
Adaptive Tool-Use Strategies for Anthropomorphic Service Robots

Jörg Stückler and Sven Behnke

Abstract— Tool-use is one of the most complex object manip-
ulation abilities of humans and robots. In this paper, we present
strategies for implementing tool-use with anthropomorphic
service robots. Based on the observation that human tools are
specifically designed for the human body, we augment tools with
handles that adapt the tool to the specifics of our robot. We
develop methods for perceiving the tools and their end-effectors
in RGB-D images. We also describe our control approaches
used in our tool-use examples. We demonstrate tool-use by
our service robot publicly at RoboCup@Home competitions,
and report on the lessons learned through implementing such
complex manipulation skills for our robot.

I. INTRODUCTION

The use of tools is a complex object manipulation skill that
necessitates a variety of perception as well as control capabil-
ities. In this work, we detail our approaches to implementing
several examples of tool-use with a mobile manipulation
robot.

In our working definition of robotic tool-use, the robot
manipulates an environmental object, i.e. the tool, to change
the state of another object. To successfully operate the tool,
the robot needs to know the pose of the tool as well as
the pose of the affected object. It has to utilize the tool
through adequate control strategies. The affected object can
be attached to the environment or the robot can hold it with
its other hand.

The range of tool-use tasks that can be handled by a robot
clearly depends on the specifics of the robot hardware. Its
kinematic structure defines the workspace of one or several
end-effectors—and also the manipulation capabilities of the
end-effectors which could be, e.g., parallel grippers or highly
articulated hands.

The sensor equipment of a robot has additional significant
impact on tool-use capabilities. For controlling the forces and
torques exerted on objects, touch or force-torque sensors can
be used to provide feedback. In order to pick up the tool and
to perceive how it is positioned relative to the robot, visual
sensors are useful.

In this work, we use a personal service robot with an
anthropomorphic upper body. Our robot Cosero is equipped
with two 7 degree-of-freedom (DoF) arms. The grippers
are built from Festo FinGripper fingers that can be opened
and closed on objects using rotary joints. The light-weight
actuators in the arms and the grippers support position
control. We perceive tools using an RGB-D camera mounted
on the robot head.
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Fig. 1. Opening a bottle with a bottle opener tool. Our robot Cosero
perceives the cap of the bottle and the tip of the tool (right).

For our robot, we implemented several examples of tool-
use that integrate perception and control. Tools used by
humans are specifically designed for the human body. Hence,
we also propose to adapt the tools themselves to the robot
body by equipping them with special handles that can
provide the necessary stability for the grasp. We propose
a variety of RGB-D perception approaches that allow for
segmenting tools, estimating their tips, and tracking their
pose. We also establish shape correspondences between
similar tools to transfer tool-use skills from one tool to
another.

II. RELATED WORK

In industrial robotics, robot end-effectors are specialized
tools for performing tasks such as picking, welding, painting,
etc. Typically, the motion of the robot is carefully scripted,
and repeatability is based on the movement precision of the
mechanism. Adaptation to small perturbations is often costly
to implement, e.g., to treat material variations or to control
the quality of a weld. Special sensors and perception methods
are used that need to be tightly integrated with the motion
control of the robot. The tool is specifically designed and
rigidly attached to the robot in order to precisely know the
tool position on the robot. Tool changers allow the robot
to exchange the tool during a task, but such tool changers
are carefully designed to provide the precision of a rigidly
attached tool.

In our scenario, such a precise attachment is not possible.
We aim at a multi-purpose robot that can work on a variety
of tasks with its arms and grippers that not only involve
tool-use. The resulting imprecision needs to be handled
through perception and control of the tool. Furthermore,
the workspace is not limited at a single place, but the
tasks require mobility between locations, e.g., in a home

behnke
Schreibmaschine
In Proceedings of 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, Spain, November 2014.



environment. Hence, the robot also needs perception and
control methods to align towards the objects that are relevant
to a task.

Kemp and Edsinger [1] observe that many tools used by
humans share the common feature that the tool end-effector
is at the tip of a prominent, elongated structure. The authors
detect and estimate the tool tip location relative to the robot
gripper. The robot moves the tool in its hand in front of
its RGB camera. Initial hypotheses about the location of the
tool-tip are found in edges with largest optical flow. The
hypotheses are accumulated in a multi-scale voting process
to find position and extent of the tool tip. To use the tool, the
robot kinematics is extended with the estimated 3D location
of the tool tip, and the tip is visually servoed. The authors
demonstrate that the tip of tools such as bottles or feather
dusters can be estimated and that the tips can be controlled
in the image. Our work also includes tool tip perception
and control and integrates these into tool-use behavior. For
grasping tools in a purposeful way, we propose to perceive
the tools in RGB-D images using 3D models of the objects.

Kresse et al. [2] propose RGB-D perception approaches
that analyze the position, orientation, and other geometric
features of more complex tools such as a spatula or a spoon.
Such features may include the edges of a spatula or the
lowest position and upward orientation of the concavity in
a spoon. Kinematic controllers align these features with the
affected object. In addition, the impact of the tool with the
affected object is detected. To this end, observation models
are trained from time-series data of joint-torque sensors in
the robot fingers. Kresse et al. report on results for visual
inspection, impact estimation, and tool alignment. Grasping
the tool or how to adapt the tool to the robot kinematics is
not detailed as in our work.

Within the DARPA ARM program, Hoffmann et al. [3]
developed tool-use of a drill and a pencil. For compensating
the uncertain grasp posture of the tool in the hand of the
robot, their approach visually inspects the tool to find its
tip. The visual perception method segments the tool coarsely
from the background in 3D using dense stereo-reconstructed
depth. The segmentation is refined based on contours in the
stereo images using a level-set method. The farthest point
within the segment from the robot hand is interpreted as the
tool tip. For using a pencil, a model of the tactile feedback
desired during the task is trained. The robot is controlled
to reproduce the feedback. While we also devise means to
detect the tip of tools, we investigate perception for grasping
tools and bimanual tool-use strategies.

Some approaches also learn the function of tools, i.e. their
affordances. Nishide et al. [4] link the visual appearance of
a tool with the observed dynamics during tool motion using
recurrent neural networks. The trained models are used to
recognize tool function and to reproduce motions with the
tools. The tools in this work are I-, L-, and T-shaped hooks.
Stoytchev [5] considers similar tools and learns their effect
on objects through exploration. The effect of actions for each
tool is maintained in affordance tables. Once trained, the
robot is demonstrated to extend its reach with the tools to

Fig. 2. The cognitive service robot Cosero. Left: Cosero hands over an
object during RoboCup German Open 2014. Right: Cosero grasps a bottle.

move an object on a surface. Tikhanoff et al. [6] also let
a humanoid iCub robot move tools in front of its cameras
to perceive the tool tip. The robot learns the effects of the
tools on objects through exploration. In this work, also I-,
L-, and T-shaped tools are employed. Instead of the learning
of affordances, our work focusses on perception and control
strategies to implement the use of complex tools in single
and dual-arm tasks.

Our approach to tool-use skill transfer can be seen as a
variant of learning from demonstration. Recently, Schulman
et al. [7] proposed an approach in which motion trajectories
are transferred between shape variants of objects. They
primarily demonstrate tying knots in rope and suturing, but
also show examples for folding shirts, picking up plates,
and opening a bottle. Their non-rigid registration method
is a variant of the thin plate spline robust point matching
(TPS-RPM) algorithm. We develop an efficient deformable
registration method based on the coherent point drift method
(CPD [8]) to align RGB-D images efficiently and accurately.
We demonstrate bimanual tool-use, and propose to select tool
end-effectors as reference frames for the example trajectory
where it is appropriate. Grasp poses and tool end-effector
frames are transformed between example and new object.

III. SYSTEM OVERVIEW

A. Robot Hardware

We designed our service robot Cosero [9] to cover a wide
range of tasks in indoor environments (see Fig. 2). It has been
equipped with a flexible torso and two anthropomorphic arms
that provide human-like reach. A linear actuator moves the
whole upper body up and down, allowing the robot to grasp
objects from a wide range of heights—even from the floor.
Its anthropomorphic upper body is mounted on a base with
narrow footprint and omnidirectional driving capabilities. By
this, the robot can maneuver through narrow passages that
are typically found in indoor environments, and it is not
limited in its mobile manipulation capabilities by holonomic
constraints. The human-like appearance of our robots also
supports intuitive interaction of human users with the robot.

The grippers of our robot consist of two pairs of Festo
FinGripper fingers on rotary joints (see Fig. 2). The fingers
are made from lightweight, deformable plastics material.
When the gripper is closed on an object, the bionic fin ray
structure adapts the finger shape to the object surface. By



Fig. 3. Object pose tracking. We train multi-view 3D models of objects
using multi-resolution surfel maps. We estimate the pose of objects in RGB-
D images through real-time registration towards the model. We apply object
tracking, for instance, to track the model (upper right) of a watering can for
approaching and grasping it.

this, the contact surface between fingers and object increases
significantly, compared to a rigid mechanical structure. A
thin layer of anti-skidding material on the fingers establishes
a robust grip on objects. Having two fingers on each side
of the gripper supports grasps stable for torques in the
direction of the fingers and for forces in the direction between
opponent fingers.

For perceiving its environment, we equipped the robot with
multimodal sensors. Multiple laser scanners on the ground,
on top of the mobile base, and in the torso measure objects,
persons, or obstacles for navigation purposes. We use a
Microsoft Kinect RGB-D camera in the head to perceive
objects and persons in 3D.

B. Mobile Manipulation

1) Motion Control: We implemented omnidirectional
driving for the mobile base of our robots. We control the
7-DoF arms using differential inverse kinematics with redun-
dancy resolution. The arms also support compliant control in
task-space [10].

2) Navigation: Our robots navigate in indoor environ-
ments on horizontal surfaces using a 2D laser scanner on
the mobile base as main sensor. We acquire 2D occupancy
maps of the environment using simultaneous localization and
mapping (gMapping, [11]). The robots localize in these 2D
maps using Monte Carlo localization [12]. They navigate to
goal poses by planning obstacle-free paths in the environ-
ment map, extracting waypoints, and following them. For
obstacle-free driving, we incorporate 3D measurements of
the laser range sensors in ego-centric obstacle grid maps.
Efficient local planning finds steering commands in these
maps that implement safe driving on planned paths.

3) Scene Segmentation: A basic building block for mobile
manipulation is scene segmentation into support planes and
objects on these surfaces. Our plane segmentation algorithm
rapidly estimates normals from the depth images of the RGB-
D camera and fits a horizontal plane through the point cloud
using these normals through RANSAC. All points above
the plane are classified as potentially belonging to objects.
The remaining points are segmented by Euclidean distance,
subsuming all points within the same segment that are within
a range threshold.

Fig. 4. We estimate shape correspondences (left) and local transformations
(right) between objects using deformable registration.

Fig. 5. Tool Adapters. We designed special adapters for tools to establish
stable grasps that resist forces and torques in any direction. Left: Adapter.
Center: Gripper design. Right: Grasp on the bottle opener.

4) 6-DoF Object Tracking: We track objects using multi-
resolution surfel maps (MRSMaps, [13]). Fig. 3 illustrates
our tracking approach with an example.

In MRSMaps, RGB-D measurements are represented in
an octree in which the voxels store the Gaussian distribution
of the points falling into the voxel. In addition to shape,
we also model the distribution of color. The maps allow
for storing RGB-D measurements from multiple view points
which enables the modeling of objects. Such object models
are acquired with a view-based SLAM approach.

Our MRSMaps also come with an efficient RGB-D regis-
tration method which we use for tracking the pose of objects
in RGB-D images. The pose of the tracker can be initialized
to a rough estimate using our planar segmentation approach.

5) Deformable Registration: We propose a multi-
resolution extension to the coherent point drift (CPD [8])
method to efficiently perform deformable registration be-
tween dense RGB-D point clouds (see Fig. 4, left). Instead
of processing the dense point clouds of the RGB-D im-
ages directly with CPD, we utilize MRSMaps to perform
deformable registration on a compressed measurement repre-
sentation. The method recovers a smooth displacement field
which maps the surface points between both point clouds. It
can be used to establish shape correspondences between a
partial view on an object in a current image and a MRSMap
object model. From the displacement field, the local frame
transformation (i.e., 6-DoF rotation and translation) at a point
on the deformed surface can be estimated. By this, we can
determine, how poses such as grasps or tool end-effectors
change by the deformation between objects. Further details
on our deformable registration method can be found in [14].

IV. TOOL-USE STRATEGIES

A. Tool Adapters

For a firm grip on tools, we designed 3D-printed tool
adapters matching the four-finger grippers of Cosero (Fig. 5).



Fig. 6. Grasping sausages from a barbecue with a pair of tongs. Our robot
Cosero perceives position and orientation of the sausages in RGB-D images.

When the gripper closes on the adapter, the fingers bend
around the shape of the adapter and establish form closure.
The ridge on the center of the adapter fits into the space
between the fingers. It fixates the adapter for exerting torques
in pitch direction. For some tools such as pairs of tongs,
the opening of the gripper is also used to operate the tool.
To create form closure with the fingers at various opening
angles, the adapters have flat springs for each finger.

B. Using a Pair of Tongs

When grasping sausages from a barbecue, the robot should
not directly grasp with its grippers. Instead it should use an
adequate tool to keep the food clean and to keep the grippers
clear of the hot barbecue (see Fig. 6).

We segment the sausages from a plate or the barbecue
using plane segmentation and adapt the grasping motion
to the position and orientation of the sausages. We exploit
that the height of the barbecue or the plates on the plane
is known and discard points of these support objects. The
remaining points are clustered by Euclidean distance. We
then estimate the principal axes of the segments and compare
length (first principal axis) and width (second principal axis)
with the expected size of the sausages. If these measures are
within specific ranges, the segment is classified as a sausage.
Position and orientation of the sausage are directly obtained
from the mean and principal axes of the segment points.

In this task, the perception of the tip of the tongs is not
required. We observed that the passive positioning through
the interface between the tool adapter and the robot gripper
provides sufficient accuracy.

A parametrized motion primitive uses position and orien-
tation of the closest sausage to pick it up with the tongs.
The robot holds the tool above the table, and the objects on
the table at all times during the demonstrations, such that
collisions with these objects are avoided.

Further steps are necessary to fully implement the demon-
stration of picking up sausages from one location such as
the plate and placing it at another one, e.g., on the barbecue.
Before approaching the objects in an accurate way, the robot
drives roughly in front of the known location of the objects.
This is either implemented using navigation in an allocentric
map of the environment, or by relative driving from one
object to the next along the table.

For accurate alignment, the robot detects the barbecue or
the plate that it needs to approach using plane segmentation

Fig. 7. Sweeping dust using a pan and a brush. Our robot Cosero estimates
the pose of the dust pan and the brush to grasp them (left). It pours the
content of the dust pan into a dust bin (right).

in the RGB-D camera. During the alignment it tracks the
objects in real-time, for which we implemented two alterna-
tive methods. The first method is to track the mean position
of the object segments. We also support the tracking of the
6-DoF pose of objects using multi-resolution surfel maps, if
the robot needs to orient itself directly towards the object.

C. Sweeping Up Dust

For sweeping up dust with a brush and a pan, the robot
manipulates two tools simultaneously. Both objects have to
be moved in a purposeful way to sweep the dust onto the
pan: the pan is being moved under the dust, while the brush
sweeps the dust. For grasping the tools, the robot approaches
dust brush and pan on a horizontal surface. It registers
MRSMap object models to the segments of the objects and
executes predefined grasps relative to the objects. Before
sweeping the dust up, we position the mobile base towards
the dust, such that it is reachable with the tools. The heap
of dust could be tracked in various ways. We implemented
tracking with a 2D laser range scanner that is mounted on
our robot shortly above the floor. As soon as the dust is
at a predefined location, both arms perform a synchronized
sweeping motion.

D. Bottle Opening

Opening a capped bottle with a bottle-opening tool is
challenging, since the opening tool must be accurately placed
onto the cap. Simple open-loop control is not feasible for
this task due to several sources of imprecisions. Firstly, an
exact calibration between the robot sensors and end effector
may not be known. Also, the pose of the tool in the gripper
or the manipulated object cannot be assumed to be known
precisely. We therefore implemented perception of the tips of
the tool and the manipulated object using the head-mounted
RGB-D camera (see Fig. 1). During manipulation, our robot
looks at the tool and the manipulated object, segments the
objects from the surrounding using our efficient segmentation
method (see Sec. III-B.3), and detects the endings of the
objects in the segments.

We detect the tip of the opening tool in-hand by segment-
ing points in the depth image from the planar background.
We select the segment closest to the position of the robot
gripper and track for the farthest position from the gripper
along its forward direction. The cap of the bottle in the other



Fig. 8. Tool-use skill transfer. The skill is described by grasp poses and
motions of the tool end-effector relative to the affected object. Once these
poses are known for a new instance of a tool, the skill can be transferred.

gripper is found in a similar way: within the segment closest
to the gripper, we search for the highest point. Since we know
the size of the opening tool and the bottle, we can verify the
found positions using position intervals. This also allows for
identifying, if the bottle-opening motion succeeded, or if the
bottle has already been opened before.

For opening the bottle, the robot first grasps the bottle
and the tool with its both arms. It holds both objects close
to each other above a horizontal surface. In order to stabilize
the motion of the bottle, it touches the horizontal surface with
its bottom. The robot perceives the tip of the tool and the
cap of the bottle and determines the final approach motion
from the difference between the detected positions.

E. Watering Plants

For watering a plant with a watering can, our robot
controls the motion of the can with two arms (see Fig. 9).
For grasping a previously known watering can, the robot
approaches the can using 6-DoF object tracking and grasps
the can at predefined poses. Water is poured into a plant by
moving the tool end-effector in a predetermined way through
synchronized motion of the arms.

Preprogramming such a tool-use skill for every shape
variation of watering cans is not desirable. We propose to
use our deformable registration method to transfer the skill
for a specific shape instance to different cans. The skill of
using the watering can is described by grasp poses relative
to the object surface and motion trajectories of the can spout
(see Fig. 8). To transfer this skill to a new variant of cans,
we segment the new can from its support plane and establish
shape correspondences to the object model of the known
can. We estimate local frame transformations of the grasp
poses and the tool end-effector of the known can towards
the observed can. The robot executes the transformed grasps
to pick up the new can. For watering a plant, the robot moves
the can end-effector frame relative to the plant in the same
way as for the modeled can. This constrains the motion of the
arms to keep the relative position of the transformed grasp
poses to the transformed tool end-effector pose.

V. RESULTS

We publicly demonstrated tool-use skill transfer based
on our deformable registration approach during the Open
Challenge at RoboCup 2013 in Eindhoven, Netherlands. The
jury chose one of two unknown cans, while the skill was

pretrained for a third instance of cans. Cosero successfully
transferred the tool-use skill and executed it.

The grasping of sausages with a pair of tongs has been
publicly demonstrated during the finals of RoboCup 2013 in
Eindhoven, Netherlands, and RoboCup German Open 2014
in Magdeburg, Germany. In Eindhoven, Cosero received the
tongs through object hand-over from a team member. The
robot coarsely drove behind the barbecue that was placed on
a table by navigating in the environment map. It tracked the
6-DoF pose of the barbecue using MRSMaps to accurately
position itself relative to the barbecue. Cosero drove to the
right along the table to approach a plate with two raw
sausages. It picked one of the sausages with the tongs
(Sec. IV-B) and drove back to the barbecue, on which it
placed the sausages with the tool.

While the sausage was grilled, Cosero handed the tongs
back to fetch and open a beer. It drove to a shelf with the
bottle opener tool and grasped it. With the tool in hand, it
drove to the place of the beer bottle and grasped it with the
other hand from a table. It approached the table and executed
the bottle opening skill described in Sec. IV-D. Note that the
bottle has been used before such that the cap was slightly
loosened but still locked onto the bottle. It placed the bottle
opener on the table and delivered the beer to a jury member.
Afterwards, it received the tongs again. Cosero drove back
to the barbecue to grasp the sausage and to place it on a
clean plate which was placed left of the barbecue. This part
of the demonstration could not be finished within the 10 min
duration allotted to the finals.

In the finals of German Open 2014, Cosero repeated the
use of the tongs and the bottle opener. This time, we put
the sausage on the grill in advance such that the task of
Cosero was to pick it from the barbecue and place it on a
plate which was located on a tray. The sausage was brought
to one of the jury members on the tray. Before picking the
sausage from the barbecue and delivering it, Cosero opened
a bottle of beer with the bottle opener tool, which it also
kindly delivered. Opening the bottle was also part of the
Open Challenge demonstration at RoboCup 2014 in Brazil.

In the finals at RoboCup 2014, Cosero also performed
the sweeping of dust. It grasped a dust pan and a brush in
order to clean some dirt from the floor using the approach in
Sec. IV-C. Unfortunately, the dirt detection failed. The robot
executed the cleaning motion and continued by pouring out
the contents of the dust pan into the dust bin. It placed the
tools back on a table and continued with the next part of the
demonstration.

The demonstrations convinced the juries which consisted
of team leaders, members of the executive committee of
the league, and representatives of the media, science, and
industry. Our team won the competitions of RoboCup 2013
in Eindhoven and German Open 2014 in Magdeburg, con-
tinuing our series of first places at international and German
RoboCup competitions since 2011.



Fig. 9. Watering a plant. We specified bimanual grasp poses, the can end-effector, and the motion of the end-effector for watering a plant with a specific
instance of cans. To transfer this skill to new cans, Cosero uses deformable registration to efficiently align the can in its current RGB-D image with the
known can. Based on the shape correspondences, Cosero transfers grasp poses and tool end-effector motion to the new can.

VI. CONCLUSIONS AND LESSONS LEARNED
In this paper, we detailed our approaches to tool-use by

an anthropomorphic service robot. We developed various per-
ception and control methods to implement several examples
of tool-use.

We proposed perception methods that we use as building
blocks for tool-use. We segment scenes at high frame-rate
into support surfaces and objects. To pick up tools with
specific grasp poses, we align RGB-D measurements on the
object with a 3D model using multi-resolution surfel maps
(MRSMaps). Within the depth image, we find the tip of a
tool by exploiting prior knowledge how the tool was grasped.
Through deformable registration of MRSMaps, we transfer
tool-use skills to differently shaped instances of the same
category of tools.

Our perception methods can be flexibly used in a variety of
tool-use scenarios. Clearly, there is plenty of research ahead
to eventually reach human-level performance in this task.
Perception clearly depends on the sensors used. The RGB-D
sensors used so far are limited in measurement quality with
respect to depth noise, resolution, and quantization, which
influences the type of perceivable tools. Touch and force-
torque sensing would provide complementary information
on the interface between the robot and the tool, or the tool
and the affected object. Such sensing would also allow for
capturing dynamical properties of the task. The modeling and
perception of physical properties such as weight, stability,
friction, and elasticities would increase the range of possible
tool-use tasks. While not necessary for many tool-use tasks,
the perception of the internal state of objects, e.g., the fluid
level in a bottle, can also be useful.

An interesting insight is that robots can be supplied with
tools that are designed for their robot body instead of
the human one. Clearly, the difference between the tools
may disappear with the approximation of robot hardware
capabilities to those of the human body. One aspect that
needs to be considered in more detail in future work is how
to bring the tool into a purposeful posture within the gripper.
To this end, regrasping strategies could be tightly integrated
with the perception of the tool in-hand.

An open research question is how to best describe tool-
use skills and objects, such that this knowledge can be used
as prior experience for the use of different types of tools.

Closely related also is how robots can learn and improve
such tool-use knowledge from own experience.
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