
Autonomous Dual-Arm Manipulation of Familiar Objects

Dmytro Pavlichenko, Diego Rodriguez, Max Schwarz, Christian Lenz, Arul Selvam Periyasamy

and Sven Behnke

Abstract— Autonomous dual-arm manipulation is an essen-
tial skill to deploy robots in unstructured scenarios. How-
ever, this is a challenging undertaking, particularly in terms
of perception and planning. Unstructured scenarios are full
of objects with different shapes and appearances that have
to be grasped in a very specific manner so they can be
functionally used. In this paper we present an integrated
approach to perform dual-arm pick tasks autonomously. Our
method consists of semantic segmentation, object pose estima-
tion, deformable model registration, grasp planning and arm
trajectory optimization. The entire pipeline can be executed on-
board and is suitable for on-line grasping scenarios. For this,
our approach makes use of accumulated knowledge expressed
as convolutional neural network models and low-dimensional
latent shape spaces. For manipulating objects, we propose a
stochastic trajectory optimization that includes a kinematic
chain closure constraint. Evaluation in simulation and on the
real robot corroborates the feasibility and applicability of the
proposed methods on a task of picking up unknown watering
cans and drills using both arms.

I. INTRODUCTION

Daily-life scenarios are full of objects optimized to fit

anthropometric sizes. Thus, human-like robots are the natural

solution to be used in quotidian environments. In these

scenarios, many objects require two or more grasping af-

fordances in order to be manipulated properly. Such objects

may have complex shapes involving multiple degrees of

freedom (DOF), be partially or completely flexible or simply

be too large and/or heavy for single-handed manipulation, for

instance, moving a table and operating a heavy power drill.

In this paper, we describe an integrated system capable

of performing autonomous dual-arm pick tasks. Such tasks

involve the consecutive accomplishment of several sub-tasks:

object recognition and segmentation, pose estimation, grasp

generation, and arm trajectory planning and optimization.

Each of these subproblems is challenging in unstructured

environments when performed autonomously—due to the

high level of uncertainty coming from noisy or missing

sensory measurements, complexity of the environment, and

modeling imperfection. Thus, designing and combining soft-

ware components which solve these sub-problems into one

integrated pipeline is challenging.

We use semantic segmentation to detect the object. A

segmented point cloud is then passed to the next step of the
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Fig. 1. The Centauro robot performing bimanual grasping of a novel
watering can.

pipeline: deformable model registration and grasp generation.

Since instances of the same object category are similar in

their usage and geometry, we transfer grasping skills to novel

instances based on the typical variations of their shape. Intra-

classes shape variations are accumulated in a learned low-

dimensional latent shape space and are used to infer new

grasping poses.

Finally, we optimize the resulting trajectories of the grasp

planner by applying a modified version of Stochastic Trajec-

tory Optimization for Motion Planning (STOMP) [1], which

we refer to as STOMP-New [2]. We extend our previous

work by adding an additional cost component to preserve the

kinematic chain closure constraint when both hands hold an

object. For typical human-like upper-body robots, the dual-

arm trajectory optimization problem with closure constraint

is a non-trivial task due to curse of dimensionality and

severe workspace constraints for joint valid configurations.

We perform experiments to investigate the influence of the

new constraint on the performance of the algorithm.

The main contribution of this paper is the introduction

of a complete software pipeline capable of performing au-

tonomous dual-arm manipulation. The pipeline was demon-

strated with the Centauro robot [3]. Even though the robot

base is quadruped, the upper-body is anthropomorphic with

a torso, two arms, and a head. We evaluate the capabilities of

the designed system on the dual-arm pick task in simulation

and on the real robot (Fig. 1).

II. RELATED WORK

Robotic systems which perform dual-arm manipulation

are widely used for complex manipulation tasks. Many of

such systems are applied in industrial scenarios. For instance,
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Krüger et al. [4] present a dual arm robot for an assembly

cell. The robot is capable of performing assembly tasks

both in isolation and in cooperation with human workers

in a fenceless setup. The authors use a combination of

online and offline methods to perform the tasks. Similarly,

Tsarouchi et al. [5] allow dual arm robots to perform

tasks, which are usually done manually by human operators

in a automotive assembly plant. Stria et al. [6] describe

a system for autonomous real-time garment folding. The

authors introduce a new polygonal garment model, which

is shown to be applicable to various classes of garment.

However, none of the previously mentioned works present

a complete and generic pipeline, [4] and [5] do Stria et al.

[6] was proposed a very specific and limited use-case. To the

best knowledge of the authors, there are no significant recent

works, which present a complete autonomous robotic system

for dual-arm manipulation. In the following subsections we

briefly review some of the noticeable works for each of the

core components of our pipeline.

A. Semantic Segmentation

The field of semantic segmentation experienced much

progress in recent years due to the availability of large

datasets. Several works showed good performance using

complex models that require extensive training on large data

sets [7], [8]. In contrast, in this work we use a transfer

learning method that focuses on fast training, which greatly

increases the flexibility of the whole system [9].

B. Transferring Grasping Skills

Vahrenkamp et al. [10] transfer grasp poses from a set

of pre-defined grasps based on the RGB-D segmentation of

an object. The authors introduced a transferability measure

which determines an expected success rate of the grasp

transfer. It was shown that there is a correlation between

this measure and the actual grasp success rate. In contrast,

Stouraitis et al. [11] and Hillenbrand and Roa [12] warp

functional grasp poses such that the distance between point

correspondences is minimized. Subsequently the warped

poses are replanned in order to increase the functionality

of the grasp. Those methods can be applied only in off-line

scenarios, though, because of their large execution time. The

method explained here, on the other hand, is suitable for

on-line scenarios.

C. Dual-Arm Motion Planning

Dual-arm motion planning is a challenging task, for which

intensive research has been carried out. Szynkiewicz and

Błaszczyk [13] proposed an optimization-based approach to

path planning for closed-chain robotic systems. The path

planning problem was formulated as a function minimization

problem with equality and inequality constraints in terms of

the joint variables. Vahrenkamp et al. [14] presented two

different approaches for dual-arm planning: J+ and IK-

RRT. Although the first one does not require an inverse

kinematics (IK) solver, IK-RRT was shown to perform better
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Fig. 2. The Centauro robot. The main components of the upper-body are
labeled.

on both single and dual-arm tasks. In contrast, a heuristic-

based approach was proposed by Cohen et al. [15]. The

method relies on the construction of a manipulation lattice

graph and an informative heuristic. Even though the success

of the search depends on the heuristic, the algorithm showed

good performance in comparison with several sampling-

based planners. Byrne et al. [16] proposes a method con-

sisting of goal configuration sampling, subgoal selection

and Artificial Potential Fields (APF) motion planning. It

was shown that the method improves APF performance for

independent and cooperative dual-arm manipulation tasks.

An advantage of our approach to arm trajectory optimization

is the flexibility of the prioritized cost function which can be

extended to support different criteria, which we demonstrate

in this work.

III. SYSTEM OVERVIEW

In this work we test our software pipeline on a centraur-

like robot, developed within the CENTAURO project1. The

robot has a human-like upperbody, which is mounted on the

qudrupedal base. It is equipped with two anthropomorphic

manipulators with 7 DOF each. The right arm possesses a

SVH Schunk hand as an end-effector, while the left arm

is equipped with a Heri hand [17]. The sensor head has

a Velodyne Puck rotating laser scanner with spherical field

of view as well as multiple cameras. In addition, a Kinect

v2 [18] is mounted on the upper part of the chest. The

Centauro robot is depicted in Fig. 2.

In order to perform an autonomous dual-arm pick tasks

we propose the following pipeline (Fig. 3):

• Semantic Segmentation performed by using RGB-D data

from the Kinect v2,

• Pose Estimation on the resulting segmented point cloud,

• non-rigid Shape Registration to obtain grasping poses,

• and finally, Trajectory Optimization to obtain collision-

free trajectories to reach pre-grasp poses.

IV. PERCEPTION

For perceiving the object to be manipulated, a state-of-

the-art semantic segmentation architecture [7, RefineNet]

1https://www.centauro-project.eu/
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Fig. 3. Simplified diagram of the system, showing the information flow between core components. Orange: sensors; Blue: main components of the
pipeline: Purple: external modules.

is trained on synthetic scenes. Those are composed of a

small number of captured background images which are

augmented randomly with inserted objects. This approach

follows Schwarz et al. [9] closely, with the exception that

the inserted object segments are rendered from CAD meshes

using the open-source Blender renderer. The core of the

model consists of four ResNet blocks. After each block the

features become more abstract, but also lose the resolution.

So, the feature maps are upsampled and merged with the

map from the next level, until the end result is at the same

time high-resolution and highly semantic feature map. The

final classification is done by a linear layer followed by a

pixel-wise SoftMax.

At inference time, also following Schwarz et al. [9], we

postprocess the semantic segmentation to find individual

object contours. The dominant object is found using the

pixel count and is extracted from the input image for further

processing.

The 6D pose of the object is estimated as follows: the

translation component is computed by projecting the centroid

of the object contour into 3D by using the depth information;

the orientation component is calculated from the principle

components on the 3D object points of the object and

incorporating prior knowledge of a canonical model defined

for each category. This initial pose estimate is refined by the

shape space registration described in Sec. V-A.

V. MANIPULATION PLANNING

A. Grasp Planning

The grasp planning is a learning-based approach that

exploits the fact that objects similar to each other can be

grasped in a similar way. We define a category as a set

of models with related extrinsic geometries. In the training

phase of the method, a shape (latent) space of the category

is built. This is done by computing the deformation fields

of a canonical model C towards the other models in the

category. This is carried out by using the Coherent Point

Drift (CPD) non-rigid registration method. CPD provides a

dense deformation field, thus new points can be warped even

after the registration. Additionally, the deformation field of

each object in the training set can be expressed in a vector

whose dimensionality equals the number of points times the

number of dimensions of the canonical model. This mean

that the variations in shape from one object to the other
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Fig. 4. Shape space registration on the watering can category. The method
is able to reconstruct a partially occluded instance containing noise.

can be expressed by a vector of the same length across all

training samples. Thus, subspace methods can be straight-

forwardly applied. Finally, the principal components of all

these deformation fields are calculated by using Principal

Component Analysis - Expectation Maximization (PCA-EM)

which define the basis of the shape space.

Once the shape space is constructed, new instances can be

generated by interpolating and extrapolating in the subspace.

In the inference phase, we search in the latent space in a

gradient-descent fashion for an instance which relates to the

observed model at best. We do this by optimizing a non-

linear function that minimizes a weighted point distance.

An additional rigid registration is also incorporated in the

cost function to account for misalignments. Furthermore, the

latent variables are regularized which has shown to provide

numerical stability. Once the descriptor in the latent space is

known, it is transformed back to obtain the deformation field

that best describes the observation. In this process, partially

occluded shapes are reconstructed. The registration is robust

against noise and misalignments to certain extent [19]. Fig. 4

shows a partially observed instance with noise and the

reconstructed object after the shape registration.

The canonical model has associated control poses that

describe the grasping motion. These control poses are warped

using the inferred deformation field. More details about the

shape space registration can be found in [20]. For bimanual

manipulation we associate individual grasping control frames

to each arm and warp them according to the observed

model. Because each of the control poses is independent,

simultaneous arm motions are possible. The control poses

contain the pre-grasp and final grasp poses.

B. Trajectory Optimization

The grasp planner provides pre-grasp poses for both arms,

the trajectory optimizer plans a collision-free trajectory to

reach them. We use STOMP-New, which showed better



performance in previous experiments [2]. It has a cost

function consisting of five cost components: collisions, joint

limits, end-effector orientation constraints, joint torques and

trajectory duration. The input is an initial trajectory Θ which

consists of N keyframes θi ∈ R
J , i ∈ {0, . . . , N−1} in joint

space with J joints. Normally, a naïve linear interpolation

between the given start and goal configurations θstart and

θgoal is used. The start and goal configurations are not

modified during the optimization.

Since the optimization is performed in joint space, extend-

ing the algorithm to use two arms instead of one is straight-

forward. We extended the approach to support multiple end-

effectors (two in the context of this work), so trajectories of

two independent arms are simultaneously optimized.

However, for moving an object grasped with two hands, a

kinematic chain closure constraint has to be satisfied. Thus,

the following term qcc(., .) is added to the cost function:

q(θi,θi+1) =qo(θi,θi+1) + ql(θi,θi+1) + qc(θi,θi+1)

+qd(θi,θi+1) + qt(θi,θi+1) + qcc(θi,θi+1),
(1)

where q(θi,θi+1) is a cost for the transition from the

configuration θi to θi+1. The cost function now consists

out of six terms, where the first five are coming from our

original implementation of STOMP-New. By summing up

costs q(·, ·) of the consecutive pairs of transitions θi,θi+1

of the trajectory Θ, we obtain the total cost.

The new term qcc(·, ·) for the kinematic chain closure

constraint is formulated as:

qcc(θi,θi+1) =
1

2
max

j
qct(θj) +

1

2
max

j
qco(θj), j ∈ {i, . . . , i+ 1}

(2)

where qct(·) penalizes deviations in translation between

the end-effectors along the transition and qco(·) penalizes

deviations of the relative orientation of the end-effectors.

Given two end-effectors, eef1 and eef2, the initial trans-

lation tdesired ∈ R
3 between them is measured in the first

configuration θ0 of the trajectory. Then, for each evaluated

configuration θj , the corresponding translation tj between

eef1 and eef2 is computed. The deviation from the desired

translation is thus defined as: δt = |tdesired − tj |. Finally,

we select the largest component tdev = max
x,y,z

δt|δt = 〈x, y, z〉

and compute the translation cost:

qct(θj) =

{

Cct + Cct · tdev if tdev ≥ tmax

tdev
tmax

, otherwise
, (3)

where tmax is the maximum allowed deviation of the transla-

tion component and Cct ≫ 1 is a predefined constant. Thus,

qct ∈ [0, 1] if the deviation of the translation is below the

allowed maximum and qct ≫ 1 otherwise.

Similarly, we define the term qco(·) for penalizing de-

viations in the orientation. The initial relative orienta-

tion odesired ∈ R
3 between eef1 and eef2 is calcu-

lated in the first configuration θ0. For each configuration

θj , the corresponding relative orientation oj is measured.

The deviation from the desired orientation is computed

as: δo = |odesired − oj |. We select the largest component

(a) (b)

Fig. 5. Comparison of the trajectories obtained with/without kinematic
chain closure constraint. Red: start configuration; Yellow: goal configura-
tion; Green: paths of the end-effectors. (a) Closure constraint enabled. The
robot has to follow the kinematically difficult path. (b) Closure constraint
disabled. The arms can be moved easily to the sides of the robot.

odev = max
r,p,y

δo|δo = 〈r, p, y〉 and compute the orientation

cost:

qco(θj) =

{

Cco + Cco · odev if odev ≥ omax

odev
omax

, otherwise
, (4)

where omax is the maximum allowed deviation of the ori-

entation component and Cco ≫ 1 is a predefined constant.

Extending the algorithm with this constraint allows to op-

timize trajectories, maintaining the kinematic chain closure

constraint, and, hence, plan trajectories for moving objects

which are held with two hands.

VI. EVALUATION

First, we present the evaluation of the arm trajectory

optimization alone. In the latter subsection, we evaluate the

performance of the developed pipeline by picking a watering

can with two hands in simulation. Finally, we present the

experiments performed with the real robot: dual-arm picking

of watering can and drill.

A. Trajectory Optimization

Experiments were performed using the gazebo simulator

with the Centauro robot. Both 7 DOF arms were used si-

multaneously, resulting in a total of 14 DOF. We performed

the experiments on an Intel Core i7-6700HQ CPU, 16 GB of

RAM, 64 bit Kubuntu 16.04 with 4.13.0-45 kernel using ROS

Kinetic. The algorithm ran on a single core with 2.60 GHz.

We investigate how the introduction of the close chain

kinematic constraint influences the performance of the al-

gorithm. We compared the performance of the algorithm

with and without the constraint in an obstacle-free scenario,

where the robot had to lift both arms upwards (Fig. 5). We

solved the problem 50 times with enabled/disabled closure

constraint, each. The time limit for the algorithm was set to

10 s. The obtained runtimes and success rates are shown in

the Table I.

When the algorithm performs optimization without closure

constraint, the runtime is relatively short with a very small

standard deviation and 100% success rate. On the other

hand, with enabled closure constraint, the runtime grew

significantly by 1267% and the success rate dropped to 83%.



Fig. 6. The Centauro robot lifting a long bulky bar. As the bar is laying on the wrists unsecured, not only the closure constraint has to be preserved, but
also the orientation of the end-effectors has to remain the same during the whole trajectory.

TABLE I

COMPARISON OF THE AVERAGE RUNTIME AND SUCCESS RATE

WITH/WITHOUT CLOSURE CONSTRAINT.

Without closure constraint With closure constraint

Runtime [s] 0.34±0.01 4.31±2.42

Success rate 100% 83%

Runtime growth — 1267%

This happens because the space of valid configurations is

largely reduced when enforcing the closure constraint and

the sampling-based algorithm struggles to converge to a valid

solution. This also explains the large standard deviation for

the case when the closure constraint is enabled. In Fig. 7 the

error between desired and actual pose of the end-effectors,

observed during one of those trajectories, is shown.

We also demonstrate the optimization with closure con-

straints enabled for a practical task. The robot has a long

bulky bar laying on its wrists (Fig. 6 (a)) and the task is to

lift it up. Since the bar is not secured in any way, it is not

only necessary to preserve the closure constraint, but also to

maintain the exact orientation of the end-effectors along the

whole trajectory (Fig. 6).

B. Dual-Arm Picking in Simulation

We evaluate the proposed system by picking a watering

can with two arms in a functional way, i.e., that the robot

can afterwards use it. The experiments were performed in

the Gazebo simulator with the Centauro robot. To speed up

the simulation, only the upper-body was actuated. Moreover,

Fig. 7. Error between desired and observed end-effectors relative pose for
trajectories shown in Fig. 5.

TABLE II

SUCCESS RATE OF PICKING WATERING CANS FROM THE TEST SET AND

PERFORMANCE OF THE TRAJECTORY OPTIMIZATION METHOD.

Success rate
(attempts to solve)

Traj. opt. runtime [s]
Success rate

Can 1 75% (4)
0.9±0.24

100%
Can 2 100% (5)
Can 3 60% (3)

the collision model of the fingers were modeled as primitive

geometries: capsules and boxes. The laser scanner and the

RGBD sensor were also incorporated in the simulation. We

trained the semantic segmentation model using synthetic

data. We used 8 CAD models of the watering can to render

400 frames. Additional training data with semantic labeling

is obtained by placing the frames onto multiple backgrounds

and generating the ground truth labels.

For constructing the shape space we define a training

set composed of the same watering cans used to train the

semantic segmentation model. The test set consisted out of

three different watering cans. For the registration, the objects

were represented as point clouds generated by ray-casting

operations on meshes obtained from 3D databases. The shape

space contained 8 principal components.

The task of the experiment is to grasp and to lift upwards

all three cans from the test set. Each trial starts with the robot

standing in front of the table, on which the watering can is

placed. The arms of the robot are located below the surface of

the table, so that a direct approach (straight line) to the object

will result in a collision. Each can had to be successfully

grasped three times with different orientation so that the

Fig. 8. Dual-arm trajectory for reaching pre-grasp poses. Yellow: initial
pose; Black and grey: goal pose; Green: paths of the end-effectors. The
arms have to retract back in order to avoid collisions with the table.
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Fig. 9. Centauro performing a dual-arm functional grasp of the watering can in simulation. (a) Initial pose. (b) - (c) Reaching the pre-grasp pose. (d)

Can is grasped. (e) Can is lifted.

(a) (b) (c)

Fig. 10. Three cans from the test set successfully grasped.(a) - (c) Can 1,
Can 2, Can 3, respectively. Note that all the cans have different geometry.

task is considered solved. In this manner, the can is rotated

around its Z-axis for +0.25, 0 and -0.25 radians. In order to

evaluate the performance of the non-rigid registration against

misalignments, noise in range ±0.2 radians was added to the

yaw component of the 6D pose. The trials were performed

until each of the three grasps succeeded once. Obtained

success rates and measured average runtime of the trajectory

optimization method are presented in Table II.

Our system solved the task Can 2 with no issues, whereas

Can 1 and especially Can 3 were more difficult. For Can

1, there was a minor misalignment of the grasp pose for

the right hand, which did not allow us to grasp the can

successfully. Can 3 had the most distinctive appearance

among the cans in our dataset, that is why it caused the

most difficulties. During the experiment we often had to run

the non-rigid registration several times because it was stuck

in local minima. STOMP-New showed consistent success

rate and satisfactory runtime of around one second. Typical

trajectories for reaching pre-grasp poses are shown in Fig. 8.

The Centauro robot performing the experiment with Can 2

is depicted in Fig. 9. All three cans forming our test set,

successfully grasped, are shown in Fig 10.

C. Real-Robot Experiments

On the real Centauro robot we performed the same ex-

periment, as described above for a single orientation of the

watering can. The pipeline was executed five times in attempt

to grasp the can with two hands in a functional way. The

method succeeded four times out of five. We measured the

average runtime for each component of the system as well

as the success rate (Table III).

We do not provide the success rate for the pose estimation,

since the ground truth was not available. Consequetly, it

is hard to assess the success rate of grasp generation as it

TABLE III

AVERAGE RUNTIME AND SUCCESS RATE OF EACH COMPONENT OF THE

PIPELINE.

Component Runtime [s] Success rate

Semantic segmentation 0.74 100%

Pose estimation 0.12 —

Grasp generation 4.51 ± 0.69 —

Trajectory optimization 0.96 ± 0.29 100%

Complete pipeline 6.27 ± 0.98 80%

may fail due to the previous step of the pipeline. Trajectory

optimization method shown a consistent average runtime of

around 1 s and a 100% success rate. Overall, the pipeline took

around 6 s on average with a success rate of 80%. One of

the attempts failed on the stage of grasping the can, because

the approaching (goal) pose of the trajectory optimizer was

not close enough to the object which resulted in a collision

between the hand and the watering can while reaching the

pregrasp pose. Consequently, the object moved away from

the estimated pose. This suggests that the approaching pose

given to the trajectory optimizer should be closer to the

object.

In addition to the watering can, the Centauro robot also

grasped a two-handed drill to demonstrate that our pipeline

can be applied to different types of objects. The process of

grasping and lifting both tools is shown in Fig 11. Footages

of the experiments can be found online2.

VII. CONCLUSIONS

We have developed an integrated approach for autonomous

dual-arm pick tasks of unknown objects of a know category.

The manipulation pipeline starts with the perception mod-

ules, which are capable of segmenting the object of interest.

Given the segmented mesh, we utilize a non-rigid registration

method in order to transfer grasps within an object category

to the observed novel instance. Finally, we extended our

previous work on STOMP in order to optimize dual-arm

trajectories with kinematic chain closure constraint.

We performed a set of experiments in simulation and with

the real robot to evaluate the integrated system. The experi-

ment on trajectory optimization showed that our method can

solve the tasks of planning for two arms reliably and fast.

However, with introduction of the closure constraint, the

2Experiment video: http://www.ais.uni-bonn.de/videos/

Humanoids_2018_Bimanual_Manipulation
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Fig. 11. Centauro performing a dual-arm functional grasp of the watering can and a two-handed drill. (a) Initial pose. (b) - (c) Reaching the pre-grasp
pose. (d) Can/drill is grasped. (e) Can/drill is lifted.

runtime grew significantly. Nevertheless, we demonstrated

that the method is capable of producing feasible trajectories

even under multiple complex constraints. In the simulation

experiment, the robot successfully grasped three previously

unseen watering cans with two hands from different poses.

On real-robot experiments, our pipeline successfully

grasped and lifted several times a watering can and a

two-handed drill. These experiments demonstrated that our

system can be successfully applied to solve tasks in the real

world in an on-line fashion.
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