
Hierarchical and State-based Architectures for Robot
Behavior Planning and Control

Philipp Allgeuer and Sven Behnke

Autonomous Intelligent Systems, Computer Science Institute VI, University of Bonn, Germany
pallgeuer@ais.uni-bonn.de, behnke@cs.uni-bonn.de

http://ais.uni-bonn.de

Abstract—In this paper, two behavior control architectures for
autonomous agents in the form of cross-platform C++ frameworks
are presented, the State Controller Library and the Behavior
Control Framework. While the former is state-based and gener-
alizes the notion of states and finite state machines to allow for
multi-action planning, the latter is behavior-based and exploits a
hierarchical structure and the concept of inhibitions to allow for
dynamic transitioning. The two frameworks have completely in-
dependent implementations, but can be used effectively in tandem
to solve behavior control problems on all levels of granularity.
Both frameworks have been used to control the NimbRo-OP,
a humanoid soccer robot developed by team NimbRo of the
University of Bonn.

I. INTRODUCTION

The programming of complex agent behaviors that are
intended to function in highly dynamic environments can be
a challenging task in modern robotics. Without the support
and uniformity of a well-defined behavior control architecture,
this task can be even harder. Two such behavior control
architectures, implemented as cross-platform C++ frameworks,
are presented in this paper and proposed for use. These are the
State Controller Library (SC Library) and the Behavior Control
Framework (BC Framework).

An agent system with clearly defined inputs and outputs
is considered, one that at every instant must select its output
action(s) based on its signal inputs. These signals may involve
sensory inputs that quantify characteristics of the environment,
and/or signals directly from external sources or other agents.
This action selection process is referred to as the behavior
control problem, where a behavior is taken to be an observable
and coordinated pattern of activity of an agent, involving
action and/or response to stimuli from the environment [1].
Every robotic agent requires some form of architecture for
behavior control in order to complete the tasks that it is
given. Simple reactive feedback control loops have been used
since the earlier days of robotics with much success, but
with the increasing complexity of tasks and capabilities of
robotic systems, these have grown insufficient to be a complete
solution for applications such as robot soccer and domestic
service robotics.

The challenge is to find an efficient and modular way
of representing and programmatically implementing complex
behavioral systems in code, ideally in the form of a library
or framework. Any such construct needs to facilitate the
implementation and encapsulation of near-arbitrary control
systems, capable of dealing with real-world effects such as
disturbances, sensor noise, environment stochasticity, and par-
tial controllability and/or observability. These are conditions

for which traditional artificial intelligence (AI) architectures
were generally not designed to handle, with simplified and
abstracted virtual environments being more typical platforms
for the development of AI than the highly dynamic environ-
ments generally encountered by autonomous mobile agents. A
trivial example of this would be the observation that, while
an agent that simply uses a predetermined sequence of actions
for its behavior may be consistently successful in a structured
and deterministic software environment, a similarly controlled
robot would likely fail whenever any of the aforementioned
real-world conditions come into play. In addition to the effi-
ciency and modularity requirements of a behavior framework,
it is also desirable for such a framework to inherently support
the notion of planning into the future, as opposed to focusing
on purely reactive control. This is specifically addressed by
the SC Library, as described later in Section III.

Both frameworks were designed, implemented, utilized
and tested within the setting of humanoid robot soccer. As
opposed to being mutually exclusive for an application, these
two frameworks were written in a way that they can easily
and effectively be used in tandem. The NimbRo-OP robot [2],
developed by team NimbRo of the University of Bonn, was
used as a testbed. The NimbRo-OP is a humanoid platform that
is open source, both in terms of its hardware and software. As
such, the SC Library and the BC Framework are available as
part of the NimbRo Robot Operating System (ROS) soccer
package software release for the NimbRo-OP. It is to be noted
however that despite their origins in the area of humanoid
robot soccer, the frameworks were written to be completely
generic, allowing them to be used in virtually any type of
robotic system—or even software system—that requires some
notion of behavior control. Nevertheless, in a broad sense, the
two frameworks are targeted for use in real-time systems. The
NimbRo-OP currently makes use of the BC Framework for its
soccer behaviors.

II. RELATED WORK

As behavior control is one of the fundamental problems in
the field of robotics, many approaches have been developed
in the past. Behavior control has been heavily researched
within the context of artificial intelligence [3]. This has led
to a number of architectures and classical artificial intelligence
approaches. These were generally developed within the setting
of simplified virtual environments however, and so were not
designed for use on robots in highly dynamic real-world
environments, with all the nonidealities that come with it.
An example of such an architecture is the Belief, Desire and
Intention (BDI) agent model [4], [5]. This model is based
on modal logics and the partial or complete axiomatization

behnke
Schreibmaschine
In Proceedings of 8th Workshop on Humanoid Soccer Robots13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, 2013.



thereof. Multiple BDI logic variants exist, but all of them
in general include modalities for beliefs, desires, intentions,
capabilities, actions, agency, and time [6]. A strength of
the BDI logics is their strong formalization and theoretical
foundations, but it is a non-trivial task to apply such logics to
describe and control robots in real-world applications [7].

Earlier approaches to behavior control from the field of
robotics include the subsumption architecture, a behavior-
based approach. This was originally proposed by Brooks in
[8], but was later modified in [9] and [10]. The idea of the
subsumption architecture is to arrange the behaviors in a layer
hierarchy where higher layers can influence and suppress the
data flow of lower layers in order to achieve higher-level
goals. Brooks constructed a number of robots to demonstrate
the architecture, leading in particular to robots with insect-
level behavior and intelligence [11], [12]. Adaptation of the
architecture to more complex systems proved to be difficult.

Maes developed the Agent Network Architecture (ANA)
[12], [13], also a behavior-based artificial intelligence ap-
proach. In this architecture, the agent consists of a distributed
and decentralized collection of primitive behaviors, referred to
as competence modules. The competence modules are divided
into groups of incompatible behaviors, and interact based on a
network of predecessor, successor and conflictor links in such
a way that the various modules are activated and inhibited
dynamically when appropriate. Each competence module only
implements a single basic primitive behavior however, so
the activation network would grow quite large for real-size
problems and become slow and overwhelmed by details [12].
Also, it is a difficult task to tune all of the network parameters
and activation functions so that the appropriate module(s) for
a given situation in general tend to be activated.

In a different category to the previously mentioned ap-
proaches to behavior control are the class of behavior control
languages—languages that were specifically designed for the
specification of behaviors, usually on a rather conceptual level.
Examples include the Behavior Language by Brooks [14],
which was based on [10] and his prior work on the subsump-
tion architecture, the Configuration Description Language [15],
and Colbert [16], part of the Saphira Control Architecture [17].
A more recent example of a behavior control language is the
Extensible Agent Behavior Specification Language (XABSL).
Originally developed in [18] as an XML-based language, it has
been extended and improved incrementally in works such as
[19], which introduced a behavior language representation for
XABSL with a more compact syntax. The idea behind XABSL
is to use a hierarchy of finite state machines called options to
select the appropriate action(s) to execute from a set of basic
behaviors. XABSL currently finds relatively widespread use in
humanoid soccer.

Behavior languages in general excel at abstracting away
coding particularities of more generic low-level programming
languages such as C++, allowing the main focus of behavior
coding to remain more on ‘what’ rather than ‘how’. This also
generally allows more succinct representations of behaviors,
or the interactions between them, to be constructed. The main
disadvantage of using a behavior language is the overhead
of coupling two different programming languages together, in
terms of both project architecture and runtime considerations.
A runtime engine is often required to execute the resulting

State A 

Params: X 

State B 

Params: - 

State C 

Params: Y 

State Controller 

Current State 

State A (X = 4) 

State C (Y = F) 

State B 

State A (X = 7) 

State Queue 
External 

Code 

Fig. 1. A block diagram of the SC Library architecture with three sample
states and a populated state queue.

behaviors and integrate them with the remaining code, which is
not as efficient as behavior implementations that are seamlessly
integrated using the one target language. The interfacing of
data signals between the two languages can also be a chal-
lenge, often limiting the flexibility of such behavior control
approaches. Neither of the frameworks presented in this paper
is a language in its own right.

The next category of behavior control architectures are the
state-based techniques. An example is the hierarchical control
structure for mobile agents proposed in [20]. As the behaviors
of a robot under development often grow incrementally from
rather simple beginnings, it is not uncommon for a behavior
control system to consist simply of a custom implementation of
a finite state machine. When this becomes too cumbersome,
or is otherwise not desired, many finite state machine code
libraries exist that can be used to implement such basic state-
based approaches (e.g. [21]). To the knowledge of the authors
however, no other simple state machine implementation exists
that allows for the planning of multiple future states as the
State Controller Library presented in this paper does. This was
a feature that was considered to be important for flexibility and
extensibility reasons.

III. THE STATE CONTROLLER LIBRARY

A. Overview

The State Controller Library is a generic platform indepen-
dent C++ framework that allows finite state machines, hierar-
chical state machines, and multi-action planning generaliza-
tions thereof to be realized. The structure and implementation
of the library focuses on the application of such architectural
constructs to real-time control loops, but can be reasonably
adapted for virtually any other application, even completely
unrelated to control systems. While the underlying ideas and
structure of the SC Library are of predominant interest here,
it is worth noting that the simplicity of this behavior con-
trol approach allows for a very lightweight, unintrusive and
resource-efficient implementation.

The core idea of the library is to have a state controller
object with a certain collection of state object types that are
bound to it. These state object types (i.e. classes in C++) are
henceforth simply referred to as the states of the controller.
Instantiations of a state are referred to as instances of that state,
or state instances. These instances are executed by the state
controller in the required order, as stipulated by a dynamically
maintained list of desired future states. This list, which is



embedded inside the corresponding state controller, is referred
to as the state queue. Each state is responsible at runtime for
specifying its own outgoing state transitions by modifying this
state queue. Although it is not necessary for an application
to use the full flexibility of the queue—there are abstractions
available in the SC Library that hide away the details of
the queue if only simple functionality is required—it is still
available at little to no performance cost. This increases the
extensibility of control systems implemented using the library,
and caters for applications where some form of action planning
is desired. An overview of the SC Library architecture is shown
in Figure 1. The latest release of the library as at September
2013 is version 1.2, and is available for download from the
project page [22], where all future releases will also be made
available.

B. Motivation

The conception of the State Controller Library was driven
by two main considerations. The first was the need for a
simple first solution to the behavior control problem for the
NimbRo-OP robot. When the NimbRo-OP platform was first
being programmed with basic soccer skills, a simple state ma-
chine framework was required to write the behaviors, pending
a more powerful and long-term solution. In anticipation of
the creation of the more powerful behavior control framework
however, it was a second core consideration that the SC Library
be able to be used to implement finite state machines within
the individual behaviors of the future framework (i.e. the BC
Framework). This would be for the case that an individual
behavior requires a notion of sequentiality and state that is
best implemented locally. An example of this is a walking
or kicking behavior that uses different states internally for
the different phases of the corresponding motion. As such
it was important that the SC Library be able to be used for
applications ranging all the way from the implementation of
a whole soccer behavior system, down to the implementation
of the smallest and most fundamental finite state machines
in the code—without incurring any unnecessary overhead or
performance losses. The performance and efficiency of the
library was of particular importance due to the real-time nature
of the NimbRo-OP control task.

Further attributes that were desired of the SC Library were
for it to be robust to incorrect use, able to plan multiple actions
into the future, and able to integrate seamlessly with the target
code of the NimbRo-OP. The structure of the implementation
was also desired to be control-based, not event-based. No
existing state machine library was found that addressed all
of the requirements outlined in this section.

C. Library Structure

The State Controller Library is written in C++, so it is
able to make use of the object-oriented programming paradigm
to break down the state control structure into a collection of
objects. As previously indicated, the main objects in use are
the state controller, the state queue, and the individual state
instances. These terms were carefully defined in Section III-A.

At the core of the SC Library is a step routine that controls
the execution of the state controller. The routine may be called
continuously or at arbitrary intervals, but the intended use for

control applications is for it to be called from a timed loop
running at some nominal rate. Each step executes one so-
called cycle of the state controller. In each cycle, it is first
checked whether the currently executing state instance has set
a flag in the last cycle that it has completed its task. If so,
the state instance sitting at the head of the state queue is
popped from the queue, activated and executed. If this state
instance also completes its task some number of cycles later,
during which time it is executed once per step, it is deactivated
before the successor state is activated. Users of the library
have the option to write specific code to handle the activation
and deactivation events of the individual states. Once a state
instance has been deactivated, it is marked as complete and
can never be executed again. To reenter a previous state, a new
instance of that state simply needs to be created and placed
into the queue, as normal. Callbacks are made available to
the user at all the stages of the main loop so that application
specific code can be injected as necessary.

The motivation behind having individual state instances
intended for single use only is so that multiple instances of
a state can exist concurrently within the state queue, and so
that the various state instances can be individually configured
via state parameters. These are parameters that are passed to
a state instance at construction time, and are used to specialize
the task of a particular instance. For example, if a state has
the task of bringing a robot to a particular global pose, then
the state parameters can be used to specify the target global
pose for a particular state instance. The power of this method
is that multiple instances of a state within the queue can have
differing customized objectives. To achieve even comparable
results, standard finite state machines would somehow have
to keep track at all times of where in a desired sequence of
actions the currently executing state fits in, and modify the
state objectives locally. This is not only more complex and
error-prone to implement, but it also forces lower-level states
such as locomotion states to be imparted with knowledge of
higher-level goals.

D. State Transitions and the State Queue

Each state instance when it executes is responsible for mod-
ifying the state queue, the dynamically manipulatable ordered
list of states that are pending execution by the state controller.
As would generally occur when there are multiple items in
the queue though, a state is not actually obliged to modify
it. This allows low-level behavior states to be implemented
(such as for locomotion) that do not need to deal with any
knowledge of higher-level planning, as they do not need to
specify their successor state. The successor state is already
uniquely determined as the state that was previously placed
at the head of the queue. As such, the higher-level planning
can naturally be separated from the lower-level states that
actually execute the plans, reducing the code complexity and
clarifying its programmatic and behavioral intent compared
to what would be expected with more traditional finite state
machine implementations. It is important to note however, that
an agent is still not committed to a plan once it has been
pushed into the state queue. The queue can still be modified
at any time by clearing, inserting, removing, rearranging, etc.
the states as required, which can be necessary if significant
changes in the environment are perceived.



Wait for 

Button 

Walk to 

Pose 

Dive for 

Ball 

Monitor 

Ball 

Walk to 

Pose 

Params: 

x, y, θ 

Fig. 2. A simplified example of a goalie behavior using the SC Library. Boxes
represent the state instances, and the arrows indicate the possible transitions
between them. The Walk to Pose state has three state parameters.

For smaller applications of the SC Library, pure simple
next-state logic can be achieved by configuring the individual
state instances to only ever add a single item to the end of
the state queue, guaranteeing that this item will be at the
head of the queue and the one and only successor state.
Convenient shortcuts for this common operation exist within
the library. In larger applications of the SC Library where the
number of possible transitions grows quadratically with the
number of states, it often occurs that certain groups of states
have a collection of similar outgoing transitions, activated on
similar preconditions. To avoid unnecessary code duplication,
generic transition routines can be embedded inside the state
controller object to apply the appropriate collection of outgoing
transitions to multiple states at a time. Taking the idea of
grouping the states a step further leads to a natural extension
of the SC Library—if a parent state controller is used to
selectively switch between a set of subordinate state controllers
that each implement one of the groups of the original states,
then a hierarchical state machine structure like the one in
[20] emerges. It is then possible to go even further and
take advantage of the state queues embedded in each of the
subordinate controllers, allowing for even greater flexibility.

A fundamental difference between the SC Library and
a large proportion of the other state machine libraries that
already exist is that no explicit definition of a transition map
or transition table is required in the code. An example of an
entry in such a transition table would be a rule specifying that
the combination of a certain event occurring in a certain state
should cause a transition to a particular successor state. When
employing simple next-state logic using the SC Library, this
is encapsulated in the executed target code of a state, when a
transition to another state is triggered from within a conditional
expression. The ‘event’ in this case would be the change of the
evaluation of the conditional expression from false to true. No
direct analog of a transition table exists however when the state
transitions come about due to the sequencing of multiple states
in the state queue (although this is still equivalently performed
by each of the individual state instances). This is regarded as
a feature though, as it allows for more flexible and dynamic
transitioning behavior, often desired in real-world applications.

E. Example

Due to the large number of states and possible transitions
in a typical behavior control system, a complete example
for a humanoid soccer behavior controller is not given here.
Consider however the simplified goalie behavior controller
presented in Figure 2. The goalie starts at the sidelines and
must wait for a button press before it starts walking to its

Behaviour 2 Behaviour 1 Behaviour 3 Behaviour 4 

Layer 1 Layer 2 

Behaviour 

Manager 

Interface 

Layer 

External 

Code 

Fig. 3. A block diagram of the BC Framework architecture. Solid arrows
indicate the object hierarchy, dashed arrows indicate the data exchange
interfaces, and dotted arrows indicate sample inhibitions.

designated position in the goal. It then monitors the location of
the ball based on its visual detections and can decide to dive at
any time to protect the goal. While the goalie is keeping track
of the ball, it may also decide to walk to a better defensive
position within the goal area, before continuing to monitor
the ball. The two instances of the Walk to Pose state have
been kept separate in the diagram as a conceptually different
task is being performed in each case, despite being the same
underlying state. Also, as indicated in the figure, the Walk to
Pose state has three state parameters, which are used to specify
the target pose of the robot.

When the robot is started and the state controller is initial-
ized, three states would immediately be pushed into the queue,
Wait for Button, Walk to Pose and Monitor Ball. This has the
effect that Walk to Pose does not need to specify, or even know,
that its desired successor state in this case is Monitor Ball,
and allows for a simpler and clearer implementation of the
behavior. Once in the monitoring state, if the goalie decides to
walk to a better location, it would enqueue a Walk to Pose state,
followed by another instance of the Monitor Ball state, and
mark the current state instance as being complete. This would
once again relieve the Walk to Pose state of needing to know
for what particular purpose, or as part of what plan, it was
called upon. It is emphasized however that the goalie can still
clear the queue and repopulate it at any time if the enqueued
states are no longer appropriate. For example, if the button is
pressed while the goalie is still walking out to its desired field
position, the future monitoring state can be cleared from the
queue and replaced with an instance of the Wait for Button
state. The use of a state queue would also be advantageous if
for example a fixed obstacle was detected on the way to the
goal area. The robot would be able to dynamically prepend
extra Walk to Pose states to the front of the queue in order
to avoid the obstacle, all the while not ‘forgetting’ the desired
successor state on arrival in the goal area, as an instance of
Monitor Ball is still at the back of the queue.

IV. THE BEHAVIOR CONTROL FRAMEWORK

A. Overview

The Behavior Control Framework [23] is a generic platform
independent C++ framework designed for behavior control
on robotic platforms. It is intended for the implementation
of mid- to high complexity agent behaviors. The main idea



behind the framework is to separate the control task into a pool
of independent behaviors, partitioned into so-called behavior
layers, where each behavior can be defined to inhibit any
number of other behaviors from within the same layer. The
layers are generally organized in a total order of decreasing
abstraction and resolution, and share information via virtual
actuators and sensors, controlled by corresponding actuator
and sensor managers. A parent behavior manager links all of
the layers together and implements a step routine that controls
the execution of the entire structure. The layers are executed in
a user-defined order, generally corresponding to the total order
from highest level of abstraction to lowest level of abstraction.
A key feature of the BC Framework is that multiple behaviors
can concurrently be activated in each layer. An overview of
the BC Framework architecture is presented in Figure 3.

B. Motivation

As discussed in Section III-B, the Behavior Control Frame-
work was developed as a more powerful and complete solution
to the behavior control problem for the NimbRo-OP. Being
suitable for use in all application sizes down to the simplest
of controllers was no longer a requirement, as it was for
the SC Library. Instead, the focus was on the creation of a
framework that would facilitate the implementation of complex
behavior controllers, suitable for use on the NimbRo-OP
and for humanoid soccer. Performance and efficiency of the
framework were still of high consideration, as well as its
integrability and interoperability with the remaining code. The
BC Framework was inspired by, and based on, a custom
behavior control architecture that had been in development and
use by team NimbRo for almost a decade [24]. Work actually
started on the BC Framework as an attempt to extract the
architecture of this tried and tested custom implementation into
a standalone framework. In the process however, a number of
distinct changes were made in order to address the remaining
weaknesses of the architecture, while striving to retain its many
strengths. Usability, structure and customizability are examples
aspects of the architecture to which improvements were made.

C. Behavior Inhibitions

The inhibitions between the behaviors of each behavior
layer are processed at the beginning of program execution, be-
fore the step routine is first called. At this point, the inhibition
definitions are compiled into a directed acyclic graph, referred
to as the inhibition tree. It is strictly an error if a cycle in the
inhibitions exist, as this would lead to unpredictable behavior
activations. Individual inhibition definitions can be specified
as being either chaining or non-chaining. The chaining inhi-
bitions are considered to act transitively with other chaining
inhibitions, leading to additional implicitly defined inhibitions,
while the non-chaining inhibitions do not. Once the inhibition
tree has been established, the behaviors are topologically sorted
with respect to it, in order to ensure that the resolution of the
inhibitions at runtime is unambiguous.

At the beginning of every step, each behavior in a layer is
queried for its requested activation level. This is a real number
on the unit interval and is a measure of how relevant a behavior
is to the current perceived situation. A value of 1.0 corresponds
to a request for complete activation, while 0.0 corresponds
to complete deactivation. The activation levels are used for

Go Behind 

Ball 
Kick Ball 

Search for 

Ball 

Head 

Control 

Fig. 4. A simplified example of a ball approach and kick behavior using the
BC Framework. Boxes represent behaviors, and the double and single arrows
between them represent chaining and non-chaining inhibitions respectively.

two purposes, to evaluate which behavior(s) are active in a
layer at any one time, and to aggregate actuator values, as
discussed in Section IV-D. The behaviors are traversed in their
topological order, and the respective inhibitions are applied
multiplicatively. This means for example that if a behavior with
an activation level of 0.7 inhibits another behavior of activation
level 0.9, then the latter will have its activation level reduced
through multiplication by 1 − 0.7 = 0.3, to 0.27. In by far
the most common case, this means that a behavior with an
activation level of 1.0 completely prevents all of the behaviors
it inhibits from executing. In this way, the requested activation
levels are refined into a set of true activation levels.

D. Behavior Layer Data Interfaces

As the hierarchy of behavior layers are executed during
a step from the top down, it is generally required that the
output of higher order planning in the upper layers is made
available to the lower layers. This is done using a network
of virtual actuators and sensors. Each layer receives data
through its sensors and delivers its output via its actuators.
This is a single sender multiple receiver arrangement, where
multiple sensors in multiple layers can request to receive the
data from the same actuator. Actuators are uniquely identified
by name, and support the use of arbitrary data types for
information exchange. If the data type numerically supports
it, an actuator can be made to be aggregatable. This allows
multiple concurrently active behaviors to write to the same
actuator. The output that is read by the corresponding sensors
is then calculated as the average of the written values, weighted
by activation level. This allows competing behaviors to have
combined influence on an agent, provided this is desired.

In addition to the transfer of data between layers, there is
usually also a need to exchange data with external sources.
Most commonly this is in the form of real-world sensory
perceptions and motion commands. The concept of interface
layers exists for this purpose. From the perspective of the
behavior manager, this is simply a normal behavior layer
with a slightly modified time of callback execution. This is
necessary so that the external data can be sent and received
at the appropriate times within a step. In the case of the
NimbRo-OP robot, a ROS interface layer was implemented
to allow communication of the behaviors node with the other
nodes in the system via the inbuilt ROS topics and services.
Interface layers also make it possible to split up a behavior
control system over process boundaries, meaning that multiple
loop rates can be used. For example, higher layers can be made
to execute at a slower rate than the more time-critical lower
layers.

E. Example

Consider the simple ball approach and kick behavior
presented in Figure 4. For simplicity, the system has been



implemented using only a single behavior layer. The blocks
represent behaviors, and the double and single arrows between
them represent the chaining and non-chaining inhibitions re-
spectively. It should be noted that although no direct arrow
exists between Kick Ball and Search for Ball, the former still
inhibits the latter implicitly via the Go Behind Ball behavior
due to the effect of chaining. Only Search for Ball inhibits
Head Control however, either explicitly or implicitly. In this
arrangement each behavior would return a requested activation
level of 1.0 if the suitable preconditions are met, and 0.0
otherwise. For example, Go Behind Ball would return a 1.0
whenever the sensory perceptions indicate that the ball can be
seen on the field, and Search for Ball would always return 1.0.
Note however that the Head Control behavior can still execute
whenever the Search for Ball behavior is itself inhibited.

A strength of the use of inhibitions is that it leads to a
behavioral switching dynamics that is somewhat automated,
functioning without the explicit definition of any transitions or
the like. For example, consider the Kick Ball behavior, which
returns an activation level of 1.0 if and only if the ball is
directly in front of a foot. Assuming the ball is visible, the
robot would walk towards the ball until the preconditions of
the kick are met, at which point Kick Ball would automatically
activate and suppress the Go Behind Ball walking behavior.
Furthermore, on conclusion of the kick, the walking behavior
would automatically reactivate as soon as the kicking behavior
reports a zero activation level again. If the ball is suddenly
observed once more in an appropriate kicking location, then the
walking behavior, or for that matter whichever other behavior
is running at the time, once again would temporarily be
suppressed while the kick takes over. The advantage of using
inhibitions is that all these transitions, which would normally
explicitly have to be specified, can be summarized into a very
select few inhibition definitions.

V. CONCLUSION

Two frameworks for behavior control have been presented
in this paper, the State Controller Library and the Behavior
Control Framework. The former is an effective framework for
implementing low to mid-level complexity agent behaviors, es-
pecially behaviors that have a tendency of requiring structured
sequences of actions. It has been demonstrated to be useful
in implementing miscellaneous finite state machines required
throughout the NimbRo-OP platform code. One limitation of
the framework however, is that it does not inherently allow
more than one basic behavior to be active at any one time,
even if this effect could theoretically be achieved with the
use of multithreading. This point, amongst many others, was
addressed by the advent of the BC Framework, which utilizes
a tree of behavior inhibitions to evaluate at every instant
in time which behavior(s) should be activated. This allows
multiple aspects of an agent to be controlled simultaneously
by independent behaviors. The BC Framework was intended
for the implementation of agent behaviors from mid- to high
complexity, more so than the SC Library, but it does not
preempt the use of the latter. For instance, the SC Library
can still be used within the individual behaviors of a BC
Framework architecture to implement action sequences based
on finite state machines. Both frameworks were designed with
performance and efficiency in mind, and form a robust base
on which a behavior control system can be built.

ACKNOWLEDGEMENT

This work was partially funded by grant BE 2556/10 of
the German Research Foundation (DFG).

REFERENCES

[1] R. Wallace, G. P. Sanders, and R. J. Ferl, Biology: The Science of Life,
3rd ed. New York: Harper Collins, 1992.

[2] M. Schwarz, J. Pastrana, P. Allgeuer, M. Schreiber, S. Schueller,
M. Missura, and S. Behnke, “Humanoid TeenSize Open Platform
NimbRo-OP,” in Proceedings of 17th RoboCup International Sympo-
sium, Eindhoven, Netherlands, 2013.

[3] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
New Jersey: Prentice Hall, 1995.

[4] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a BDI-
architecture,” in Proceedings of the Second International Conference
on Principles of Knowledge Representation and Reasoning (KR91).
Morgan Kaufmann, 1991, pp. 473–484.

[5] A. S. Rao and M. P. Georgeff, “BDI agents: From theory to practice,”
in Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-95). AAAI Press, 1995, pp. 312–319.

[6] A. S. Rao and M. P. Georgeff, “Formal models and decision procedures
for multi-agent systems,” Technical Note, 1995.

[7] H. D. Burkhard, M. Hannebauer, and J. Wendler, “Belief-Desire-
Intention deliberation in artificial soccer,” AI Magazine, vol. 19, no. 3,
pp. 87–93, 1998.

[8] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[9] R. Brooks, “A robot that walks; Emergent behaviors from a carefully
evolved network,” Neural Comput., vol. 1, no. 2, pp. 253–262, 1989.

[10] J. Connell, “A colony architecture for an artificial creature,” Ph.D.
dissertation, Electrical Engineering and Computer Science, May 1989.

[11] R. Brooks, “Intelligence without representation,” Artificial Intelligence,
vol. 47, pp. 139–159, 1991.

[12] P. Maes, “The agent network architecture (ANA),” SIGART Bulletin,
vol. 2, no. 4, pp. 115–120, 1991.

[13] P. Maes, “Situated agents can have goals,” Robotics and Autonomous
Systems, vol. 6, no. 12, pp. 49–70, 1990.

[14] R. Brooks, “The Behaviour Language; User’s Guide,” MIT AI Lab,
1990.

[15] D. MacKenzie, “A design methodology for the configuration of
behavior-based mobile robots,” Ph.D. dissertation, Georgia Institute of
Technology, GA, USA, 1997.

[16] K. Konolige, “Colbert: A language for reactive control in Sapphira,”
in KI-97: Advances in Artificial Intelligence, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1997, pp. 31–52.

[17] K. Konolige and K. Myers, “The Saphira architecture for autonomous
mobile robots,” in Artificial intelligence and mobile robots. Cambridge,
MA, USA: MIT Press, 1998, ch. 9, pp. 211–242.

[18] M. Lötzsch, “XABSL - A behavior engineering system for autonomous
agents,” Diploma thesis. Humboldt-Universitt zu Berlin, 2004.

[19] M. Risler, “Behavior control for single and multiple autonomous agents
based on hierarchical finite state machines,” Fortschritt-Berichte VDI,
Technische Universitt Darmstadt, May 15 2009. [Online]. Available:
http://tuprints.ulb.tu-darmstadt.de/2046

[20] A. Kurt and Ü. Özgüner, “Hierarchical finite state machines for au-
tonomous mobile systems,” Control Engineering Practice, vol. 21,
no. 2, pp. 184–194, 2013.

[21] E. Hiti. (2005) The Machine Objects Class Library. [Online]. Available:
http://ehiti.de/machine objects/

[22] P. Allgeuer. (2013, Jul) State Controller Library. [Online]. Available:
http://sourceforge.net/projects/statecontroller/

[23] P. Allgeuer. (2013, Sep) Behaviour Control Framework. [Online].
Available: http://sourceforge.net/projects/behaviourcontrol/

[24] S. Behnke and J. Stückler, “Hierarchical reactive control for humanoid
soccer robots,” International Journal of Humanoid Robots (IJHR),
vol. 5, no. 3, pp. 375–396, 2008.


