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I. INTRODUCTION

The ability to anticipate human behavior is essential for
robots to interact safely and efficiently with humans. In this
work, we integrate anticipatory behavior into the control
of a mobile manipulation robot using a smart edge sensor
network. The external sensors provide global observations,
future predictions, and goal information, enhancing the
robot’s ability to navigate safely and collaborate effectively.

We present two key approaches to human behavior an-
ticipation: (1) safe navigation using projected human mo-
tion trajectories from the smart edge sensor network into
the robot’s planning map, and (2) collaborative furniture
handling, where the robot anticipates human intentions to
achieve a predefined room layout. Fig. 1 illustrates these
two scenarios in which we anticipate human behavior. By
incorporating human trajectories observed and predicted by
the smart edge sensor network into the robot’s planning
framework, we enable it to benefit from global context in-
formation and thus navigate more safely in dynamic human-
centered environments. In the collaborative furniture han-
dling scenario, anticipation combines compliant control with
goal inference, enabling efficient human-robot interaction.

Our experiments demonstrate that integrating anticipatory
behavior improves navigation safety and enhances collabo-
ration efficiency. We showcase a system that utilizes human
behavior anticipation to safely navigate while collaboratively
achieving a target room layout, including the placement of
tables and chairs. This work builds upon prior research on
mobile robots as nodes in a smart edge sensor network [1],
now focusing on anticipatory human behavior for real-time
robotic action. These advancements contribute to making
human-robot interactions more intuitive, safe, and effective.

II. METHOD

We use a PAL Robotics TIAGo++ [2] omnidirectional
dual-arm mobile manipulator, shown in Fig. 2 (a), equipped
with an Orbbec Gemini 335 RGB-D camera and a Zotac
ZBOX QTG7A4500 computer mounted on the back of the
robot. The robot is informed by a smart edge sensor network
consisting of 25 sensor nodes, shown in Fig. 2 (b), with
an Intel RealSense D455 RGB-D camera and an Nvidia
Jetson Orin Nano compute board with an embedded GPU
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Fig. 1. Two scenarios in which our robot anticipates human behavior.
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Fig. 2. Robot and sensor setup: (a) PAL Robotics TIAGo++ robot; (b)
exemplary smart edge sensor.

for onboard semantic perception using lightweight CNNs [3],
[4]. The smart edge sensors are mounted at a height of
∼2.5m, distributed over a lab space of ∼240m2 size.

An overview of the data processing architecture of the
proposed approach is given in Fig. 3. The sensor network
gathers semantic observations of the scene, i.e. detections
and keypoints of persons, robots, and objects, as well as
semantic point clouds [3]–[5]. The sensor views are fused
into an allocentric 3D semantic scene model on a central
backend comprising a volumetric semantic map of the static
environment as well as dynamic human, robot, and object
models. The sensors receive semantic feedback to incorpo-
rate global context, e.g. about occlusions, into their local
perception [3], [5].

The robot augments its local perception, manipulation,
and navigation capabilities with global context information
received as semantic feedback from the backend of the smart
edge sensor system. The robot’s localization is initialized and
tracked by the external smart edge sensors. Additionally, it
receives feedback about persons who are in its vicinity but
are out of sight of its internal sensors, e.g. due to occlu-
sions or limited Field of View (FoV), and their predicted
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Fig. 3. Data processing architecture of the developed approach. A network of smart edge sensors supervises the work space. It detects persons, robots,
and objects and estimates their pose. The backend fuses local percepts and controls the task. Both the robot and the sensors incorporate semantic feedback.

movement, as well as the intended target configuration of the
manipulation task. This enables anticipatory human-aware
robot navigation where the robot can preemptively adjust
its navigation path, e.g. to persons appearing from behind
occluders or to reach the intended target pose for picking up
or placing an object.

The smart edge sensor network from our prior works [3]–
[5] provides an allocentric 3D scene model, tracking humans,
robots, and objects for safe and efficient interaction. We
extend the semantic perception to separate closely positioned
furniture instances using a fine-tuned YOLOv8 model [6],
extracting keypoints for precise pose estimation. The robot
employs onboard perception with MM-Grounding-Dino [7]
and Nano-SAM [8] for local open-vocabulary object recog-
nition. Grasp poses for efficient manipulation are calculated
from the object masks and point cloud segments.

Anticipatory human-aware navigation integrates person
tracking and velocity predictions into the robot’s dynamic
cost map for obstacle avoidance, enabling foresighted path
adaptation. During collaborative furniture handling, the robot
anticipates human grasp and placement intentions, dynam-
ically adjusting its goal poses. A compliant control mode
allows human-guided transport of tables, while chairs are
autonomously manipulated by the robot alone.

Our system demonstrates improved safety, efficiency, and
intuitiveness in human-robot collaboration through predictive
and adaptive behavior.

III. EXPERIMENTS

We evaluate our system through structured experiments
on anticipatory human-aware navigation and collaborative
furniture transport.

In the navigation experiments, the robot integrates real-
time semantic feedback from smart edge sensors to anticipate
human movements beyond its onboard sensor range, enhanc-
ing safety in environments with frequent occlusions. Results
reported in Table I demonstrate a significantly increased
minimum safety distance—at least 50 cm—compared to only
8 cm in the worst case without anticipation.

For collaborative furniture handling, the robot anticipates
human intent for object pickup and placement, using compli-
ant control to assist in table carrying. Compared to a baseline
without anticipation, task execution is 26 seconds faster on
average, with reduced pose error.

TABLE I
AVERAGE AND WORST-CASE PERSON–ROBOT SAFETY DISTANCE.

w/o anticipation w/ anticipation

S1 S2 S1 S2

avg. 0.23 m 0.19 m 0.71 m 0.79 m
worst 0.08 m 0.12 m 0.50 m 0.61 m

Results from five experiment runs for two subjects (S1, S2).

Finally, in a continuous furniture rearrangement task, the
system autonomously identifies objects for transport, antic-
ipates target placements, and ensures safe navigation while
interacting with a human partner. The results validate the
effectiveness of our approach in improving safety, efficiency,
and intuitiveness in human-robot collaboration. The experi-
ments are illustrated in the attached video and a full video
is available online1.

IV. CONCLUSIONS

We present approaches to incorporate allocentric semantic
context information from smart edge sensor network obser-
vations to anticipate human behavior on two levels: (1) in
the context of human-aware navigation to improve safety,
by projecting predicted human trajectories into the planning
map of a mobile robot, and (2) in the context of collaborative
mobile manipulation for improving efficiency, by anticipating
intentions to work towards a desired goal.

Both approaches are evaluated in real-world experiments
and compared against non-anticipatory baseline approaches
utilizing only on-board sensors and a graphical user interface
for human-robot interaction. Our approach demonstrates
safer human-aware navigation and improved efficiency for
human-robot collaboration with a mobile manipulation robot.
We show that the robot anticipates persons emerging from
behind occlusions and preemptively adjusts its navigation
path to maintain a safe distance by incorporating semantic
feedback of human pose observations from external sensors.

An integrated demonstration shows our approach’s poten-
tial for collaborative human-robot interaction, achieving the
complex task of setting a room layout with tables and chairs.

Directions for future work include implementing anticipa-
tory human-aware navigation also on a higher planning level,
instead of using the local obstacle cost map, taking long-term
goals and intents of the persons into account.

1www.ais.uni-bonn.de/videos/GRC_2025_Bultmann
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