and consequently the required time

building the synergy space is considerably reduced.

The approach presented here is aimed for on-line grasping

scenarios. Our shape space registration is able to infer the

shape descriptor from a single view of the object coming

from RGBD sensors, This is possible because our shape

space registration is able to reconstruct to a certain extent

partially occluded parts of the objects.

The main contributions of this paper are: the inference

of grasp configurations from the extrinsic object geometry

based on a category-based shape space and the generation

for the first time, to the best of the author’s knowledge,

of a grasping postural synergy space using force feedback

provided by a hand exoskeleton (Fig.1). A video illustrating

our approach is available online 1.

II. RELATED WORK

A. Shape Space Registration

Standard non-rigid registration methods such as conformal

maps[2], thin-plate splines [3] and the coherent point drift [4]

are able to quantify deformations between two objects, but

they do not possess any notion of category-level features,

which can be exploited for reconstruction in on-line scenar-

ios. Burghard et al. [5] proposed a shape space of strongly

1www.ais.uni-bonn.de/videos/Humanoids_2018_
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varying geometry to establish dense correspondences. This

method, however, does not achieve good results with noisy

data or partial views of the objects. A shape manifold that

models intra-category shape variances and is robust against

noisy or occluded parts was presented by Engelmann et al.

[6]. However, this method does not provide any deformation

field or correspondences.

To solve these problems, we proposed in [7] a novel

non-rigid registration method that incorporates category-

level information and is able to register partially-occluded

instances using a single capture of the object. This approach

combines the Coherent Point Drift (CPD) with subspaces

methods to create a shape (latent) space that encodes typical

geometrical variations inside a category. This method has

been applied to transfer control poses for approaching the

objects to grasp [8], [9], and to accumulate experiences on

the motion for grasping different objects into a canonical

model [10]. In this paper, we mainly concentrate on the

configuration of the hand, i.e., on how the hand configuration

changes according to the shape of the objects.

B. Synergy-based Grasping

Postural synergies have been widely accepted in the

robotics community as a grasp representation for control

and planning mainly because of their lower dimension-

ality compared with the number of DoFs of the robotic

hands [11]–[14]. In order to generate the synergy space,

an anthropomorphic taxonomy is often followed [1]. Some

approaches use visual sensory data to acquire human grasp

poses to posteriorly map them to the kinematics of the

robotic hand [12], [15]. However, errors coming from the

visual system or from the human-to-robot kinematics map-

ping severely affect this kind of approaches. Bernardino et

al. [13] overcomes this limitation by acquiring directly the

joint position of the robotic hand through a data glove.

Our approach enriches this data acquisition by employing

teleoperation force feedback. In this scenario, the human user

can reach stable grasping solutions by relying on both visual

and force feedback.

C. Learning Grasp Synthesis based on Object Shapes

Ekvall and Kragic [16] infer approaching vectors based

on shape primitives and human demonstrations obtained by

data gloves. Ficuciello et al. [14] are able to adapt postural

synergies in a reinforcement learning manner based on a

force-closure cost function. Later, Ficuciello et al. [12] infers

synergy values from a by-user-given basic description (diam-

eter, length and height) of the objects using a neural network.

Our approach, on the other hand, infers a more complex

shape description of the objects autonomously by making

use of our shape space registration. A similar approach as the

one proposed in this paper is described by Faria et al. [17].

There, objects represented as point clouds are segmented into

parts and represented as superquadrics parameters. Based on

these parameters synergies vectors are inferred in a Bayesian

fashion. However, unlike [17] we ensure that the objects are
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Fig. 2. 3D rendering of the Underactuated Hand Exoskeleton U-HEx. In
total the exoskeleton has 14 DoFs.

grasped in a functional way and the model is reconstructed

due to the knowledge residing in the latent space.

III. HAND TELEOPERATION

The control of multi-fingered robotic hands is a com-

plex problem because of its high number of independent

variables. In this scenario, the design symmetry between

human and robotic hand allows an operator to teleoperate

the manipulator in a very natural way. In particular, bilateral

telemanipulation requires the adoption of a haptic device

such as the hand exoskeleton. The data acquisition for

generating the synergy space was carried out using the U-

HEx, a novel underactuated hand exoskeleton developed

by the PERCRO lab of Scuola Superiore Sant’Anna. The

device is composed of five independent parallel kinemat-

ics attached to a base fixable to the operator hand-back

(Fig. 2). The five DoFs of the thumb exoskeleton allow

identifying all the joint values associated with the human

movements [18]. The index finger possesses three DoFs, all

the other exoskeleton’s fingers have only two DoFs, making

observable only the metacarpal-proximal joint (MCP) and

the proximal-interphalanx joint (PIP) [19]. The exoskeleton

has 14 DoFs but only five actuators, one actuator for each

finger. Parallelism and underactuation ensure lightweight,

minimal bulkiness and high adaptability to different hand

sizes without mechanical adjustments. Kinesthetic forces are

Fig. 3. Snapshots of U-HEx and Schunk Hand during force feedback
teleoperation.
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Fig. 4. Overview of Schunk Hand (SH) position-force teleoperation architecture. The teleoperation module runs at 100 Hz, while low level controllers
run at 1 KHz.

transmitted through two human-exoskeleton contact points

for each finger.

The kinematic correspondence between the human and

anthropomorphic hands is performed using a position-force

bilateral teleoperation scheme. An initial calibration phase

is required as described in [20]. In each execution cycle,

the exoskeleton identifies operator finger joints angles that

are directly mapped to the corresponding joint angles of

the robotic hand exploiting the symmetry between the two

kinematics. Whenever the symmetry is not present (i.e. in

the case of the thumb), motor commands are defined as

linear combinations between human joint (Fig. 4). Linear

combination coefficients are empirically set to match the

master and slave workspaces.

Force reflection channel is performed as follows. First,

remote interaction forces are observed in terms of joint

torques (linearly mapped from motor currents). Next, each

joint torque is scaled and applied to the corresponding

operator hand joint. In absence of communication delays,

stability is empirically enhanced employing small values of

force reflection gains and by means of the one port passivity

at the exoskeleton motors level [21]. The underactuation

problem is solved through a null-space optimization method

as described in [22]. The proposed teleoperation architecture

not only allows the operator to grasp objects with very

different sizes and shapes, but also to modulate interaction

forces making possible the grasp of fragile and deformable

objects (Fig. 3).

IV. POSTURAL SYNERGIES

We used the anthropomorphic multi-fingered Schunk hand

as the robotic platform for the approaches presented here.

The hand has 20 joints but only 9 of them are fully actuated,

the other 11 are coupled or mimic joints. The DoFs are

distributed as follows: thumb (2), index finger (2), middle

finger (2), ring finger (1), pinky (1) and finger spread (1). One

limitation of the hand kinematics is the spread movements

of the finger which is controlled only by one motor. This

limitation imposes a hard constraint on the Cartesian position

of the fingers, because for 4 different target poses (index,

middle, ring and pinky fingers) only one can be guaranteed

if it is contained in the workspace of the finger. Because of

this limitation on the hand kinematics and the fact that each

finger has one or maximum two flexion DoFs, a mapping

coming from real human grasping joint angles to the joint

space of the robotic hand will not exploit all the grasping

capabilities of the robotic hand. For this reason, we use the

exoskeleton presented in Sec. III for controlling the hand to

the desired grasping configurations.

We performed n =31 grasps following the human grasping

taxonomy presented in [1], in which 33 grasps have been

grouped into power, intermediate and precision. With the

Schunk Hand, we were able to reproduce 26 of them (Fig. 5).

The missing seven grasp configurations were not feasible due

to kinematics limitations. Moreover, five open configurations

were included.

For each grasp, the join configuration q given by the

robot hand was recorded and assembled into a matrix A=
{qT

1 − q̄T , . . . ,qT
n − q̄T } ∈ R

n×q , where q̄ represents the

mean joint position. By decomposing the symmetric positive

matrix ATA=QΛQT into its eigenvalues and eigenvectors

and taking the l eigenvectors with the highest eigenvalues, the

vector base L∈R
q×l of the l-dimensional synergy subspace

is calculated. Thus, the synergy s corresponding to q can be

expressed as:

s = LT (q− q̄), (1)

while the inverse transformation is described by:

q = q̄+ Ls. (2)

For the synergy space of the Schunk Hand, the explained

variance of the two principal components equals 78% while

employing three components is 88%. These results are com-

parable with the total explained variance observed in humans:

84% and 90% for two and three components, respectively,

where 15 joints were recorded [23]. These results are also

comparable with the UB hand IV that possesses 15 DoFs;

the explained variance equals 75% and 90%, for two and

three components, respectively [24].

A. Inverse Kinematics in Synergy Space

As occurred in joint space, in the synergy space, the

configuration of the hand might result in a self-collision.

An inverse kinematics solver is then proposed to gener-

ate collision-free grasps. The solver works directly in the

synergy subspace avoiding to perform operations in higher
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Fig. 5. Grasped objects used to calculate the synergy space. All grasps are categorized in four groups: power, intermediate, precision and open

configurations.

dimensions, e.g., Jacobian computations in joint space. The

final synergy pose is computed iteratively, such that:

si+1 = si +∆s. (3)

In each iteration, the following quadratic programming

problem is solved:

minimize
ṡ

1

2
ṡTJTJṡ+ rTJṡ

subject to Gkṡ ≤ hk

(4)

where J(s) is the Jacobi matrix that maps from the task space

to the synergy space, r is the residual of the task, Gk is the

Jacobi matrix of the k constraint that transforms from the

constraint space to the synergy space and hk is the residual

of the k constraint. If the task is given in the synergy space,

then J equals the identity matrix. We solve this problem

using one of the off-the-shelf quadratic programming solvers.

The Jacobi of the self-collision constraint Jself = ∂d
∂s

is

computed numerically, where d represents the penetration

distance between two colliding links. In order to speed up

the collision checking computation, the meshes of the hand

are modelled as capsules. Because the task is considered in

the cost function and the self-collision as a constraint, in case

of self-collisions, the resulting grasps will approach as much

as possible the target task without incurring in collisions.

Note that the IK solver is only used to correct inferred grasp

configurations (Sec. VI) in case of self-collisions. The motion

interpolation and execution is achieved in joint space.

V. SHAPE SPACE REGISTRATION

In this section we describe the shape space registration

introduced before in [7]. We define a category as a set

of objects with similar usage and extrinsic geometry. Each

object is represented as a point cloud. A category contains a



canonical model C which will be deformed towards the other

objects of the category using CPD. The shape space of the

category is found by calculating the principal components of

these deformations.

For two point sets, Z[t] = (z
[t]
1 , ..., z

[t]
M )T and Z[r] =

(z
[r]
1 , ..., z

[r]
N )T , CPD provides a deformation field that maps

the points in Z[t] into Z[r]. For that, a Gaussian Mixture

Model (GMM) is proposed such that the points in Z[t] are

considered centroids from which the points in Z[r] are drawn.

CPD maximizes the likelihood of the GMM while imposing

constraints in the form of motion coherence on the centroids.

Points are only allowed to move coherently with the motion

of their neighbors. For the non-rigid case, CPD defines the

transformation T from Z[t] to Z[r] as:

T (Z[t],W) = Z[t] +GW (5)

where G is a Gaussian kernel matrix such that gij =

G(z
[t]
i , z

[t]
j ) = e

− 1
2β2 ‖z

[t]
i

−z
[t]
j

‖
, β is a parameter that con-

trols the influence between points and W is a matrix of

coefficients. The matrix W is estimated in a Expectation

Maximization fashion. Please refer to [7] or [10] for further

details.

We set the canonical model C as the deforming point set

Z[t] and each training sample Ti as the reference point set

Z[r], so the transformation Ti of each training sample Ti is

described by:

Ti(C,Wi) = C+GWi. (6)

From Eq. 6 we observe that the deformation is uniquely

described by Wi. Note that C and G depend only on the

canonical model and remain constant for all training samples.

In addition, the dimensionality of Wi ∈ R
M×D equals the

dimensionality of the C ∈ R
M×D, which means that all

matrices Wi can be organized such that elements in one

matrix represent the same in another matrix. This is a key

feature for constructing the shape (latent) space.

For building the shape space, all matrices Wi are ex-

pressed as vectors and normalized to have unit-covariance

and zero-mean. Later, they are concatenated into an design

matrix Y ∈ R
MD×N . We apply the Principle Component

Analysis Expectation Maximization (PCA-EM) on Y to

finally generate the shape space. Thus, the shape of an

instance can be described by a low dimensional x latent

vector. Note that PCA-EM also allows the transformation

from the latent space to the deformation field manifold, W
will denote the function that performs such transformation.

For inferring the shape space of a new instance, we search

in the lower dimensional subspace to find a transformation

which relates the canonical model to the observation at best.

We do this by optimizing a cost function using gradient

descent. Additionally, we incorporate a rigid transformation

into the cost function, in order to account for small global

misalignments. An initial coarse alignment is required be-

cause of the numerous expected local minima. Inspired by

Fig. 6. Shape space registration of a glass used in the training phase for
inferring the postural synergy. Observe how the object is reconstructed.

CPD, we optimize the following cost function:

E(x,θ) =

M∑

m=1

N∑

n=1

P ‖On −Θ(Tm(Cm,W(x)m),θ)‖
2
,

(7)

where Θ is a function that perform the rigid transformation

given parameters θ and P represents the probability or

importance weights between points expressed as:

P =
e

1
2σ2 ||On−Θ(T (Cm,W(x)m),θ)||2

∑M
k=1 e

1
2σ2 ||On−Θ(Tk(Ck,W(x)k),θ)||2

. (8)

After convergence, the resulting vector x characterizes the

shape of the observed instance. The inference of a partially

observed glass is shown in Fig.6.

A. Automatic generation of object models

The number of available object models, i.e., the number

of training samples, might limit the shape registration. Even

with the use of available on-line 3D object databases, the

number of training instances might be small. To overcome

this limitation, we propose an automatic generation of object

instances, in which the canonical model is exposed to several

constrained operations for generating new models. These

transformations include: global scale, x-, y-, z-, xy-, xz-

and yz-scale, xy-, xz- and yz-projective transformations.

Each category defines a set of operations that fits with their

geometry, e.g., the sphere category will only apply a global

scale to its canonical model to generate new instances. The

constraints are applied after all operations are performed in a

consecutive manner. The maximum dimensions, for instance,

make part of these set of constraints. The activation value

of each operation is sampled from a multivariate Gaussian

distribution parametrized considering typical values of the

category’s geometry. If some of the constraints are not met,

then the generated model is rejected. After the generation

process, some samples might still be removed by experts.

For objects with complex geometries that can be divided

into parts, e.g. cylinder and handle for mugs, the operations

can be applied individually to each part.

VI. LEARNING POSTURAL SYNERGIES

We propose a supervised learning approach to learn grasps

according to the shape of the objects. The shape descriptor

is the result of a non-rigid registration that incorporates

category information as detailed in Sec. V. On the other

hand, the grasps are expressed by synergies. Thus, the shape
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Fig. 8. Inference of synergy values. The observed instance is reconstructed by means of the shape space. The resulting shape descriptor is the input of
the synergy learner which outputs the final grasping configurations as a synergy.

space of the category and the synergy space of the robotic

hand have to be built before the training phase starts.

In the training phase, all the objects of the category are

grasped by using the exoskeleton, and their respective syn-

ergy values are calculated. Additionally, the shape descriptors

of the same objects have to be computed using the shape

registration. For simple objects, such as spheres, the models

can be created in simulation and converted into point clouds.

For more complex objects, real point clouds coming from

3D sensors are employed. In this manner, synergy values of

grasped objects belonging to a category are associated with

their respective shape descriptor (Fig. 7).

Note that a single object can be grasped in several com-

plete different manners, i.e., different synergy vectors can

be assigned to a single object shape descriptor. We assume

the synergy values associated to an object to be Gaussian

distributed. Thus, according to the number of synergies,

several Gaussian Processes (GPs) are trained, one for each

synergy. In other words, each shape is mapped to a Gaussian

distribution of grasps or synergy values. All the GPs are

parametrized with the Radial Basis Function kernel.

In the inference phase, given the shape descriptor, the

synergy values are inferred from the mean predictions of

the Gaussian Processes (Fig. 8). As a result of the shape

registration, the observed model is reconstructed.

VII. EXPERIMENTAL RESULTS

We tested our approach on two categories: Spheres and

Glasses. Models were obtained using 3D CAD databases.

Additionally, more object samples were added to the training

set by using the auto-generation method as described in V-

A. Hence, the shape space of the categories was built only

using data from virtual models. The canonical model was

selected by experts. The object models were represented as

point clouds, which were obtained by ray-casting the meshes

from several viewpoints on a tessellated sphere. The resulting

point cloud is down-sampled with a voxel grid filter.

The training sets for the shape space were composed

of 9 spheres and 16 glasses. Interestingly, the principal

components found by our shape space registration coincides

with our expectations. For the spheres, the first (and only)

component performs a global scale operation. For the glasses,

scale operations applied to the diameter, the height or both

were found. This reinforces the applicability of our shape

space registration as a mean to describe object shapes.

For training the synergy learner, i.e., the Gaussian Pro-

cesses Gi that are responsible for inferring the synergy values

from the shape descriptor, several objects were grasped using

the same teleoperation scheme used for the generation of

the synergy space. The resulting joint configurations were

transformed to the synergy space by Eq. 1. The objects

were perceived using the KinectV2 sensor [25]. The raw 3D



Fig. 9. Training instances for the synergy learner. Top: observed point clouds of the objects to be grasped, and bottom: the respective grasped performed
through teleoperation.

Fig. 10. Experiments performed in simulation. All the glasses were presented for the first and were successfully grasped. Note that, even though in some
images a part of the table is displayed, there is no contact between it and the object.

image of the sensor is filtered using a tabletop segmentation

and a voxel grid filter to get a coarser point cloud. The

surfaces of the objects were slightly modified because of

the difficulties of the sensor to perceive glass. The grasped

training objects together with their respective observed point

clouds of the Glass category are shown in Fig. 9. Then, the

shape descriptors were computed through the shape space

registration. Finally, each Gi was trained with the respective

synergy values and shape descriptors.

Initial evaluation of the inferred synergies was performed

in physics-based simulations (Gazebo). We attached the

Schunk hand to a UR10 arm so that the objects can be

reached. The objects were placed in a known pose. The ma-

nipulator approaches the object without making contact and

slowly the hand moves toward the object such that a contact

is guaranteed. Note, nevertheless, that the approaching or

pregrasp arm end-effector pose can be inferred as in previous

Fig. 11. Real robot experiments for the Sphere category. From left to right
all three objects were successfully grasped. The last grasp failed to close
enough the fingers.

works [7], [10]. In the evaluation however these approaches

were not employed in order to isolate and consequently to

evaluate only the goodness of the inferred grasping config-

urations. In the same manner, in order to know the object

category and to estimate the pose, similar pipelines as in our

related works, [8] and [9], can be integrated. Thus, the grasp

planning can be completely autonomous. After the robotic

hand reaches the inferred configuration, the arm tries to lift

the object. If the object does not fall for more than 10 seconds

after the lift motion finishes, the trial is counted as successful.

The testing set was composed of seven glasses, and all of

them were successfully grasped. Fig. 10 shows the grasped

objects.

Real robot experiments were also performed to evaluate

our approach. The robotic hand was controlled using a

position-current cascade controller, For the Sphere category,

four objects of increasing radius were evaluated (Fig. 11).

The objects were presented for the first time to the system.

The input point cloud is also shown to demonstrate that

our method works with partial views. Three of them were

successfully grasped. The grasp that failed is shown at

the rightmost. Qualitatively, the fingers were in the correct

configuration but not close enough to establish the grasp. We

presume this was due to the few (six) training samples of

the synergy learner. Note that with an additional strategy to

close the fingers until contact (current threshold), the grasp

will succeed; however, we wanted to evaluate the inferred

grasps purely. In some grasps, the fingertips do not touch the

object because of the mimic joints, the contact is nevertheless

ensured by the distal or proximal links.

The Glass category was also evaluated with the real robot.

Our approach was able to successfully grasp all eight novel



Fig. 12. Real robot experiments for the Glass category. All the objects were presented for the first time to the system and they were successfully grasped.

objects (Fig. 12). In average the inference time took 10±0.8
seconds, which confirms the applicability of this method in

on-line grasping scenarios.

VIII. CONCLUSION

We have presented an approach for grasping novel objects

belonging to a category based on their extrinsic geometry.

The effectiveness of this method was evaluated in both

simulation and in real robot experiments. The results showed

that the representation of the geometry (coming from the

shape space registration) and the representation of the grasp

configuration (postural synergies) are good options for in-

ferring grasps of novel objects. One of the demonstrated

advantages is the applicability in on-line scenarios.

For extracting postural synergies, the non-linear repre-

sentation, GP-LVM, has shown lower reconstructions errors

compared to its linear counterpart, especially for one and

two dimensions [26]. In the future, we plan to evaluate

the performance of applying GP-LVM instead of PCA.

Additionally, We also plan to evaluate the robustness of this

method with more complex geometries.
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