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Abstract— Robotic assistants designed to coexist and commu-
nicate with humans in the real world should be able to interact
with them in an intuitive way. This requires that the robots are
able to recognize typical gestures performed by humans such as
head shaking/nodding, hand waving, or pointing. In this paper,
we present a system that is able to spot and recognize complex,
parameterized gestures from monocular image sequences. To
represent people, we locate their faces and hands using trained
classifiers and track them over time. We use few, expressive
features extracted out of this compact representation as input to
hidden Markov models (HMMs). First, we segment gestures into
distinct phases and train HMMs for each phase separately. Then,
we construct composed HMMs, which consist of the individual
phase-HMMs. Once a specific phase is recognized, we estimate
the parameter of the current gesture, e.g., the target of a pointing
gesture. As we demonstrate in the experiments, our method is
able to robustly locate and track hands, despite of the fact that
they can take a large number of substantially different shapes.
Based on this, our system is able to reliably spot and recognize
a variety of complex, parameterized gestures.

I. INTRODUCTION

Whenever robots are designed to operate in human-

populated environments, they must be able to interact with

them in an intuitive way. Our humanoid robot (see Fig. 1) is

able to generate a variety of human-like arm and head gestures

that support its speech [1]. At former public demonstrations

we asked people who interacted with the robot to fill out ques-

tionnaires about their impression of the interaction capabilities

of the robot. We discovered that several people were confused

by the asymmetry between action generation and perception

since the robot’s visual perception of people was limited to

head position and size. To reduce this asymmetry and to enrich

its multimodal interaction capabilities, it is necessary that the

robot also recognizes gestures performed by humans. This

requires robust and accurate tracking of human body parts

as well as the ability to spot and recognize typical gestures in

order to infer non-verbal signals of attention and intention.

In this paper, we present a system that is able to spot and

recognize complex gestures from monocular image sequences.

We consider typical gestures performed with head and arms,

such as head shaking/nodding or hand waving as well as

parameterized gestures. Fig. 2 shows some examples.

We represent humans using their heads and hands. For

locating faces and hands in the images, we use the object

detection framework proposed by Viola and Jones [2] to train

reliable and fast classifiers. We use an adaptive skin color

Fig. 1. Our humanoid robot interacts with people using multiple modalities
such as speech, facial expressions, eye-gaze, and gestures.

(a) (b) (c)

Fig. 2. Snapshots of typical gestures: (a) waving, (b) indicating the size of
an object (parameterized), and (c) pointing to an object (parameterized). The
bounding boxes highlight detected faces and hands.

model (which is initially based on the detected face) and

constrain the search to skin-colored regions to speed-up and

to increase the robustness of the hand detection process.

We segment complex arm gestures into their three natural

phases and train hidden Markov models (HMMs) for the

individual phases. We then construct HMMs composed of the

individual phase-HMMs for one- and two-handed gestures as

well as for head gestures.

Our approach proceeds in three stages. First, we locate faces

and hands in the images and update a probabilistic belief which

tracks them over time. Second, we extract features from this

compact representation of humans. Finally, these features are

used as input to the HMMs. Our system recognizes a variety of

complex gestures and allows for the estimation of parameters

for general gestures once a specific phase is recognized. In

contrast to that, existing techniques for parameter estimation

of gestures either concentrate on pointing gestures only (e.g.,

[3], [4], [5]) or rely on the assumption that the whole gesture

can be observed [6].

The contribution of our work is a robust and fast ges-

ture recognition method that relies on monocular image se-

quences (no stereo). In contrast to previous approaches relying

on monocular data (e.g., [7], [8], [9]), our system works

under realistic settings such as varying and difficult lighting
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conditions, multiple people, and cluttered background. On a

notebook computer, we achieve a frame rate of 20 fps and are

able to spot gestures as well as to recognize them, i.e., our

system distinguishes between previously learned gestures and

irrelevant or unconscious movements.

This paper is organized as follows. The next section reviews

related work. Section III describes training and application

of the hand classifiers. Section IV details our technique to

track people. Section V explains the features selection process

and how HMMs are trained and used for gesture recognition.

Finally, Section VI presents the experimental results.

II. RELATED WORK

Several approaches to visual gesture or activity recognition

have already been presented. Yamato et al. [10] apply discrete

HMMs to recognize tennis strokes from monocular images. As

features, they use simply the number of pixels corresponding

to the human pose and apply a vector-quantization. Rigoll et

al. [8] proposed to recognize gestures from low-resolution

grey-scale images using continuous HMMs. To compute a

7-dimensional feature vector, they describe the region cor-

responding to the moving body parts using statistics such

as image moments. Montero and Sucar [9] use a ceiling-

mounted camera and apply a back-projection using a given

color histogram to locate a hand on a desk. Given features

based on the 2D trajectory of the hand, the authors apply a

HMM to recognize typical office movements such as writing,

using the mouse, etc. Li et al. [7] presented an approach to

recognizing manipulative actions via a hierarchical HMM. In

addition to the hand trajectory, objects in the vicinity of the

hand serve as observations in order to be able to distinguish

between the different activities. It should be noted that in

contrast to all these approaches, our gesture recognition system

works under realistic settings such as varying and difficult

lighting conditions and cluttered background.

The work presented by Nickel and Stiefelhagen [4] concen-

trates on pointing gesture recognition using a stereo camera

system. They use heuristics to locate heads and hands by

combining color and range information. The authors model the

pointing gestures using three individual phase-HMMs. As soon

as the hold phase is recognized, the target is estimated using

the 3D positions of head and hand. In contrast to this system,

ours is not restricted to one single gesture. Instead, we are able

to recognize a variety of gestures. Furthermore, Nickel and

Stiefelhagen apply a time-consuming analysis to estimate the

end of a gesture phase which can more efficiently done using

the Viterbi algorithm. Just et al. [11] consider the problem

of recognizing one- and two-handed gestures given 3D trajec-

tories. The authors do not tackle the problem of recognizing

parametric gestures. An interesting extension to HMMs was

introduced by Wilson and Bobick [6]. To extract information

carried by parameterized gestures, the corresponding parame-

ter is explicitly integrated into a parametric HMM (PHMM).

Using PHMMs, the parameter can be estimated with a high

accuracy given an entire sequence. However, it is unclear how

PHMMs perform in case only part of the gesture can be

observed. Our approach is able to estimate the parameter of the

gesture as soon as the corresponding hold phase is recognized.

Martin et al. [3] use a combination of Garbor filters and neu-

ral function approximators to estimate the target of pointing

gestures from monocular images. They only analyze the static

part of a gesture. Irie et al. [5] proposed to control devices in

an intelligent room equipped with two cameras by hand and

finger gestures using heuristics to determine the hand motion.

The problem of whole body gesture recognition from depth

images or using a motion capture system has been addressed

by several researchers (e.g., [12], [13]). The proposed methods

need a high-dimensional feature vector consisting of joint

angles as input to HMMs. Thus, a high number of training

sequences is needed. The same holds for approaches which

mainly focus on the reproduction of whole body, respectively,

arm movements using learned HMMs (e.g.,[14], [15], [16]).

Finally, we would like to review related work regarding

hand detection, which is an inherently difficult task. Kolsch

and Turk [17] also applied the object detection framework

introduced by Viola and Jones [2] to detect different hand

postures. They concentrate on few distinctive hand shapes

which are frequency-analyzed for good class separation ability.

Similarly, Chen et al. [18] trained classifiers for four different

hand postures. Ong and Bowden [19] proposed training of

a two-layer classifier tree for hand shape detection where a

database of hand images is clustered into sets of similar hands

according to a distance metric based on shape context. In

contrast to these methods, our system is able to detect and

track hands with a large number of substantially different

shapes and to furthermore determine whether a hand is a left

or right one. Our system works reliably even under difficult

background and lighting conditions.

III. HAND DETECTION

A. Training Classifiers

Hands can take the highly various shapes as they are

articulated with more than 20 degrees of freedom and they

appear arbitrarily rotated, in-plane as well as out-of-plane. For

training robust hand classifiers, we apply the object detection

approach proposed by Viola and Jones [2] which is based

on AdaBoost. We use Haar-like features [20] to construct the

classifiers, i.e., each feature is computed based on the sum of

pixel values in rectangular regions in grey-scale images. The

idea is to use information about the relative darkness between

different regions.

B. Training Data

We train two kinds of classifiers: a generic hand classifier

that detects hands and rejects non-hands and a specific hand

classifier that is able to discriminate right hands from left ones,

given there is a hand. The size of the positive samples is

chosen so as to include contextual information that might be

useful for the classification (see Fig. 3).

Since in the detection process, we only consider skin-

colored regions (see next subsection), only these regions

are considered during acquisition of negative samples. The



Fig. 3. Positive example patches for training hand classifiers.

negative training examples of the specific classifier consist

only of images patches containing the contralateral hand as

negative samples. In this way, AdaBoost is forced to select

features which best discriminate left and right hands.

C. Constraining the Search and Applying the Classifiers

To support the hand detection process, we perform a

preprocessing step and incorporate information derived from

the face detection result. We use the classifiers provided

by Intel’s OpenCV library [21] to detect frontal and profile

faces. By means of color analysis of the respective image

patch containing the face, the skin-color of the person can

be estimated. This information can then be used to identify

candidate hand regions in the image. The advantage of this

approach is two-fold. First, we can constrain the search for

hands to regions containing the same color as the face and thus

speed-up the search. Second, objects with similar structure but

with different color are excluded and thus the false detection

rate is reduced. Once the hands are detected, we start updating

the skin color model with information from the hand regions.

Our hand detection system proceeds in two stages. First, the

generic hand detector is applied. In case it succeeds, the right

hand classifier is applied twice, once in the original image and

once in the flipped one. Four cases are possible:

1) No success in both images: Return generic hand.

2) Success in original image: Return right hand.

3) Success in flipped image: Return left hand.

4) Success in both images: Return left/right depending on

the output scores of the classifiers.

IV. REPRESENTATION AND TRACKING OF HUMANS

We represent humans using their heads and hands. We

maintain a probabilistic belief about the existence of people

and the positions of their faces and hands over time. This

way, our system improves robustness since it can deal with

false detections and is not restricted to a single person.

We proceed as follows. We first run the face detector in

the images. Before we can update the Kalman filters tracking

the faces, we have to solve the data association problem, i.e.,

we must determine which observation corresponds to which

already tracked face and which observation belongs to a new

face. We use a distance-based cost function and apply the

Hungarian method [22] to determine the optimal mapping

from current observations to faces given this cost function.

To deal with false classifications, we maintain for each

face the probability that it really exists, i.e., that a person

is there. We follow the approach presented by Bennewitz et

al. [23] to update this probability by applying a recursive

update scheme. This update scheme determines the probability

of the existence of a person given a sequence of positive and/or

negative observations (face detections) assigned to it

P (f | z1:t) =
[

1 +
1 − P (f | zt)

P (f | zt)
·

P (f)

1 − P (f)
·
1 − P (f | z1:t−1)

P (f | z1:t−1)

]−1

.(1)

Here, f denotes the existence of a face, zt is the observa-

tion (face detected/not detected) at time t, and z1:t refers to

the observation sequence up to time t. We experimentally

determined values for P (f | z = det) that a face exists if it is

detected in the image and P (f | z = ¬det) that a face exists

if it is not detected. If the probability of a face drops below a

certain threshold, the person is deleted from the belief.

Additionally, we track the 3D head pose of people. We use

an appearance-based approach [24] which locates distinctive

facial features. The positions of the features within the face

bounding box serve as input to a neural network which

computes the three Euler angles of rotation around the neck.

For the hands, we maintain two kinds of probabilities. First,

we also compute the existence probability and, second, we

compute for each hand the probability that it is a left or right

hand given the results of the specific classifier. The information

about the laterality of hands is important to keep track of them

in case hands are crossing each other.

Again, we first have to solve the data association problem.

The costs of an assignment for an observed and a tracked

hand depend on the laterality costs clat, which considers the

probability that a hand is a left or right one, in combination

with the distance between the position of the detected hand

and the predicted position of the already tracked hand using a

weighted sum. clat is defined as

clat = [P (hr|h, zt = hr) · Pbel(h
r|h, z1:t−1)+

P (hl|h, zt = hl) · Pbel (h
l|h, z1:t−1)

]−1
. (2)

Here, hr and hl denote a right/left hand and the observations zt

are either left hand or right hand. After determining the

assignment, the existence probability P (h | z1:t) and the

probability that a hand is a right or left one P (hr/l | h, z1:t)
are updated using the recursive formula described above.

The final step is to assign hands to people. To do so, we

first partition the set of tracked hands into left and right hands

according to their most likely probability. Then, we assign the

sets of left and right hands to the tracked people individually.

To avoid that hands change their assignment to another person

in case people come close to each other, we consider the

history of assignments in the cost function. For each hand

in the belief, we maintain a histogram in which each bin i

stores how often the hand has been assigned to person i. In

this way, we maintain an assignment of a particular hand to a

particular person over time. The costs cij of the assignment of

the tracked hand i to person j are then computed as follows

cij =
1

hist(hi, qj)
+ cdist(h

i, qj). (3)



Fig. 4. Composed HMMs consisting of the individual phase-HMMs. The first two for one- and two-handed gestures, and the right one for head gestures.
The start and end states of the HMMs as well as the branching points are non-emitting.

Here, hist(hi, qj) denotes the normalized bin value for per-

son j of hand i. cdist(h
i, qj) is proportional to the distance to

person j or is maximum if the hand is too far away.

V. RECOGNIZING COMPLEX, PARAMETERIZED GESTURES

We currently consider six different types of gestures:

1) Waving: One-handed gesture.

2) Pointing: Parametric, one-handed gesture.

3) Thisbig: This parametric, two-handed gesture is carried

out to indicate the size of an object.

4) Dunno: This two-handed gesture is used to express

ignorance (informal short for don’t know).

5) Head shaking.

6) Head nodding.

A. Gesture Modeling

To model the complex arm gestures Waving, Pointing, and

Thisbig, we use three phases: the preparation phase which

is an initial movement before the main gesture, the hold

phase which characterizes the gesture, and the retraction phase

in which the hand moves back to a resting position. Our

main motivation behind this segmentation is that once the

hold phase is recognized, the parameters of Pointing and

Thisbig can be estimated. The less complex gestures Dunno

and Head shaking/nodding are modeled monolithically. We

train individual HMMs for each phase of a gesture separately,

i.e., we train 12 HMMs for the gestures/gesture phases.

We use continuous left-right HMMs with 3-5 (non-skip)

states in addition to the non-emitting start and end states.

The actual number of states depends on the average length

of the gesture phases. As output distribution we use a mixture

of two Gaussians. We apply Viterbi training and the Baum-

Welch algorithm to estimate for a HMM λ the transition

probabilities aλ
ij between states i and j and the observation

probabilities bλ
j (o) for a state j given an observation o.

To be able to identify movements not corresponding to

any learned gesture, we train an additional model. Here, we

follow the approach presented by Yang et al. [13] and build

a HMM by copying all states from all trained models and

arrange them in a fully connected HMM with smoothed output

probabilities. The transition probabilities in this no gesture

model are defined as aij = (1 − aλ
jj) ·

1
|#states−1| for i 6= j

and aij = aλ
jj else. Here, aλ

jj is the self-transition probability

of state j which originally belongs to the HMM λ.

B. Gesture Recognition via Composed HMMs

The gesture phases appear in a specific order which has to

be considered during recognition. Fig. 4 illustrates the HMM

topology for one- and two-handed gestures as well as for head

gestures. As indicated by the arrow, the hold phase can occur

several times. The transition probability from the end state of

a phase-HMM to the start state of the same HMM is set equal

to the transition probability of going to the next phase-HMM

in the network.

To identify the most likely gesture given such a composed

HMM, we apply the Viterbi algorithm [25]. The Viterbi algo-

rithm computes the state sequence with maximum likelihood

given an observation sequence O1:T = o1, . . . , oT . For the

HMM λ, the likelihood of the best state sequence of length t

ending in state j is recursively defined as

δt(j) = max
1≤i≤Nλ

δt−1(i)a
λ
ijb

λ
j (ot), δ1(j) = πλ

j bλ
j (o1).(4)

Here, aλ and bλ are the parameters of λ, Nλ is the number of

states, and πλ
j specifies the initial state distribution. The algo-

rithm terminates with the computation of the most likely path

x∗
T (which is found via backtracking) and its likelihood P ∗

P ∗ = max
1≤i≤Nλ

δT (i). (5)

In theory, it would be possible to model all gestures in one

single HMM. However, to reduce the amount of necessary

training data and to improve recognition accuracy, we use

separate HMMs and extract individual input features. To dis-

tinguish between one- and two-handed gestures, we consider

the two-handed HMM only when the HMMs for the right and

left hand report the same most-likely gesture. This heuristics

is applicable since all our two-handed gestures are symmetric.

C. Input Features

As input to the HMMs, we use few, expressive features

extracted out of the trajectories of head and hands. First, we

transform the position of the hands into coordinates relative to

the head position and normalize the coordinates with respect

to the size of the face bounding box. For one-handed gestures,

we use polar coordinates in the image with the head as origin

and the velocity. Accordingly, the feature vector fone is defined

as fone = (r, φ, v). Here, r is the distance of the hand to the

head, φ is the angle, and v is the velocity.

Since the two-handed gestures we consider are symmet-

ric, we measure the difference in x/y-direction of their left

and right hand coordinates (x
l/r
t , y

l/r
t ) at time t in the fea-

tures dx = |xl
t| − |xr

t | and dy = yl
t − yr

t . Furthermore,

we record the sum of the y-coordinates of the hands in the

feature ylr = yl
t + yr

t and consider the change of the hand



coordinates in x-direction

∆xlxr = |xl
t| − |xl

t−1| + |xr
t | − |xr

t−1|. (6)

As a final feature, we consider the velocities of the hands vlr =
vl

t + vr
t . Thus, the feature vector ftwo is defined as

ftwo = (dx, dy, ylr ,∆xlxr, vlr ). (7)

The head gestures nodding and shaking are described by a

feature vector fhead which consists of the three Euler angles

of rotation roll, pitch, and yaw as well as their velocities

fhead = (θr , θp , θy , vθr , vθp , vθy ). (8)

D. Estimating Parameters of Gestures

Currently, we consider two parameterized gestures: Thisbig

and Pointing. The corresponding parameters are estimated

during the hold phase of the respective gesture. For Thisbig,

the estimation is done straightforwardly using the tangent

function and a learned mapping to estimate the distance of

the person to the camera given the size of the bounding box

of the face.

For the estimation of pointing targets, we use the three

rotation angles of the head pose. We assume that people are

looking to the object of interest they want to draw the attention

to and that the head pose coincides with the gaze direction.

Furthermore, we assume the 3D positions of potential pointing

targets to be known. First, we estimate the 3D position of the

head using the above mentioned mapping from bounding box

size to distance. Starting from that position, we construct a

straight line in direction of the roll, pitch, and yaw angle of

the head pose. Finally, we determine the object which has the

closest distance to that line.

VI. EXPERIMENTAL RESULTS

We performed a series of experiments in order to evaluate

our approach. To collect training data, we asked five different

people to perform gestures standing frontal in a distance of 1-

2.5m to the camera. We chose two different locations, different

lighting conditions, and different backgrounds (see Fig. 2).

We recorded and processed the videos with a rate of 20fps

and used a resolution of 640 × 480 pixel. We had a database

consisting of 75 samples per gesture which we manually

labeled, i.e., we marked the start and the end of each gesture as

well as the beginning and end of the hold phase. For training

and testing our hand detection system, we labeled the hands

in a set of images. We used 5000 image patches containing

hands for training the classifiers.

A. Hand Detection

First, we evaluated the performance of our hand detection

system. In this experiment, we evaluated solely the ability of

detecting hands using our system described in Sec. III (without

the tracker and the belief). The results are summarized in

Tab. I. The distance to the true (hand-labeled) position is

measured in pixels. A detection rate of over 80% is sufficient

as input to our belief to robustly track the hands. Also the

ability to distinguish between left and right hands with a

TABLE I

PERFORMANCE OF OUR HAND DETECTORS.

Detection rate False alarm rate Avg. dist.

Generic detector 81.25 0.10 2.89

Specific detector 89.50 5.56 -
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Fig. 5. Number of frames after which the most likely hypothesis is the
correct gesture.

detection rate of almost 90% and a false alarm rate of 5%

is highly satisfactory.

B. Gesture Recognition

The following experiment is designed to evaluate the per-

formance of our gesture recognition system. We computed the

Viterbi path in the composed HMMs at each time step and

counted how often the most likely hypothesis corresponded to

the true gesture. Fig. 5 shows the results for all six gestures.

The gestures could be reliably recognized after processing only

few frames. Nodding seems to be most difficult to recognize

because sometimes people barely move their head. Rarely, it

happens that Thisbig is classified as Dunno.

To better evaluate the ability of our HMMs to distinguish

arm gestures, we performed experiments in which we com-

puted for a given observation sequence the Viterbi path and

its likelihood for all individual gesture HMMs consisting of

the corresponding phase-HMMs (i.e., we did not use the

fully composed HMMs here). We then computed the joint

probability P (gl, gr, gtwo) of the gesture gl of the left, the

gesture gr of the right hand, and the two-handed gesture gtwo.

Fig. 6 plots the evolution of the probabilities of the ges-

tures over time for two sequences in which a person waved

with the left hand and (top image) and performed a Dunno

gesture (bottom image). In the beginning, the person was not

performing any meaningful gesture and, thus, the no gesture

model had the highest probability. Afterwards, the probability

of the correct gesture increased.

C. Parameter Estimation

Finally, we asked people to point to predefined targets. We

positioned eight different targets within a range of 1.5m to the

camera at different heights. The hold phase of all 66 pointing
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gestures was identified and the correct target was estimated in

80% of all cases.

Second, we asked people to indicate the size of objects. We

told them to indicate the sizes 25cm, 50cm, 100cm, and 150cm

and estimated the parameter in the hold phase. We performed

32 experiments and counted the nearest neighbor class of each

estimate. Our system was able to determine the correct class

in 94% of all cases.

VII. CONCLUSIONS

We presented an approach to robustly recognize typical

gestures performed with the head and the arms such as nodding

or pointing from monocular vision. We use trained classifiers

in combination with an adaptive skin color model to reliably

detect faces and hands. We segment complex gestures into

three phases and train HMMs for each phase separately given

few, expressive features. We then construct HMMs composed

of the individual phase-HMMs. Whenever a certain phase is

recognized, we can estimate the parameter of a gesture, e.g.,

the target of a pointing gesture.

Our approach has been implemented and evaluated on a

humanoid robot. As the experiments demonstrate, our system

works under realistic settings and is able to reliably spot and

recognize gestures. Gesture recognition is not restricted to peo-

ple whose gestures were collected during the training phase.

However, it is assumed that the people perform the individual

gestures sufficiently similar to those observed during training,

which is the case for the class of gestures we consider.
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