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ABSTRACT

Pointing gestures are a common and intuitive way to draw
somebody’s attention to a certain object. While humans
can easily interpret robot gestures, the perception of human
behavior using robot sensors is more difficult.
In this work, we propose a method for perceiving pointing
gestures using a Time-of-Flight (ToF) camera. To determine
the intended pointing target, frequently the line between a
person’s eyes and hand is assumed to be the pointing direc-
tion. However, since people tend to keep the line-of-sight
free while they are pointing, this simple approximation is
inadequate. Moreover, depending on the distance and angle
to the pointing target, the line between shoulder and hand
or elbow and hand may yield better interpretations of the
pointing direction. In order to achieve a better estimate,
we extract a set of body features from depth and amplitude
images of a ToF camera and train a model of pointing di-
rections using Gaussian Process Regression.
We evaluate the accuracy of the estimated pointing direction
in a quantitative study. The results show that our learned
model achieves far better accuracy than simple criteria like
head-hand, shoulder-hand, or elbow-hand line.

Categories and Subject Descriptors

I.2.9 [Artificial Intelligence]: Robotics—Operator Inter-
faces, Sensors; I.4.8 [Image Processing and Computer
Vision]: Scene Analysis—Range data

General Terms

Design, Human Factors, Measurement

Keywords

Human-Robot Interaction, Gesture Recognition

.

Figure 1: Application scenario from ICRA 2010 Mo-
bile Manipulation Challenge. Our robot approaches
the user and he selects a drink by pointing to it.

1. INTRODUCTION
Non-verbal communication is a key component of human-

human interaction. Humans use non-verbal cues to accentu-
ate, complement, or substitute spoken language. In the con-
text of human-robot interaction, however, many approaches
focus on speech recognition and well-designed dialogues, al-
though the interpretation of non-verbal cues such as body
pose, facial expressions, and gestures may either help to dis-
ambiguate spoken information or further complement com-
munication [5, 10, 7].

An important non-verbal cue in human communication is
pointing. Pointing gestures are a common and intuitive way
to draw somebody’s attention to a certain object. While
robot gestures can be designed in a way that makes them
easily understandable by humans [4], the perception and
analysis of human behavior using robot sensors is more chal-
lenging.

We investigate natural human-robot interaction in the
context of domestic service tasks. In our system (cf. Fig. 1,
[16]), we complement speech recognition with the interpre-
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tation of gestures such as pointing to objects, showing of ob-
jects, or stopping the robot. Using a Time-of-Flight (ToF)
camera, we recognize pointing gestures and interpret them
in order to infer the intended pointing target.
From the depth images of the ToF camera, we extract

body features such as the position of the head, the elbow,
and the hand. Frequently, the line between a person’s eyes
and hand is assumed to be the pointing direction. How-
ever, since people tend to keep the line-of-sight free while
they are pointing, this simple approximation is inadequate.
Moreover, depending on the distance and angle to the point-
ing target, the line between shoulder and hand or elbow and
hand may yield better estimates of the pointing direction.
Instead of interpreting gestures with such simple approxi-
mations, we propose to learn a model of pointing directions
from the observation of humans. For this purpose, we use
Gaussian Process Regression (GPR, [3]) as a non-parametric
function approximator.
We evaluate our approach in an experiment with 16 par-

ticipants pointing at 24 different objects. The results show
that our learned model achieves far better accuracy than
simple criteria like the head-hand, shoulder-hand, or elbow-
hand lines. We compare our system to state-of-the-art ap-
proaches, e. g., using stereo vision, and demonstrate superior
performance.
The remainder of this paper is organized as follows: After

a review of related work in Section 2, we briefly introduce
our service robot system, in which we integrated pointing
gestures as a natural cue in human-robot interaction. We
detail our approach for recognizing and interpreting point-
ing gestures in Sections 4 and 5. Finally, we evaluate the
accuracy of the estimated pointing directions in Section 6.

2. RELATEDWORK
Gesture recognition has been investigated by many re-

search groups. A recent survey has been compiled by Mitra
and Acharya [14]. Most existing approaches are based on
video sequences (e. g., [7, 15, 1]). These approaches are,
however, sensitive to lighting conditions. In contrast, we
utilize a Time-of-Flight (ToF) camera which actively illu-
minates the scene and measures depth independent of the
lighting. ToF cameras have already been used to recognize
hand gestures [9, 2] and for human pose estimation [6, 8].
Loper et al. [10] recognize two gestures for commanding

a robot to halt or to enter a room. They use a ToF camera
similar to the sensor in our approach. The supported ges-
tures do not include any further parameters like a pointing
direction that have to be estimated.
Pointing to objects on a table in close range has been

described by McGuire et al. [13]. They use a multi-layer
perceptron classifier to localize hand and finger tips in stereo
images and estimate the pointing direction from the finger
direction. Martin et al. [11] train neural networks on Gabor
filter responses. Their approach starts from face detection
and determines two regions of interest, where they extract
filter responses after background subtraction. Sumioka et
al. [18] used motion cues to establish joint attention.
Huber et al. [7] use a stereo vision system which is ac-

tively controlled by a behavior-based gaze controller. They
track body features in proximity spaces and determine the
pointing direction from the shoulder-hand line. Their sys-
tem detects pointing gestures by the relative angle between
forearm and upper arm. In their experimental setup, two

different persons pointed to eight marked positions on the
floor. The authors report a mean accuracy of 0.41m with a
standard derivation of 0.17m.

In the approach proposed by Nickel et al. [15], skin color
information is combined with stereo-depth for tracking 3D
skin color clusters. In order to be independent of lighting
conditions, the authors initialize the skin color using pix-
els of detected faces. Nickel et al. use a statically mounted
stereo camera system for perceiving pointing gestures. They
apply a color-based detection of hands and head, and cluster
the found regions based on depth information. Using hidden
Markov models (HMMs) trained on different phases of sam-
ple pointing gestures, they estimate two types of pointing
directions – the head-hand line and the 3D forearm direc-
tion.

The use of multiple modalities to complement and disam-
biguate individual communication channels has been investi-
gated, e. g., by Fransen et al. [5]. They integrate information
from visually perceived pointing gestures, audio, and spoken
language for a robot that performs an object retrieval task.
The robot has to disambiguate the speaker and the desired
object in the conversation. However, no quantitative analy-
sis of their approach to pointing gesture recognition is given.

In our approach, we use depth from a ToF camera and
learn the correct interpretation of the pointing direction
from human observation.

3. SYSTEM OVERVIEW
We investigate intuitive human-robot interaction with our

service robots Dynamaid [16] and Cosero. We designed the
robots with an anthropomorphic upper body scheme that
supports natural interaction with human users. The robots
can synthesize and recognize speech as well as gestures.

We demonstrated our system successfully at the ICRA
2010 Mobile Manipulation Challenge and at RoboCup 2010
in the @Home league, where we came in second. In an ex-
emplary scenario, the robot searches for persons, approaches
them, and offers them an object retrieval service, e. g., to
fetch beverages. The person can either tell the robot what
and where to search or simply point to the object.

For such a task, the robot has to be aware of the persons in
its surroundings. We combine complementary information
from laser scanners and vision to continuously detect and
keep track of people [17]. A laser scanner in a height of
24 cm detects legs, while a laser scanner in the lower torso
detects trunks of people. In a multi-hypothesis tracker, we
fuse both kinds of detections to tracks. With a camera on
the head of the robot, we can verify that a track belongs to
a person by detecting more distinctive human features like
faces and upper bodies on the track. Since the laser scanners
measure in a larger field-of-view (FoV) than the cameras, it
is not possible to verify all tracks as persons in a single
view. To enhance the FoV of the camera effectively towards
the FoV of the laser scanners, we implement an active gaze
strategy that utilizes the pan-tilt neck and the yaw joint in
the torso of our robot.

Once a new person is found, the robot approaches the
person and offers her/him to fetch a beverage of choice. The
robot waits for information about the desired object. We
developed a method to recognize pointing gestures and to
interpret its intended pointing target with a ToF camera.
During a gesture, our robot adjusts its gaze to keep the
head and the hand of the user visible in the sensor image.
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Figure 2: Results of body part segmentation. a) Amplitude image with detected face (red box). b) Body
segment. c) Abdomen segment. d) Arm segments. e) Unprocessed point cloud with intensity values coded
in levels of gray. f) Head (green) and torso (red) segment. g) Arm segments (yellow).

4. POINTING GESTURE RECOGNITION
Our approach to the perception of pointing gestures is

based on amplitude images as well as three-dimensional point
clouds of a ToF camera. This allows to perceive the 3D
direction in which the person is pointing. We determine
the pointing direction in three steps: detecting the person’s
head, segmenting the person’s body into parts, and localiz-
ing the person’s elbow, shoulder and hand.

4.1 Time-of-Flight Camera
Time-of-Flight (ToF) cameras are compact, solid-state sen-

sors, which provide depth and reflectance images at high
frame rates. They employ an array of light emitting diodes
that illuminate the environment with modulated near-infra-
red light. The reflected light is received by a CCD/CMOS
chip for every pixel in parallel. Depth information is gained
by measuring the phase shift between the emitted and the
reflected light. The Mesa SR4000, that we are using, also
provides the amplitude image that corresponds to the inten-
sity of the reflected light and has similar characteristics to a
gray-scale image of a standard visible-light camera.

4.2 Head Detection
In the amplitude image of the ToF camera, we detect fron-

tal and profile views of faces using the Viola and Jones [19]
algorithm. Fig. 2 shows an amplitude image in which a user
faces the camera and performs a pointing gesture. We seek
to determine the centroid of the head and approximate this
point with the centroid of the points on the head within the
face bounding box as follows.
When a face is detected, we first determine the centroid

of the 3D points within the face bounding box. Since the
2D face bounding box may contain background, we remove

outliers from the head cluster by rejecting points with a large
distance to the centroid. The distance threshold for rejecting
points needs to be chosen appropriately to take the sensor’s
accuracy in distance measurements into account. For our
setup, we use a threshold Tr = 8 cm. From the remaining
points, we redetermine the head centroid.

The detection performance of the Viola and Jones algo-
rithm is not perfect. E. g., its detection rate decreases with
distance from the frontal or the profile view. This occurs
frequently during gesture recognition, since people tend to
look into the direction they are pointing. We resolve this is-
sue by tracking the head cluster in the 3D point cloud once
it has been established through face detection. When a face
cannot be found, we initialize the head cluster with the head
centroid of the previous frame and keep the resulting head
cluster if it is similar in diameter and height.

4.3 Body Segmentation
Once the head is detected, we segment the person’s body

from the background. For this purpose, we apply 3D region
growing using the centroid of the head as a seeding point.
To accelerate computation, we utilize the 2D pixel neigh-
borhood of the camera’s image array. Because ToF cameras
measure a smooth transition along depth jump-edges at ob-
ject boundaries [12], jump-edge filtering is essential prior to
region growing in order to avoid the merging of unconnected
regions. We terminate region growing if a point exceeds the
maximal extensions of a human upper body, described by a
bounding box that extends 100 cm from the head downwards
and 100 cm in each horizontal direction.

In order to reliably segment the arms from the remainder
of the torso, we determine the diameter of the abdomen.
We assume that the center of the abdomen is located 50 cm



below the head. Furthermore, if the arms perform a pointing
gesture, they are not connected with the abdomen in the
point cloud. In this case, we can consider those points of the
person’s body as belonging to the abdomen that lie below
the upper chest, i. e., at least 40 cm below the head.
To obtain the arm segments, we first exclude all points in

the body segment that lie within the horizontal projection
of the abdomen. Then we grow regions on the remaining
points to find the individual arms. Fig. 2 illustrates the
main steps of the segmentation procedure.

4.4 Hand and Elbow Localization
To find the arm and elbow locations, a cost value for ev-

ery point in the arm segment is calculated. The cost of
a specific point corresponds to the traveled distance from
the head during the region growing process. As result, our
method assigns a cost value to the finger tip that is close to
the maximum cost, independent of the arm posture. Thus,
the hand location is approximated by the centroid of the
points with the maximum cost in the arm cluster. The el-
bow can be found by exploiting the anatomical property
that forearm and upper arm have similar length. Hence, the
elbow is given by the point on the arm with median dis-
tance to the head. The shoulder is simply the point from
the arm cluster with minimal distance to the head. Fig. 3
shows determined locations of hand, elbow, and shoulder in
an exemplary situation.

Figure 3: Determined pointing directions: head-
hand pointing direction (blue line) between the
face centroid (yellow sphere) and the hand position
(green sphere) and the elbow-hand pointing direc-
tion (red dashed line) between the elbow position
(cyan sphere) and hand position (green sphere).

4.5 Gesture Detection
We segment the pointing gesture in three phases, the

preparation phase, which is an initial movement before the
main gesture, the hold phase, which characterizes the ges-
ture, and the retraction phase in which the hand moves
back to a resting position. We train hidden Markov models
(HMMs) for the individual phases. Since gesture phases ap-
pear in a given order, the HMMs for the specific phases are
composed in a topology similar to [1].
As input to the HMMs, we use expressive features ex-

tracted in the previous step. The input feature vector f is
defined as f = (r, φ, v), where r is the distance from the

head to the hand, φ is the angle between the arm and the
vertical body axis and v is the velocity of the hand.

5. POINTING DIRECTION ESTIMATION
After a pointing gesture has been detected, we seek to in-

terpret its intended pointing target. The pointing direction
strongly depends on the distance and angle to the target. Es-
pecially for distant targets, the line through eyes and hand
may be used to approximate the line towards the target.
However, since people tend to keep the line-of-sight to the
target free while they are pointing, this simple approxima-
tion is not accurate. Also, the line through shoulder and
hand or elbow and hand could provide better approxima-
tions for specific target distances and angles.

Instead of interpreting gestures with such simple approxi-
mations, we propose to learn a model of pointing directions
directly from the observation of humans.

5.1 Gaussian Process Regression
We apply Gaussian Process Regression (GPR, [3]) to train

a function approximator that maps extracted body features x
to a pointing direction y. The basic assumption underly-
ing Gaussian Processes (GPs) is that for any finite set of

points X = {xi}
N

i=1
the function values f(X) are jointly

normally distributed, i. e.,

f(X) ∼ N (0,K),

where the elements of the covariance matrix K are deter-
mined by the kernel function Knm = k(xn, xm).

In GPR, observations yi at points xi are drawn from the
noisy process

yi = f(xi) + ǫ, ǫ ∼ N (0, σ2

0).

GPR allows to predict Gaussian estimates for any points x∗,
based on training examples D := {(xi, yi)}

N

i=1
:

µ(x∗) = K
T

∗ C
−1

y, (1)

σ
2(x∗) = K∗∗ −K

T

∗ C
−1

K∗, (2)

where C = K + σ2

0I and y := (y1, . . . , yN )T . The matri-
ces K∗∗ and K∗ contain the covariances between the query
points x∗, and between x∗ and the training points X, re-
spectively.

We model similarity in a local context of the input space
by means of the Radial Basis kernel function

k(x, x′) = θ exp

(

−
1

2
(x− x

′)TΣ−1(x− x
′)

)

(3)

with Σ = diag
(

σ2

1 , . . . , σ
2

M

)

, where M := dim(x) and θ is
the vertical length scale. In regions that are far away from
training examples, large predicted variance indicates high
uncertainty in the estimate.

In order to perform GPR, we collect training examples of
pointing gestures to various pointing locations from several
test persons. For a new measurement x̂ of body features dur-
ing a pointing gesture, we apply Eq. 1 to obtain a pointing
direction estimate ŷ and an associated variance.

5.2 Low-dimensional Gesture Representation
The efficiency of learning algorithms crucially depends on

the dimensionality of the parameter space. In order to repre-
sent the arm posture in a low-dimensional feature space that
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Figure 4: Illustration of experiment setup from (a) frontal and (b) side view. The test person stands in front
of the robot at 2m distance (blue dot) and points to the pointing targets (green spheres). Estimated pointing
directions are depicted by arrows: head-hand (blue), elbow-hand (dashed red), shoulder-hand (green), and
GPR (yellow). The robot measures angles between body features in its base coordinate frame (black).

is independent of a person’s size and arm length, we trans-
form the 3D locations of the hand, elbow, and shoulder into
an angular representation.
For this purpose, we measure angles in an egocentric co-

ordinate system from the perspective of robot. In this coor-
dinate system, the x-direction and y-direction point behind
and to the right of the robot in the horizontal plane, re-
spectively. The z-axis corresponds to the vertical upward
direction. The angular representation consists of yaw and
pitch angles of the directions from head to shoulder, from
head to elbow, and from head to hand. Hence, the fea-
tures x in our GPR learning framework are six-dimensional.
We model the pointing direction y as yaw and pitch angle
relative to the person’s head.

6. EXPERIMENTS
In order to evaluate the accuracy of the pointing direc-

tion, we conducted experiments in an indoor scenario. We
asked 16 test persons with average European body heights
and proportions to perform 24 pointing gestures to 20 dif-
ferent pointing targets for our robot Dynamaid [16]. The
pointing targets have been distributed in the scene at dif-
ferent height levels 0m, 0.8m, 1.5m and 2m, with at least
0.5m distance to each other (cf. Table 1 and Fig. 4). The
participants were asked to stand in a distance of 2m in front
of the robot and align their upper body towards it. Fig. 4
illustrates the location of targets, robot, and test subjects
in our setup. The participants were instructed to perform
separate, natural pointing gestures to a sequence of pointing
targets, including some of the targets twice. The gestures
where meant to be interpreted by the robot.
The order and selection of the pointing targets was ran-

domly chosen, ensuring that the same pointing targets were
not in succession. The pointing targets were announced to
the test persons one by one right before they performed the
pointing gesture, to avoid a prepossession in the pointing
direction.
For every pointing gesture, we calculated the shortest dis-

tance between the pointing line and the target position ed.
We also measure the angular deviation eθ between the ac-

Pointing Target
No. Distance in m Height in m Angle in deg
1 1.41 0 45
2 2 0 90
3 2.24 0 63.43
4 2.24 0 26.57
5 2.24 0.8 26.57
6 2.83 0 45
7 2.83 0.8 45
8 3 0 90
9 3 1.5 90
10 3.04 0 99.46
11 3.04 1.5 80.54
12 3.04 1.5 99.46
13 3.04 2 80.54
14 3.16 0 71.57
15 3.16 2 71.57
16 3.16 2 108.43
17 3.35 0 63.43
18 3.35 1.5 63.43
19 3.35 2 63.43
20 3.61 0 123.69

Table 1: Location of pointing targets: Distance from
the test person, height above the floor, and horizon-
tal angle between target and robot, from the test
person’s point of view.

tual and the measured pointing direction from the head to
the target position.

We split our experiment data into training and test point-
ing gestures. The training dataset consists of all the 192
gestures of eight subjects. We used the 192 gestures of the
remaining eight persons as the test dataset. We train our
model on the training dataset and evaluate the accuracy of
the learned model on the test dataset. As length-scale pa-
rameter and signal standard deviation in GPR we use 1.0.

Fig. 5 shows the distance and angular errors of the dif-
ferent pointing directions and the pointing direction by our
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Figure 5: Average distance (a) and angular (b) errors by pointing target for head-hand, elbow-hand, shoulder-
hand, and GPR pointing direction. Center and size of the bars indicate mean and standard deviation.

trained model for the pointing gestures in the test data set.
The angular errors of the different pointing directions by test
person are shown in Fig. 6. The figure includes the head-
hand, shoulder-hand and elbow-hand line for the training
and test dataset and the pointing direction by our trained
model for the test dataset. In addition, angular errors by
distance and angle to the target are shown in Fig. 7.
The results show that for many target locations, the head-

hand line is a rough but better approximation than the
shoulder-hand or elbow-hand line. However, in some sit-
uations, the shoulder-hand or elbow-hand line yield lower
errors. For targets that are located at an angle of 90◦ to
the right of the persons, the shoulder-hand line yields lower
errors in our experiments (cf. Fig. 5).
In all cases, our trained model approximates the point-

ing direction clearly more accurate than the simple mod-
els. Note, that GPR considers the complete arm posture
through the low-dimensional gesture representation in the
feature space. Our results indicate that simple criteria like
the head-hand line are inadequate to estimate the pointing
direction accurately, especially in certain ranges of target
locations.
One-way analysis of variance (ANOVA) were performed to

compare the mean error and standard deviations of the four
pointing directions. The ANOVA test showed that there is
a significant difference between the mean errors and stan-
dard deviations with F (3, 684) = 108.16, p < 0.01. Multiple
comparisons with the Tukey Honestly Significant Differences
(HSD) method showed a significant difference (p < 0.01) be-
tween the mean errors of the GPR pointing direction and the
mean errors of the three other pointing directions.

ed in m σd in m eθ in deg σθ in deg
Head-Hand 0.39 0.17 9.19 3.94
Elbow-Hand 0.49 0.28 11.88 7.26

Shoulder-Hand 0.44 0.25 10.54 5.56
GPR 0.17 0.12 2.79 1.99

Table 2: Average distance and angular test set error.

The overall average error of all pointing gestures and all
test persons is given in Table 2. The table shows that the
candidates seem to roughly point in the direction of the
head-hand line. Our trained model outperforms the simple
estimates clearly.

Compared to the approach by Nickel et al. [15], we achieve
a higher accuracy in the pointing target estimation. Nickel
et al. find hands through color segmentation and estimate
the 3D location of head and hand with a stereo camera sys-
tem. Their experiment comprises 129 pointing gestures, per-
formed by twelve subjects to eight different pointing targets.
The targets have been distributed in a maximum range of
4m to the camera. They report an average angular error
of 25◦, using the head-hand line to estimate the pointing
direction.

Huber et al. [7] also evaluate the accuracy of their point-
ing direction estimate. They localize and track body fea-
tures with a stereo vision system and determine the point-
ing direction from the shoulder-hand line. They report a
mean error of 0.41m with a standard deviation of 0.17m.
In their experimental setup, two different persons pointed
to eight marked positions on the floor. The positions were
distributed to the left, to the right, in front, and behind the
person with a maximum distance of 3m in any direction.
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Figure 6: Distance (a) and angular (b) errors by person for the head-hand, elbow-hand, and shoulder-hand
direction for test and training datasets. The accuracy of the GPR pointing direction estimate is shown for the
test data set (person 9-16). Center and size of the bars indicate mean and standard deviation, respectively.

7. CONCLUSION
In this paper, we proposed an approach to recognize point-

ing gestures and to estimate the intended pointing direction.
Using depth and amplitude images of a Time-of-Flight cam-
era, we localize body parts such as the head, elbow, and
hand of a human user. After recognizing pointing gestures,
we determine the pointing direction with a model that we
learn from human observation. The trained model maps
postural features to pointing directions. These features are
encoded as angles from head to hand, elbow, and shoulder,
relative to the robot’s forward direction.
We evaluated the accuracy of the estimated pointing di-

rections in an experiment with sixteen test subjects pointing
at twenty different object locations. The results show that
our learned model achieves far better accuracy than simple
criteria like head-hand, shoulder-hand, or elbow-hand line.
Our system also achieves higher accuracy in estimating the
pointing direction than reported by Nickel et al. [15] and
Huber et al. [7] using a stereo-camera system.
We developed the pointing gesture recognition method for

our service robot system. Accuracy is important for this
application. The higher the accuracy of the pointing direc-
tion estimate, the better can pointing gestures be used to
correctly focus the attention of the robot to objects or to
disambiguate between objects.
In future work, we will adopt our approach to other para-

metric gestures, like size-indicating gestures. Our approach
is not restricted to amplitude and depth images of a Time-of-
Flight camera. The use of color and depth information from
an RGB-D sensor and the extraction of more body features
could further extend the applicability of our approach.
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C. Gonsior, D. Joho, M. Schreiber, and S. Behnke.
The humanoid museum tour guide Robotinho. In
Proceedings of the 9th IEEE-RAS International
Conference on Humanoid Robots (Humanoids), 2009.

[5] B. Fransen, V. Morariu, E. Martinson, S. Blisard,
M. Marge, S. Thomas, A. Schultz, and
D. Perzanowski. Using vision, acoustics, and natural
language for disambiguation. In Proceedings of the
ACM/IEEE International Conference on
Human-Robot Interaction (HRI), 73-80, 2007.



(a)
 0

 5

 10

 15

 20

1.4 2.0 2.2 2.8 3.1 3.3 3.6

A
n

g
u

la
r 

E
rr

o
r 

in
 d

e
g

Distance to Target in m

Head-Hand
Elbow-Hand

Shoulder-Hand
GPR

(b)
 0

 5

 10

 15

 20

 45  63  71  80  90  99  108  123

A
n

g
u

la
r 

E
rr

o
r 

in
 d

e
g

Angle to Target in deg

Head-Hand
Elbow-Hand

Shoulder-Hand
GPR

Figure 7: Angular errors for the head-hand, elbow-hand, shoulder-hand, and the GPR pointing direction,
by distance to the target (a) and horizontal angle between target and robot, from the test person’s point of
view (b). Center and size of the bars indicate mean and standard deviation.
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