
Robust Sensor Fusion for Robot Attitude Estimation

Philipp Allgeuer and Sven Behnke

Abstract— Knowledge of how a body is oriented relative to
the world is frequently invaluable information in the field of
robotics. An attitude estimator that fuses 3-axis gyroscope,
accelerometer and magnetometer data into a quaternion orien-
tation estimate is presented in this paper. The concept of fused
yaw, used by the estimator, is also introduced. The estimator,
a nonlinear complementary filter at heart, is designed to be
uniformly robust and stable—independent of the absolute ori-
entation of the body—and has been implemented and released
as a cross-platform open source C++ library. Extensions to
the estimator, such as quick learning and the ability to deal
dynamically with cases of reduced sensory information, are
also presented.

I. INTRODUCTION

Attitude estimation is the task of constructing an estimate
of the full 3D orientation of a body relative to some global
fixed frame, based on a finite history of sensor measurements.
The body in question is often a robot, but in total generality it
can correspond to any object that is equipped with the sensors
necessary for the estimation task. With the advent of low
cost inertial sensors—particularly those based on microelec-
tromechanical systems (MEMS)—the field of application for
attitude estimation techniques has greatly widened, extending
into the field of low cost robotics. With low cost sensors
and processors however, it is crucial that any estimation
algorithms are able to run computationally efficiently, and are
able to function with high noise inputs without excessively
sacrificing estimator response. In addition to low estimator
latency, orientation-independent mathematical and numerical
stability is also desirable.

An attitude estimator that aims to fulfil the aforementioned
criteria is presented in this paper. The estimator has been
implemented as a generic portable C++ library, and is freely
available online [1]. All of the algorithms and cases discussed
in this paper are implemented in the release, and have been
tested both in simulation and on a real humanoid platform,
the NimbRo-OP [2], developed by the University of Bonn.

Much effort has been made in the past to develop al-
gorithms for the reconstruction of attitude in aeronautical
environments. This work was largely in relation to the
attitude and heading reference systems (AHRS) required for
aeronautical applications, with examples being the works of
Gebre-Egziabher et al. [3] and Munguı́a and Grau [4]. Other
works in the area of attitude estimation, such as Vaganay
et al. [5] and Balaram [6], have focused more on robotics
and control applications, but do not specifically address the
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issues encountered with low cost inertial measurement unit
(IMU) systems. A comprehensive survey of modern nonlin-
ear filtering methods for attitude estimation was undertaken
by Crassidis et al. [7]. Almost all of the surveyed advanced
filtering techniques relied on some form of the Extended
Kalman Filter (EKF), with various modifications being used
to improve particular characteristics of the filter—often con-
vergence. Such EKF filters can be seen to be computationally
expensive however, when considering implementation on
embedded targets such as microcontrollers. It is often also
difficult to provide a guarantee of filter robustness [8].

Alternative to the general stream of development of
EKF filtering is the concept of complementary filtering.
This builds on the well-known linear single-input single-
output (SISO) complementary filters, and extends these in
a nonlinear fashion to the full 3D orientation space. Such
filters have favourable frequency response characteristics,
and seek to fuse low frequency attitude information with
high frequency attitude rate data. Prominent examples of
generalised complementary filtering include the works of
Jensen [9] and Mahony et al. [10].

The problem addressed in this paper relates specifically
to the design of an attitude estimator that can function with
noisy low cost sensors and is simple and efficient enough to
be implemented at high loop rates on low power embedded
targets, such as microcontrollers. To this end, the work
presented by Mahony et al. in [10] was used as a basis
for the attitude estimator developed in this paper. A central
problem in applying this work however, is that a method is
required for reconstructing an instantaneous 3D orientation
‘measurement’ directly from the sensor measurements. This
is a complex optimisation problem that generally requires a
suboptimal solution algorithm for computational feasibility
reasons [10]. Literature does not elucidate a clear solution
to this problem—in particular not in an explicit form—and
not in a way that can function robustly in all cases. The con-
tribution of this paper lies predominantly in the presentation
of an algorithm for robust calculation of such instantaneous
orientation measurements. Other contributions include the
novel use of fused yaw (Section II-B), the integration of
quick learning (Section V-A), and the explicit extension of
the attitude estimator to cases of reduced sensory information
(Section V). A summary of the notation and identities used
in this paper is provided in the appendix.

II. PRELIMINARIES

A. Problem Definition

The goal of attitude estimation is to calculate an estimate
of the rotation of a body relative to a global fixed frame,
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based on observations acquired through sensory perception.
Such sensory perception can include accelerometers, gyro-
scopes, magnetometers, Global Positioning System (GPS),
visual perception and/or LIDAR. The types of sensors con-
sidered for the task in this paper are the ones that are
typically found in IMU systems, and typically available in
low cost variants for mobile robotic systems. These are
the first three in the preceding list. Irrespective of which
sensors are used however, it is a stringent requirement that
the estimator always remains stable, and is able to function
equally well throughout the entire orientation space.

We define {B} to be the body-fixed frame, which rotates
with the body, and with the sensors that provide the obser-
vational input to the attitude estimator. It is assumed that
{B} is defined such that its z-axis points ‘upwards’ relative
to the body, and its x-axis points ‘forwards’. We define {G}
to be the global fixed frame, with the convention that the z-
axis points ‘upwards’ relative to the world. Importantly, this
means that the gravity vector can be written as g = (0, 0,−g)
in global coordinates.

Using these definitions, the problem considered in this
paper can be more precisely reformulated as being the task
of robustly calculating an estimate for G

Bq (or G
BR), given

arbitrary 3-axis gyroscope, accelerometer and magnetometer
data. The format and type of data provided by each of these
sensors is assumed to be modelled as follows.

1) Gyroscope: This sensor is assumed to provide a mea-
sure BΩy ∈ R3 of the angular velocity of the body, in the
coordinates of frame {B}. The measurement is assumed to
be affected by a largely time-invariant gyroscope bias bΩ,
as well as zero mean sensor noise vΩ. That is,

BΩy = BΩ + bΩ + vΩ ∈ R3, (1)

where BΩ is the true angular velocity of the body. The
measurement BΩy must be expressed in rad s−1.

2) Accelerometer: This sensor is assumed to provide a
measure B ã ∈ R3 of the proper acceleration of the body.
This is the inertial acceleration being experienced by the
body, together with the effect of gravitational acceleration.
The latter term is assumed to dominate the measured proper
acceleration. Cases where this assumption is violated, such
as in collisions, are implicitly filtered out by the low-pass
dynamics of the estimator. Merging the inertial acceleration
components into the noise term va gives

B ã = B
GR

Gg + ba + va ∈ R3, (2)

where Gg = (0, 0,−g) is the global gravity vector, and ba
is a time-invariant accelerometer bias. It is assumed that an
estimate b̂a of the bias is available from an accelerometer
calibration, and can be used to unbias B ã. Normalising the
unbiased B ã with zero noise, and recalling (28), yields

BzG = −
B ã − b̂a

‖B ã − b̂a‖
∈ S2. (3)

Thus, with the assumption that the accelerometer measure-
ment points in the direction of gravity, an instantaneous
measurement of BzG can be derived for use in the filter.

3) Magnetometer: This sensor is assumed to provide a
measure Bm̃ ∈ R3 of the strength and direction of Gme,
the Earth’s magnetic field, in the coordinates of frame {B}.
The measurement is assumed to be affected by a largely time
invariant bias bm, induced by local magnetic disturbances,
as well as zero mean sensor noise vm. Therefore

Bm̃ = B
GR

Gme + bm + vm ∈ R3, (4)

where B
GR is the inverse of the current true orientation of

the body. It is the purpose of a hard-iron magnetometer
calibration to derive an estimate b̂m for bm, which is then
subtracted from all future measurements. Assuming a non-
zero unbiased field strength, subsequent normalisation yields

Bm =
Bm̃ − b̂m

‖Bm̃ − b̂m‖
≈ B
GR ·

Gme

‖Gme‖
∈ S2. (5)

B. Yaw of a Rotation

There are many different possible definitions for the yaw
of a rotation. Most of these definitions are equivalent to the
first parameter of one of the twelve Euler angle rotation
representations. Various different conventions of Euler angles
exist, some alternately referred to as Tait-Bryan angles, and
as such many different definitions of yaw can be derived.
However, as yaw should intuitively correspond to some
notion of how rotated a frame is about the global axis
that points ‘upwards’—in this case the z-axis—the natural
choice here is the Z-Y′-X′′ Euler angle convention. The
Z component of the ZYX Euler angles representation of a
rotation is henceforth referred to as the ZYX yaw of that
rotation, and denoted ψE .

Analysis of the definition of ZYX yaw leads to a par-
ticularly useful characterisation thereof—the ZYX yaw of
a rotation from frame {A} to frame {B} is equivalent to
the angle about zA from xA to the projection of xB onto
the xAyA plane. Thus, two frames {B} and {C} have the
same ZYX yaw relative to {A} if the projections of their
respective x-axes onto the xAyA plane are parallel. Note that
‘parallel’ here is a stronger assertion than pure collinearity
(refer to the appendix). From this characterisation it can be
seen that the ZYX yaw goes undefined when xB is collinear
with zA. This corresponds to the well-known gimbal lock
phenomenon, and is a singularity of this definition of yaw.
For the sample application of a humanoid robot however, it
is not uncommon that this configuration is reached, which
can be problematic depending on implementation. ZYX yaw
also does not possess some properties that can be useful in a
definition of yaw, such as negation through rotation inversion.

In light of these issues, the notion of fused yaw is proposed
as an alternative definition of yaw. Given two frames {A}
and {B}, in general there is a unique rotation that maps zB
onto zA, such that the axis of rotation is perpendicular to
both zB and zA. {C} is defined to be the frame that results
from applying this rotation to {B}. The fused yaw of the
rotation from {A} to {B}, denoted ψF , is defined as the angle
from xA to xC about zA. This definition is only ambiguous
if zA is antiparallel to zB . This corresponds to a point of



singularity of fused yaw—unavoidable in general definitions
of yaw—and can be thought of as the frame {B} being
‘upside down’ relative to {A}. Note that if zA and zB are
parallel, then {C} is unambiguously taken to be {B}, and the
fused yaw is still well-defined. Although beyond the scope
of this paper, the definition of fused yaw is consistent, well-
defined, and satisfies the axiomatic conditions one would
expect of an expression of yaw. Fused yaw also has some
useful properties, such as negation through rotation inversion.

C. 1D Linear Complementary Filter

A simple preliminary approach to the attitude estimation
problem is to separate the problem into each of its in-
dependent axes of rotation. This can work well for body
rotations close to the upright identity pose, but does not
extend well to the whole orientation space. Nevertheless,
the 1D filtering approach demonstrates well the concept of
linear complementary filtering. Taking for example the pitch
direction of rotation, one can express the filter equations as

˙̂
θ = (ωy − b̂ω) + kp(θy − θ̂) (6)

˙̂
bω = −ki(θy − θ̂), (7)

where θ̂ is the pitch angle estimate, θy is an instantaneous
measure of the pitch angle based solely on the accelerometer,
ωy is the gyroscope measurement in the pitch direction, b̂ω
is an estimate of the bias thereof, and kp and ki are PI
compensator gains. A similar expression can be formulated
for the roll and yaw directions, where in the latter case
the θy − θ̂ error term is left to zero. The PI compensator
closes the loop on the type I system, forming a linear second
order system with zero theoretical steady state error to step
inputs. The linear complementary filter combines the high-
pass rate data with the low-pass position data to form a high
bandwidth estimate of the system state. However, despite
possessing positive filter attributes, the assumption that each
axis behaves independently places a severe limitation on the
usability of the filter for attitude estimation. A core issue is
that the angular velocity about one axis generally affects the
rotation about all axes, and to differing amounts depending
on the orientation of the body. The 1D filter also does not
lead unambiguously to some notion of a total 3D orientation.

III. 3D NONLINEAR PASSIVE COMPLEMENTARY FILTER

A. Motivation and Filter Type

In light of the limitations of the 1D complementary filter, it
is desirable to formulate a complementary filter that operates
on the full 3D rotation space, ideally retaining the positive
frequency attributes of the linear filter. Mahony et al. [10]
introduced three such nonlinear filters, the direct, passive and
explicit complementary filters. The main difference between
the three filters is that while the direct complementary filter
uses the instantaneous inertial sensor data to transform the
gyroscope measurements in the update equation, the passive
complementary filter uses the current filter estimate, and the
explicit complementary filter uses an update technique that
operates directly on the sensor measurement vectors.

A key design decision of the attitude estimator presented
here is that the magnetometer measurements should not have
any direct influence on the attitude estimate, other than to
resolve the yaw. The reason for this is to reduce instabilities
in the output pitch and roll components, and to alleviate
the requirement for a magnetometer calibration for these
components of the estimate to function correctly. This is
not possible to achieve with the explicit complementary
filter, and so the only filter in [10] to provide a solution
to the problem of constructing an instantaneous orientation
measurement from sensor data was found to be unsuitable.
Comparison of the direct and passive filters also led to
the conclusion that the feed-forward nature of the direct
formulation was unsuitable due to high frequency noise con-
siderations. Consequently, the attitude estimator presented in
this paper was built around the core of the nonlinear passive
complementary filter.

B. Passive Complementary Filter Equations

We define frame {E} as the frame corresponding to the
current estimate of the body’s orientation, GE q̂ ≡ q̂. Given the
current sensor measurements BzG and Bm, and if needed
also q̂, the first task is to construct a full 3D ‘measured’
orientation G

Bqy ≡ qy that is consistent with these measure-
ments. Frame {B} is implicitly defined via this measured
orientation. The error in the current orientation estimate with
respect to the sensor measurements is expressed as q̃ = q̂∗qy ,
where q̃ ≡ (q̃0, q̃) ≡ E

B q̃. The axis of this rotation leads to
the corrective error feedback term Ωe, which is added to the
unbiased measured angular velocity using the equations

Ωe = 2q̃0q̃ (8)

Ω = Ωy − b̂Ω + kpΩe, (9)

where b̂Ω is the current estimate of the gyroscope bias, and
kp is a P gain. The filter equations are then

˙̂q = 1
2 q̂Ω (10)

˙̂
bΩ = −kiΩe, (11)

where Ω = (0,Ω) ∈ H, and ki is an I gain. Note that
mathematically (10) simply converts the angular velocity Ω
into a quaternion angular velocity that can then be integrated.
Trapezoidal integration is recommended for numerical imple-
mentations of these equations. We recommend that the time
increment used for the numerical integration be the measured
time, coerced to a suitable range, such as [0.8, 2.2] times
the nominal update interval of the filter. This avoids large
jumps in the estimator states when lags occur and ensures
greater correctness of the gyroscope integration, leading to
better estimation results. The PI gains of the filter should be
tuned to provide non-oscillatory yet responsive transients, as
limited by sensor noise. The similarities between the passive
filter and the 1D complementary filter become apparent when
comparing (6–7) and (8–11).

The stability of the passive complementary filter is dis-
cussed in detail in [10]. Theoretical analysis demonstrates
that there is a measure zero set in the space of all possible



measured rotation and bias errors such that equilibrium exists
despite lack of convergence. The equilibrium is unstable
however, and the error is locally exponentially stable in all
other cases. This set consists of all error states such that b̂Ω is
error-free, and q̃ is a rotation by π radians. This pathological
set is of no concern however, as it is never reached in
any practical situation. Even intentional initialisation of the
filter to such an equilibrium state in simulated experiments
did not prove to be a problem, as mere arithmetic floating
point errors were enough for the divergent dynamics near the
pathological set to take over.

IV. MEASURED QUATERNION ORIENTATION
RESOLUTION

A. General Case

The calculation of the estimation error quaternion q̃,
requires knowledge of qy , the instantaneous measured ori-
entation best fitting the sensor measurements BzG and Bm.
In general, these two measurements suffice to construct a
unique rotation qy that best fits the given data. If not, q̂ is
taken as a further input, and one of the resolution methods
described in the following sections is used. In absolutely all
cases however, qy ≡ G

Bqy must respect BzG. This ensures
that the magnetometer, and any assumptions made by the
resolution methods, as desired do not affect the pitch and
roll components of the output quaternion estimate.

In the general case, a value for Gme is required. This
is easily obtained by physically rotating the body such that
the {B} and {G} frames coincide, and setting Gme to Bm.
This vector is only used as a reference relative to which the
yaw of the output quaternion is expressed. The goal is to
find a suitable rotation matrix G

BRy =
[
BxG

ByG
BzG

]T
,

and convert it into the required quaternion G
Bqy . Refer to the

appendix for details of a known robust conversion algorithm.
Ideally we would wish to be able to find BxG and

ByG such that Gme and Bm are equal, but as this is
not necessarily possible, we instead minimise the angular
difference between the two. This condition can be seen to be
satisfied when the respective projections of the two vectors
onto the plane perpendicular to BzG are parallel. We define
Bm̂ to be the projection of Bm onto the xGyG plane, and
use the cross product to construct a suitable third basis vector
Bû. The required BxG and ByG vectors are then calculated
as linear combinations of these basis vectors, based on the
condition that Bm̂ must be parallel to Gm̂e = (mex,mey, 0),
the trivial projection of Gme onto the xGyG plane. This
algorithm can be summarised mathematically as

Bm̂ = Bm − (Bm · BzG)BzG (12)
Bû = Bm̂ × BzG (13)

Bx̃G = mex
Bm̂ +mey

Bû (14)
BỹG = mey

Bm̂ −mex
Bû (15)

BxG =
Bx̃G
‖Bx̃G‖

, ByG =
BỹG
‖BỹG‖

(16)

G
BRy =

[
BxG

ByG
BzG

]T
(17)

Note that mez is not required. This algorithm only fails
with a division by zero if Gm̂e is degenerate, or BzG and
Bm are collinear. Both these causes of failure correspond to
measurements of the Earth’s magnetic field being vertical in
the global fixed frame, a generally unexpected case.

B. ZYX Yaw Orientation Resolution Method

If the general case fails to produce a valid output, the
magnetometer measurement is discarded, and a measured
orientation qy is instead constructed from BzG and q̂. The
latter is required as the former alone is insufficient to be able
to calculate a unique qy , and the latter can be used to ensure
that qy is ‘as close as possible’ to q̂, thereby only minimally
affecting the estimate in uncontrolled dimensions (i.e. yaw).

We define the frame {H} to be the frame {B} rotated by
the inverse of q̂. That is, {H} corresponds to the current
estimated orientation of the global fixed frame. Note that
this will not be identical to {G} in general, as q̂ and qy
generally differ, even if only slightly. The aim of the ZYX
yaw resolution method is to find a suitable rotation matrix
G
BRy , such that the ZYX yaw of {H} with respect to {G}
is zero. This is equivalent to saying that BxG should be
parallel, and hence equal to, the normalised projection of
BxH onto the xGyG plane. ByG is calculated to complete
the orthogonal basis. Letting q̂ = (ŵ, x̂, ŷ, ẑ), the algorithm
is mathematically given as

BxH = (1− ŵ2 − ẑ2, x̂ŷ − ŵẑ, x̂ẑ + ŵŷ) (18)
Bx̃G = BxH − (BxH · BzG)BzG (19)
BỹG = BzG × Bx̃G (20)

after which equations (16–17) are used as before. The
obtained rotation matrix G

BRy is converted into the required
quaternion G

Bqy . This algorithm only fails, in the form of a
division by zero, if BzG and BxH are collinear. This is only
the case if the error quaternion q̃ ≡ q̂∗qy is in gimbal lock in
terms of ZYX Euler angles. It is important to note that failure
of this method depends only on the error quaternion, and not
in any way on the absolute rotations q̂ and qy . As a result,
the algorithm is equally stable in all global orientations of
the body, as desired.

If the algorithm fails, a backup algorithm that zeros the
Euler ZXY yaw of {H} with respect to {G} is employed
instead. Analogously to (18–20),

ByH = (x̂ŷ + ŵẑ, 1− x̂2 − ẑ2, ŷẑ − ŵx̂) (21)
BỹG = ByH − (ByH · BzG)BzG (22)
Bx̃G = BỹG × BzG (23)

after which equations (16–17) are used the same as before.
Given that the previous algorithm failed, this algorithm is
guaranteed never to, hence completing the ZYX yaw method.

C. Fused Yaw Orientation Resolution Method

The fused yaw resolution method is quite similar in idea to
the ZYX yaw method, only instead of zeroing the ZYX yaw
of {H} with respect to {G}, it zeros the fused yaw. The first
notable distinction here to before is that having zero relative



fused yaw is in fact a mutual relationship, as the inverse
of a rotation has the exact negative of its fused yaw. The
second notable distinction is that the notion of fused yaw is
more closely related to quaternions than ZYX yaw, and so
a convenient direct quaternion formulation exists. Treating
quaternions notationally in (25) as column vectors in R4,
the algorithm can be summarised mathematically as

HzG = Lq̂(
BzG) = q̂BzG q̂

∗ = (zGx, zGy, zGz) (24)

G
B q̄y =


1 + zGz −zGy zGx 0
zGy 1 + zGz 0 −zGx
−zGx 0 1 + zGz −zGy

0 zGx zGy 1 + zGz

GE q̂ (25)

where (24) is calculated numerically as in (29), and G
Bqy

is subsequently calculated as the normalisation of GB q̄y . The
mathematical proof of the correctness of this algorithm is
beyond the scope of this paper. From inspection it can be
seen however, that the only case in which the algorithm fails
is HzG = (0, 0,−1). This is the case if the error quaternion
q̃ is a rotation by exactly π radians about an axis in the xy
plane. This is a subset of the conditions on q̃ required for
unstable equilibrium of the passive filter itself. As such, the
use of the fused yaw resolution method ensures that there
is only a single error condition for which any part of the
total passive filter yields suboptimal results. Furthermore,
this one error condition is when q̃ is at an exact antipode
of the identity rotation—a case that in practical situations
is never reached. Nevertheless, for reasons of completeness
and robustness, the above algorithm falls back to zeroing the
ZYX yaw if it fails. This is computed using (16–20), and is
guaranteed not to fail if the fused yaw algorithm failed. It is
important to note that this resolution algorithm is once again
equally stable in all global orientations of the body.

V. EXTENSIONS TO THE ESTIMATOR

A. Quick Learning

It is desired for the attitude estimator to settle quickly
from large estimation errors, yet simultaneously provide
adequate general noise rejection. To this end, we propose
quick learning as a method to help achieve this. Quick
learning allows two sets of PI gains to be tuned—one set
that provides suitably fast transient response, and one set that
provides good tracking and noise rejection. Given a desired
quick learning time, a parameter λ ∈ [0, 1] is used to fade
linearly between the two sets of gains, ending in the nominal
setpoint tracking gains. The gain fading scheme is given by

(kp, ki) = λ(knomp , knomi ) + (1− λ)(kquickp , kquicki ).

Quick learning can be triggered at any time, including
automatically when the estimator starts, and is disabled when
λ reaches 1.

B. Estimation with Two-Axis Acceleration Data

If only two-axis xy accelerometer data is available, then
the missing z-component of B ã can be calculated by solving

‖B ã‖ = g, where g is the magnitude of gravitational
acceleration. Letting B ã = (ax, ay, az), this yields

az = −
√

max{g2 − a2
x − a2

y, 0} . (26)

This however, only allows for attitude estimates in the posi-
tive z-hemisphere, as the sign of the missing az component
has to be assumed. For many applications, like bipedal
walking, this can be sufficient.

C. Estimation with Reduced Magnetometer Data

Two-axis xy magnetometer data can still be used for Bm̃
if the third unknown component is left to zero. Due to the
projection operation in (12), this in general still produces
satisfactory results. The calibration process of Gme, the
Earth’s magnetic field, also remains the same, as the z-
component thereof is not required for the orientation res-
olution algorithm. If magnetometer data is only available in
terms of relative heading angle ψ, then the required three-
axis data can be constructed using Bm = (cosψ, sinψ, 0),
and used as before.

D. Estimation without Magnetometer Data

If no magnetometer data is available in a system, then the
attitude estimator can still be used without any degradation
in the estimation quality in the pitch and roll dimensions
by setting Bm and Gme to zero. In this case, the estimation
relies solely on the selected yaw-based orientation resolution
method. Due to the yaw-zeroing approach used, the open-
loop yaw produced by the estimator remains stable with each
update of qy . The linear combination of gyroscope biases that
corresponds to rotations in the instantaneous xGyG plane
however does not have feedback, so small constant global
yaw velocities in q̂ can result. This yaw drift is unavoidable
as no yaw feedback is present without magnetometer data.
A more stable output quaternion q̂s can be obtained by
removing the fused yaw component of the estimate. Letting
q̂ = (ŵ, x̂, ŷ, ẑ), this can be done using

˜̂qs = (ŵ, 0, 0,−ẑ) q̂, q̂s =
˜̂qs

‖˜̂qs‖
. (27)

We do not recommend removing the ZYX yaw instead, as
this leads to unexpected behaviour near the not uncommon
scenario of pitch rotations by π

2 radians.

VI. EXPERIMENTAL RESULTS

Thorough experimentation and testing of the proposed
attitude estimator and corresponding C++ implementation
has been performed in simulation and on multiple hu-
manoid robots. Presented in Fig. 1 are the results of three
parallel instances of the attitude estimator running on a
NimbRo-OP robot. The same L3G4200D gyroscope mea-
surements, LIS331DLH accelerometer measurements, and
HMC5883L magnetometer measurements were made avail-
able to each of the estimators. One of the estimators was
permitted to use the magnetometer data, while the other
two were configured to only use the ZYX yaw and fused
yaw orientation resolution methods respectively. It can be
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Fig. 1. Estimation results on the NimbRo-OP robot, using the magnetome-
ter, ZYX yaw orientation resolution, and fused yaw orientation resolution.

seen that the results of the two yaw resolution methods are
virtually indistinguishable, apart from in the ZYX yaw plot,
where there is a vertical shift between the two curves. This
can be expected to happen due to the lack of feedback in
the yaw axis in these two methods. A (more approximate)
vertical shift can also be seen between the non-magnetometer
yaw curves and the yaw produced by the magnetometer
method. An important observation is that while the use of the
magnetometer allows the yaw estimation to be meaningful
and absolute instead of just relative, it only minimally affects
the pitch and roll, as desired. The effect on the pitch and
roll is not exactly zero though, due to the interplay between
the added yaw information and the measured angular veloc-
ities. Note that the magnetometer chip temporarily provided
incorrect values shortly after 5.0 s. The estimator recovery,
and performance in the pitch and roll directions despite this
significant input disturbance, attests to the stability of the
estimator. In applications where a yaw orientation estimate
is required, the magnetometer method is the clear choice,
but suitable magnetometer measurements must be available.
Otherwise, the authors recommend the fused yaw resolution
method for mathematical and performance reasons.

The effect of quick learning on the filter’s transient re-
sponse is shown in Fig. 2. For a simulated step in the true
orientation of a body, the response of the filter with and
without quick learning activated is shown. The quick learning
time used was 3.0 s. The ψQL, θQL and φQL waveforms,
using the quick learning feature, show clear improvement in
rise time and settling time over the ψNormal, θNormal and
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Fig. 2. Simulated attitude estimation results demonstrating the effect of
quick learning on the filter’s transient response.

φNormal waveforms, for which quick learning was disabled.
The attitude estimator was designed to be able to run at

high loop rates on embedded hardware, so as to minimise
estimation and possible control feedback latencies. The C++
attitude estimator library code was tested on a PC with
a 2.40 GHz Intel i5-2430M processor. On a single CPU
core, the average execution time of the estimator over 100
million cycles was found to be 127.6 ns for the magnetometer
method, 144.3 ns for the ZYX yaw method, and 112.3 ns for
the fused yaw method. It is to be expected that the fused
yaw method takes comparatively less time, as it does not in
general require a rotation matrix to quaternion conversion,
unlike the other two methods. From these results it is
confidently anticipated that the algorithm is efficient enough
to be implemented at high execution rates on a low cost
microcontroller, where floating and/or fixed point operations
are comparatively more expensive than on a PC.

VII. CONCLUSIONS

A filter for attitude estimation, released online in the form
of a C++ library [1], has been presented in this paper.
The filter uses the technique of complementary filtering,
and builds on the nonlinear passive complementary filter
presented by Mahoney et al. in [10], providing robust al-
gorithms for the reconstruction of a ‘measured’ orientation
from instantaneous sensor data. The filter is equally stable in
all global body orientations, and only demonstrates potential
non-convergent behaviour on a pathological set that is of no
practical concern. Extensions to the filter allow for reliable



attitude estimation in situations of reduced sensory data, and
the advent of quick learning allows for quicker settling times
from large estimation errors when required. The output of
the presented attitude estimator can be used, for example,
for the analysis and control of balance in a biped robot.
For this task it can be beneficial to further decompose the
estimated orientation into its components in each of the major
planes. Future work includes a method for accounting for
the inertial components of the accelerometer measurements
based on other sensors and/or system information.

APPENDIX

This appendix introduces the notation, definitions and
well-known identities that are used throughout this paper.
The set of all unit vectors in R3, the 2-sphere, is denoted
S2. The set of all rotation matrices is called the special
orthogonal group SO(3), and is defined as

SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1}.

Rotation of a vector v ∈ R3 by a rotation matrix is given by
matrix multiplication. For a rotation from coordinate frame
{A} to frame {B}, we have that

A
BR =

[
AxB

AyB
AzB

]
=
[
BxA

ByA
BzA

]T
, (28)

where for example AyB is the column vector corresponding
to the y-axis of frame {B}, expressed in the coordinates of
{A}. The term A

BR refers to the rotation from {A} to {B}.
The set of all quaternions H, and the subset Q thereof of

all quaternions that represent pure rotations, are defined as

H = {q = (q0,q) = (w, x, y, z) ∈ R4}
Q = {q ∈ H : |q| = 1}.

The rotation of a vector v ∈ R3 by a quaternion q ∈ Q is
given by the function Lq(v) : R3 → R3, defined as

Lq(v) = qvq∗

= (q2
0 − ‖q‖2)v + 2(q · v)q + 2q0(q× v)

= v + q0t + q× t, (29)

where t = 2(q × v), and q∗ is the quaternion conjugate of
q. Note that (29) provides the computationally most efficient
method for calculating Lq(v). Relative quaternion rotations
are denoted using symbols such as A

Bq.
Two vectors that are linearly dependent and a positive

multiple of each other are referred to as parallel. Two linearly
dependent vectors that are a negative multiple of each other
are referred to as antiparallel. Two vectors that are either
parallel or antiparallel are referred to as collinear.

The conversion between the quaternion and rotation ma-
trix representations of a rotation is often required, but not
entirely numerically trivial. Given a unit quaternion q =
(w, x, y, z) ∈ Q, the equivalent rotation matrix is given by

R =

1− 2(y2 + z2) 2(xy − wz) 2(xz + wy)
2(xy + wz) 1− 2(x2 + z2) 2(yz − wx)
2(xz − wy) 2(yz + wx) 1− 2(x2 + y2)



Depending on how the rotation matrix R is subsequently
used, it may be necessary to coerce each of the matrix
entries to [−1, 1]. Although for |q| = 1 it is impossible in
a mathematical sense for one of the entries to exceed unity
in magnitude, it can happen in practice due to floating point
arithmetic. In such cases, subsequent calculations such as
α = acos(R33) can lead to unwanted numerical problems.

The reverse conversion is more difficult and is split into
four cases, where each case corresponds to one of the
four quaternion parameters being taken as the base of the
conversion. Given a rotation matrix R ∈ SO(3) with matrix
entries Rij , if tr(R) ≥ 0,

r =
√

1 +R11 +R22 +R33

q =
(

1
2r,

1
2r (R32 −R23), 1

2r (R13 −R31), 1
2r (R21 −R12)

)
Else if R33 ≥ R22 and R33 ≥ R11,

r =
√

1−R11 −R22 +R33

q =
(

1
2r (R21 −R12), 1

2r (R13 +R31), 1
2r (R32 +R23), 1

2r
)

Else if R22 ≥ R11,

r =
√

1−R11 +R22 −R33

q =
(

1
2r (R13 −R31), 1

2r (R21 +R12), 1
2r,

1
2r (R32 +R23)

)
And otherwise,

r =
√

1 +R11 −R22 −R33

q =
(

1
2r (R32 −R23), 1

2r,
1
2r (R21 +R12), 1

2r (R13 +R31)
)

This implementation of the rotation matrix to quaternion
conversion is extremely robust, as it always chooses as the
base of the conversion the quaternion parameter that provides
the most well-conditioned problem to solve.
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