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Abstract— We present a Bayesian approach to calibrating
the hand-eye kinematics of an anthropomorphic robot. In our
approach, the robot perceives the pose of its end-effector with
its head-mounted camera through visual markers attached
to its end-effector. It collects training observations at several
configurations of its 7-DoF arm and 2-DoF neck which are
subsequently used for an optimization in a batch process. We
tune Denavit-Hartenberg parameters and joint gear reductions
as a minimal representation of the rigid kinematic chain. In
order to handle the uncertainties of marker pose estimates and
joint position measurements, we use a maximum a posteriori
formulation that allows for incorporating prior model knowl-
edge. This way, a multitude of parameters can be optimized
from only few observations. We demonstrate our approach in
simulation experiments and with a real robot and provide in-
depth experimental analysis of our optimization approach.

I. INTRODUCTION
The majority of state-of-the-art methods for visual robot

control assume a precise calibration of the robot kinematics
with respect to task-relevant sensors. We propose a novel
method for calibrating the hand-eye kinematics of an an-
thropomorphic robot. Many previous calibration methods
require tedious learning procedures in which many training
examples need to be collected, or restrict the calibration to
only few parameters to avoid overfitting problems if only a
small amount of training data is available. Limiting the set
of parameters, however, also assumes that most parameters
of the kinematic structure are precisely known a priori. This
in turn requires precise manufacturing of the robot and rigid
mechanical structures, the latter being difficult to achieve
during a long life-time of the robot.

Our approach requires only a small amount of training data
to optimize a multitude of parameters from an initial guess
of the model. We achieve this by a Bayesian maximum a
posteriori (MAP) formulation of the optimization problem
that allows for incorporating prior model knowledge during
the optimization process in order to guide the search effi-
ciently.

Like in many other approaches (e.g., [1], [2]), our robots
perceive visual markers attached to their bodies for the cali-
bration. These measured poses are compared to the expected
poses of the end-effector according to a parametric model of
the hand-eye kinematics. We attach a checkerboard pattern to
the end-effector of the robot (see Fig. 1). The robot sweeps its
workspace and collects training examples within only a few
minutes. The training examples are then used in a MAP [3]
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Fig. 1: Our robot gazing at a visual calibration marker
attached to its end-effector.

optimization process to refine an initial guess of the robot
model. Our approach considers measurement uncertainties
for the visual marker pose.

In experiments, we compare the efficiency of our MAP op-
timization approach with the standard maximum likelihood
(ML) method. We evaluate our method using our anthropo-
morphic robots Dynamaid and Cosero [4] that we constructed
from lightweight aluminum parts and off-the-shelf Robotis
Dynamixel actuators. We demonstrate that our optimization
approach is well suited to calibrate our robots, and that our
approach requires only little training effort.

II. RELATED WORK

Research on the identification and calibration of robot
kinematics has a long tradition (e.g., see [5] for an early sur-
vey). Within the taxonomy of Hollerbach and Wampler [6],
our approach belongs to the category of open-loop methods,
in which a bundle of link observations is used to optimize
the parameters for the mismatch between the expected pose
of the links and their measurements.

Recent work focused on the calibration of the kinematic
chain with respect to sensors such as cameras and lasers
in which task-relevant information is perceived later. Nick-
els [7], for example, optimized the hand-eye kinematic chain
of the NASA Robonaut. This method observes a spherical
tool held in the hand of the robot to measure the posi-
tion of the end-effector in the head-mounted camera. From
multiple observations, Nickels improves Denavit-Hartenberg
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(DH) parameters [8] and joint gear reductions using a least
squares method. He reports an increase of the positioning
accuracy in the sensor frame from 13.75 cm to 1.72 cm.
Pradeep et al. [1] calibrate sensor frames of cameras and
a 3D laser with respect to the kinematic chain of the PR2
robot. Similar to our approach, they observe a checkerboard
pattern attached to the end-effector. They tune joint angle
offsets and the relative pose of the sensors in the attachment
links with a maximum likelihood approach that considers
measurement uncertainties. Birbach et al. [2] calibrate the
intrinsic parameters of both cameras, their frames relative to
the head, an inertial measurement unit in the head, and the
joint angle offsets and elasticities of the hand-head chains
of the robot Rollin’ Justin. They observe a point marker on
the wrist with the stereo cameras in the head. The approach
incorporates all measured sensor data in a holistic batch
calibration using a least squares approach. An initial guess
about the parameters is used to provide a search region
for the marker and a starting point for the least squares
optimization.

Calibration methods are also part of many body schema
learning approaches (such as [9], [10], [11], [12]), e.g.,
to refine initial estimates of the body scheme. In [11],
four degrees of freedom (DoF) of a kinematic chain of a
humanoid robot are recursively refined in an active learning
approach. The approach requires about 600 observations
to converge to an accurate estimate of the body schema.
Hart and Scassellati [12] identify the kinematic structure of
a humanoid robot using Circle Point Analysis [13]. They
tune DH parameters and joint gear reductions through least
squares optimization.

Our approach differs from the above work by including the
full set of DH parameters of the kinematic chain as well as
gear reductions within a maximum a posteriori optimization
framework that considers the uncertainties of the visual
measurements together with prior information on the robot
kinematics. Our choice of parameter set is minimal, and by
incorporating prior knowledge not only as an initial guess but
also as prior regularizing information during the optimization
process, our method only requires a small amount of training
examples.

III. METHOD

We split the calibration process into two parts: an explo-
ration phase in which the robot moves its arm and head to
various joint states and scans the visual marker at its end-
effector, and an optimization phase in which the robot model
is refined with the collected training data.

We implement our calibration method on our service
robots Cosero and Dynamaid [4]. The hand-eye kinematic
chains of our robots only contain rotational joints (see
Fig. 2). However, since we optimize all DH parameters, also
linear joints are supported by our method.

A. Exploration Phase

In the exploration phase, the robot collects training ex-
amples for the optimization process. We attach a visual

marker to the end-effector that the robot perceives in its head-
mounted camera.

The robot drives its arm to a series of target poses. It
adjusts its gaze using the pan-tilt neck to keep the visual
markers visible. For gaze control, we exploit the prior
robot model assuming that it is sufficiently accurate to keep
the visual marker within the image. One training example
comprises the visual measurement of the end-effector pose
and the measured joint state of the 9-DoF kinematic chain
from head to end-effector.

In order to increase the amount of training samples, the
robot moves its head to five different poses for each arm
configuration and brings the visual marker to the center and
the corners of the image. In each head pose, we add small
random values to the target states of the kinematic chain.

B. Optimization Phase

We apply the MAP method to refine the a priori model of
the hand-eye kinematic chain of our robots. We calibrate the
DH parameters (link length, link offset, link twist, and joint
angle) and joint gear reductions of the 9 joints in the kine-
matic chain. Let Z = {zi}ni=1 be the training set of n end-
effector pose observations in given joint states X = {xi}ni=1.
The MAP estimate θ̂MAP of the kinematic parameters is
given by

θ̂MAP(Z,X ) = argmax
θ

p(Z|θ,X ) p(θ|X ),

where θ denotes the kinematic parameters to optimize. For
global robot models, we assume independence of the param-
eters from the joint states such that p(θ|X ) = p(θ).

In contrast to maximum likelihood (i.e., also least squares)
formulations, we include prior knowledge about the robot
model through the prior p(θ). We assume this prior to be
normal distributed with mean θ and covariance Σθ, i.e.,

p(θ) = η exp
(
− 1

2

(
θ − θ

)T
Σθ

−1
(
θ − θ

))
,

where the normalization constant η is independent of θ.
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Fig. 2: Schematics of the hand-eye kinematic chains of our
robots Cosero and Dynamaid.



For the data likelihood p(Z|θ,X ) we assume indepen-
dence between the individual training examples, i.e.

p(Z|θ,X ) ≈
n∏
i=1

p(zi|θ, xi).

Each observation of the end-effector marker is explained
by the noisy measurement of the end-effector pose z =
f(x, θ)+ ε as given by the forward kinematics (FK) f(x, θ).
The noise in the measurement is mainly due to inaccura-
cies of the visual marker detection in the camera images.
We model the measurement noise normal distributed ε ∼
N (0,Σz) with zero mean and covariance Σz which is
obtained empirically from a series of marker measurements.

Overall, the MAP estimate of the kinematic parameters is

θ̂MAP(Z,X ) ≈ argmax
θ

ηA exp (−A(θ)) ηB exp (−B(θ)) ,

where

A(θ) := 1
2

(
θ − θ

)T
Σθ

−1
(
θ − θ

)
,

B(θ) :=

n∑
i=1

1
2 (zi − f(θ, xi))

T
Σz

−1 (zi − f(θ, xi)) ,

and ηA and ηB are normalization constants.
Taking the logarithm, we have

θ̂MAP(Z,X ) ≈ argmax
θ

log(ηA)−A(θ) + log(ηB)−B(θ),

where we ignore the constant terms and define L(θ) :=
A(θ) +B(θ) to arrive at

θ̂MAP(Z,X ) ≈ argmin
θ

L(θ).

We solve this minimization problem by gradient descent
on L for the kinematic parameters θ. Since Σ = ΣT , we
obtain the derivative of L for the parameters θ as

∇θL = Σθ
−1
(
θ − θ

)
+

n∑
i=1

∇θf(θ, xi)
TΣ−1

z (zi − f(θ, xi)) .

We use resilient backpropagation (Rprop) [14] to im-
plement fast and robust gradient descent. Since the prior
introduces a bias for small amounts of training data, we use
it to guide the search for the actual parameters and adapt it
towards the estimate during the optimization. We replace the
a priori model by the current a posteriori model after conver-
gence or a fixed number of iterations and reiterate the whole
gradient descent optimization process until convergence or a
maximum number of prior replacements.

IV. EXPERIMENTS

We evaluate our approach in simulation and with the
real robot. The simulation has been implemented using the
Gazebo framework.

Since we do not have ground truth available for the real
robot, we evaluate convergence and accuracy properties of
our method in simulation. The simulation also allows for
conducting time-expensive and otherwise hardware-wearing

TABLE I: Pose error of the a priori models on the simulated
test data set.

avg error max error

model pos [mm] ori [◦] pos [mm] ori [◦]

unmodified 0.00 0.00 0.00 0.00
moderate 74.76 15.72 274.55 41.69
strong 296.65 42.26 883.78 108.88

experiments. We will also report on experiments with the
real robot.

Our optimization approach contains hyper-parameters in
the form of the covariance matrices Σθ and Σz . In simulation
experiments, we determined Σθ = 0.12 I as a good setting
for the prior covariance and that the prior should be replaced
with the current a posterior estimate after each 70 iterations.
The accuracy of the pose measurements Σz has been deter-
mined empirically from a series of pose measurements. It
is 0.001 m2 and 0.002 rad2 for the positional and rotational
components, respectively.

A. Simulation Results

We create synthetic test and training data sets in simu-
lation. The test data set and one training data set (denoted
as full) consist of 10,000 randomly generated joint states
each in the full range of joint angles (−π, π]. The joint
angles are sampled from a uniform distribution. The teach-
in training data set contains 370 joint states within the
joint angle limits of the kinematic chain that have been
teached in with the real robot. For the training data sets,
the sampled joint angles are modified with Gaussian noise
with a standard deviation of 0.005 rad. In order to simulate
visual measurement inaccuracies, we add Gaussian noise to
the pose of the end-effector that we obtain from the FK of the
actual model. For this purpose, we set the standard deviation
of the linear and rotational pose dimensions to 0.012 m
and 0.04 rad, respectively. The resulting training sets have
an average error of about 11 mm and 0.035 rad between the
actual and the measured end-effector pose. The maximum
errors range from 36 mm to 48 mm and 0.12 rad to 0.19 rad.

We compare the resulting models of MAP and ML for
three different prior assumptions on the models. The first
prior (unmodified) assumes perfect knowledge about the
actual model. For the other models we add moderate and
strong random changes to the actual model that we draw from
normal distributions. The end-effector pose errors on the test
data set for these a priori models are shown in Table I.

From Table II we can see that the unmodified and mod-
erate a priori models converge to a posteriori models with
similarly small errors on the test set when calibration is
performed on the full training set with our MAP approach.
For both a priori models, the optimization converges to very
similar kinematic chains. This results in the same error values
for the percision given in Table II. The parameters differ at
most by 0.04◦ in orientation, 0.19 mm in lengths, and 0.03 %
in gear ratios from the actual model.



TABLE II: Pose error of the MAP models in simulation when
trained on the full training data set.

avg error max error

model pos [mm] ori [◦] pos [mm] ori [◦]

unmodified 0.35 0.07 0.92 0.18
moderate 0.35 0.07 0.92 0.18

TABLE III: Pose error of the ML and our MAP approach in
simulation when trained on the teach-in training data set.

avg error max error

model pos [mm] ori [◦] pos [mm] ori [◦]

moderate, ML 9.49 1.55 35.74 4.35
moderate, MAP 9.42 1.54 35.66 4.33

strong, ML 9.47 1.55 35.58 4.35
strong, MAP 9.42 1.53 35.98 4.30

Table III shows the results of the ML and MAP methods
on the teach-in training dataset. Both approaches converge to
similar models. The individual deviations of the parameters
from the actual model for the moderately noisy prior can be
seen in Fig. 3, 4, and 5.

B. Results with the Real Robot

We apply our method to calibrate the hand-eye kinematics
of our service robot Dynamaid. We compare our MAP
calibration method with the ML approach. Afterwards, we
demonstrate the applicability of our calibration in an exper-
iment in which the robot points to specific positions with
a laser pointer. We also measure the repeatability accuracy
of the robot mechanism and the pose estimation method to
relate the uncertainty of the mechanism with the calibration
results.

1) Comparison between ML and MAP Calibration: For
the evaluation of our calibration method with our robot
Dynamaid, we generated a test and a training data set. The
training set consists of 597 examples that originate from
128 teach-in poses. The testing set contains 327 joint states
from 71 different teach-in poses. In Table IV we give the
average and maximum pose errors of the prior kinematic
model of Dynamaid on these datasets. For the optimization
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Fig. 3: Joint angle (red) and link twist (blue) deviations of
the trained models from the actual model on the teach-in
dataset in ◦. The parameters are arranged from neck pitch
(left) to wrist roll (right).
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Fig. 4: Link length (red) and link offset (blue) deviations
of the trained models from the actual model on the teach-in
dataset in mm. The parameters are arranged from neck pitch
(left) to wrist roll (right).
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Fig. 5: Gear reduction deviations of the trained models from
the actual model on the teach-in dataset in %. The parameters
are arranged from neck pitch (left) to wrist roll (right).

of Dynamaid, we found the following variances for the prior
parameter distribution: 0.1 rad2 for the joint angles, 0.01 rad 2

for the link twists, 0.01 m2 for the link lengths and offsets,
and 0.001 for the gear reductions.

For training the models in Table IV, we used the fol-
lowing convergence criteria: We consider gradient descent
converged, if the deviations from the average pose error
within the last 20 iterations do not exceed 10−5m in position
and 10−5 rad in orientation. The optimization is also aborted,
if a maximum number of 3000 iterations has been reached.
In the MAP approach, we replace the a priori model after
convergence of gradient descent, and restart the optimization.
This process is reiterated 40 times or until gradient descent
converges within the first 30 iterations after the replacement
of the a priori model. On our training set, MAP requires a
total amount of 917 iterations and the prior is replaced 15
times. The number of iterations for ML is 407.

The results in Table IV demonstrate that our MAP method
could significantly improve the kinematic model of Dyna-
maid. Compared to the ML approach, our method provides
better generalization on the test data set. The good perfor-
mance of ML on the training data indicates that it overfits
the training set for the price of a good result on the test set.

In Fig. 6, 7, and 8 we compare the parameters of the
learned ML and MAP models with the a priori model. It
can be seen that the approaches tend to different solutions.
While ML adjusts gear reduction parameters stronger than
our MAP approach, MAP stronger adapts link length and
offset parameters. This effect is explained by the a priori
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Fig. 6: Joint angle (red) and link twist (blue) deviations of
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Fig. 7: Link length (red) and link offset (blue) deviations of
trained models from the actual model on the teach-in dataset
in mm. The parameters are arranged from neck pitch (left)
to wrist roll (right).

knowledge about the precision of the initial guess of the
gear reductions that we incorporate in our MAP approach.
In ML, no such information is available, and the optimization
method can run into a different local minimum in this high-
dimensional parameter space.

We further evaluate the performance of MAP and ML
through cross-validation and local training. We merge train-
ing and test set into a union set with 924 samples.

In order to evaluate the quality of the approaches for
training on specific amounts of data that are randomly dis-
tributed in the assessed workspace of the robot, we conduct
a variant of cross-validation on the union set. The union set
is split randomly into n partitions which are individually
used for training. The remaining samples to each partition
are used as a test set for this partition. For each partition
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Fig. 8: Gear reduction deviations of trained models from the
actual model on the teach-in dataset in %. The parameters
are arranged from neck pitch (left) to wrist roll (right).

TABLE IV: Pose error of a priori model, ML, and our MAP
approach when calibrating Dynamaid.

avg error max error

model, set pos [mm] ori [◦] pos [mm] ori [◦]

prior, training 36.45 7.37 73.94 14.89
MAP, training 13.76 3.02 29.66 10.30
ML, training 13.33 2.84 30.65 10.09

prior, test 45.58 8.30 85.99 13.48
MAP, test 14.28 3.00 50.98 9.87
ML, test 16.93 3.10 66.79 9.70

size, we measure the average and maximum pose error of the
learned models for the n partitions on the corresponding test
sets. Table V shows results for various partition sizes. If the
methods did not converge on specific partitions, we also show
results without these partitions (marked by *). It can be seen,
that ML and our MAP method yield quite similar average
errors on the test sets, while MAP has lower maximum errors
in most cases. For little training data (23 samples), MAP
obtained smaller average errors. The results indicate better
generalization by the MAP approach, especially for smaller
training datasets.

In a second set of experiments, we assessed how well the
learned models of both approaches generalize to untrained
areas of the workspace. We randomly chose n samples from
the union set, and trained models on the k = 924/n closest
samples in the space of joint angles. The remaining samples
are used as test sets. The results of our experiments for
different n are shown in Table VI. In these experiments,
MAP clearly outperforms ML with regard to average and
maximum error for n ≥ 10, i.e., k ≤ 92 on the test sets. For
smaller n, MAP still yields smaller maximum errors on the
test sets.

2) Model Application Experiment: We demonstrate the
benefit of a model calibrated with our approach in the
following experiment. We attach a laser pointer to the end-
effector of the robot with which the robot shall point at the
corners of a checkerboard in front of it. The checkerboard
is placed at several poses relative to the robot, and the
positioning accuracy between pointed and target positions
is measured. The robot holds its end-effector in a distance
of about 25 cm to the checkerboard and points to the four
outer corners of the checkerboard. Since we are interested in
the best available MAP model for this experiment, we train
it on the union set. The model consists of the DH parameters
of the kinemaitic chain, which represent the FK of the arm.
With this information, the inverse kinematics (IK) of a target
pose is determined.

First, we determine the repeatability accuracy of the
pointing process. We measure the repeatability accuracy of
the robot mechanism, if the pose of the checkerboard is
estimated only once before the robot repeatedly points to a
location. If the pose is measured at each trial, we also include
the accuracy of the visual pose estimation process. Table VII
summarizes the repeatability accuracies in both cases. The
accuracy can be used as a reference, which accuracy is



TABLE V: Cross-validation (n partitions, k samples) of ML
and MAP with the union set (924 samples in total). 40
(23)*: omitted 2 MAP runs (exceeded 40 prior replacements),
omitted 5 ML runs (exceeded 3000 iterations).

avg error max error

set, n (k) method pos [mm] ori [◦] pos [mm] ori [◦]

training, MAP 13.30 2.94 39.34 10.16
2 (426) ML 13.15 2.75 41.75 10.54

training, MAP 13.15 2.93 35.54 10.54
5 (184) ML 12.93 2.72 36.35 10.48

training, MAP 12.84 2.88 37.08 10.38
10 (92) ML 12.63 2.69 35.00 9.94

training, MAP 12.30 2.80 32.79 9.18
20 (46) ML 12.12 2.63 31.50 14.00

training, MAP 13.32 4.20 197.44 118.54
40 (23) ML 20.76 8.92 361.90 176.71

training, MAP 10.98 2.60 29.52 9.53
40 (23)* ML 10.76 2.44 27.47 10.88

test, MAP 13.56 2.96 38.76 10.71
2 (426) ML 13.48 2.79 42.72 11.35

test, MAP 13.73 3.01 45.19 11.16
5 (184) ML 13.62 2.84 49.20 12.55

test, MAP 14.05 3.04 49.67 12.58
10 (92) ML 14.01 2.91 57.53 13.92

test, MAP 14.60 3.11 55.17 13.25
20 (46) ML 14.85 3.04 80.15 14.36

test, MAP 20.08 5.47 543.33 179.96
40 (23) ML 28.44 10.17 454.69 179.98

test, MAP 16.61 3.31 75.69 13.85
40 (23)* ML 17.35 3.51 111.34 18.60

achievable at all with the robot mechanism and the sensor
setup in this experiment.

Finally, we report on the accuracies of the laser pointing
experiment with the a priori model and our MAP estimate
in Table VIII. Our proposed method clearly improves the
accuracy in this experiment.

C. Local Models

We evaluate if it is beneficial to train local models for
different parts of the configuration space. We choose the
smaller test set of 327 teach-in joint states in this experiment.
For each joint state, we train a localized MAP model by
weighting each training example by the distance in configu-
ration space using a Gaussian kernel function.

For a variance of 0.3 rad2 for the Gaussian kernel, the
average errors of the MAP models is higher than the global
model (see horizontal lines in Fig. 9). The error increases
with the Euclidean distance from the reference joint state.
If we set the variance of the Gaussian kernel to 0.1 rad2,
the average error over the local models slightly improves
on the global model (see Fig. 9). From about 30◦ distance
in joint angles from the reference state, the average error
of the local models grows beyond the error of the global
model. Note, that only few local models exhibit the large
maximal errors that can be seen in Fig. 9. We conclude that

TABLE VI: Results of ML and MAP for training on k
nearest neighbors of n samples from the union set (924
samples in total). 20 (46)*: omitted 4 MAP runs (exceeded
40 prior replacements), omitted 1 ML run (exceeded 3000
iterations). 40 (23)*: omitted 14 MAP runs (13 exceeded 40
prior replacements, 1 exceeded 3000 iterations), omitted 8
ML runs (exceeded 3000 iterations).

avg error max error

set, n (k) method pos [mm] ori [◦] pos [mm] ori [◦]

training, MAP 13.18 2.97 37.96 10.81
2 (426) ML 12.81 2.73 39.03 11.45

training, MAP 12.80 2.73 31.09 9.84
5 (184) ML 12.30 2.52 32.60 9.31

training, MAP 12.43 2.89 31.71 10.00
10 (92) ML 11.88 2.66 32.42 9.22

training, MAP 10.61 2.68 26.45 9.58
20 (46) ML 17.21 8.75 326.25 168.77

training, MAP 10.59 2.57 26.45 9.58
20 (46)* ML 10.19 2.42 27.00 9.08

training, MAP 11.58 3.79 191.09 90.86
40 (23) ML 26.46 14.89 445.61 179.22

training, MAP 9.12 2.65 25.75 10.77
40 (23)* ML 8.35 2.18 24.64 10.92

test, MAP 16.12 3.54 53.79 10.26
2 (462) ML 15.41 3.17 59.91 10.32

test, MAP 17.40 3.66 76.96 11.43
5 (184) ML 18.27 3.34 81.82 14.12

test, MAP 19.72 3.73 86.37 12.54
10 (92) ML 21.59 3.82 104.85 16.19

test, MAP 24.14 4.15 122.20 15.37
20 (46) ML 40.41 11.27 598.50 179.98

test, MAP 23.86 4.06 122.20 15.00
20 (46)* ML 28.58 4.76 141.39 22.10

test, MAP 37.49 7.95 560.38 179.87
40 (23) ML 69.25 19.92 1010.24 180.02

test, MAP 30.28 4.73 152.27 21.05
40 (23)* ML 38.22 6.95 221.89 47.49

TABLE VII: Repeatability accuracy in the laser pointing
experiment.

mode avg error [mm] max error [mm]

estimate pose once 3.5 8
reestimate pose each time 5.6 12

TABLE VIII: Position errors in the laser pointing experiment.

model avg error [mm] max error [mm] std. dev. [mm]

prior 34.4 60 12.3
MAP 22.2 40 10.3

localized learning is prone to overfitting and does not provide
a significant improvement for our robot platform.

V. DISCUSSION

Our simulation experiments demonstrate that the amount
of training samples and their distribution determine the



0.0325

0.01224

8.93

2.93

12

10

8

6

4

2

0
1500 50 100

0 50 100 150

0.06

0.05

0.04

0.03

0.02

0.01

0.00

[°]

[m]

Position

Orientation

dist [°]

Fig. 9: Localized Learning. Top: Average (blue, dashed)
and maximum (red, dotted) position error over all 327 local
models. We also show average (blue, dashed) and maximum
(red, dotted) errors of the global models for reference as
horizontal lines. Bottom: Average and maximum orientation
errors (same color coding as for position).

quality of an a posteriori model. For 10,000 joint states
distributed in (−π, π] the results starting from different a
priori models match each other for the same training set.
It is to be expected that an increase in data leads to better
results. If the generated samples are only taken within the
bounds of the allowed joint margins, then the outcome of the
calibration differs more from the ground truth. Still, both
kinds of methods (ML and MAP) yield similar results in
simulation, in contrast to the results with the real robot.

For the real robot, the training reduces error nearly to a
third of the a priori model. It is interesting which expected
variances have led to these results. The variance for the joint
angles is the same that showed good results in simulation.
It is much bigger than the variances of the other DH
parameters. An explanation is, that this parameter encom-
passes possible servo offsets. The other DH parameters are
better measurable manually or can be taken from a CAD
model. In most joints, the servos are directly attached to the
links without an additional transmission. If we assume good
manufacturing standards of the servos, this explains the low
values for the variances of the gear reductions.

Our experiments with the real robot demonstrate, that
our MAP approach generalizes better than the ML method
if only few training examples are available. By providing
different variances for parameters in the a priori model,
MAP allows for incorporating prior knowledge about the
uncertainty of parameters and their scale. In contrast, ML
treats all parameters equally, and hence may yield different
solutions.

The increase in accuracy in the laser experiment is only
one third compared to the a priori model which is less than
the pose accuracy of the visual marker. This can be explained
by the extension of the kinematic chain by approximately
25 cm and the conversion of orientation error to position
errors. The repeatability accuracy is also remarkably good
for a low-weight robot with an armlength of an adult human.

Localized learning seems not to be beneficial for our robot.

Although there are small local dependencies, the error raises
with distance, and training effort would rise significantly to
cover the complete workspace such that the local models
could have an advantage, compared to a global one.

VI. CONCLUSION
In this paper, we propose a Bayesian maximum a pos-

terior (MAP) approach to the calibration of the hand-eye
kinematics of an anthropomorphic robot. We include prior
knowledge on the robot model during the optimization to
efficiently guide the search for model parameters and to
avoid overfitting problems. In experiments in simulation and
with a real robot, we could demonstrate, that our method
converges to accurate models. On our robot Dynamaid, our
MAP approach generalizes better from few training examples
than a maximum likelihood (ML) approach that has often
been used in previous work. By this, our method can cope
with many parameters but only requires little training effort.

In future work we will investigate active learning of the
robot kinematics. In such an approach, the robot explores
informative joint states, which could be implemented based
on information gain in our probabilistic framework. In order
to adapt the hand-eye kinematics continuously on-line, we
could enhance the robot with smaller markers such as LEDs.
This approach could be extended for tool-use, if the robot
perceives the pose or the tip of the tool.
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