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Abstract. Calibration of multi-camera systems, i.e. determining the
relative poses between the cameras, is a prerequisite for many tasks in
computer vision and robotics. Camera calibration is typically achieved
using offline methods that use checkerboard calibration targets. These
methods, however, often are cumbersome and lengthy, considering that a
new calibration is required each time any camera pose changes. In this
work, we propose a novel, marker-free online method for the extrinsic
calibration of multiple smart edge sensors, relying solely on 2D human
keypoint detections that are computed locally on the sensor boards
from RGB camera images. Our method assumes the intrinsic camera
parameters to be known and requires priming with a rough initial estimate
of the camera poses. The person keypoint detections from multiple views
are received at a central backend where they are synchronized, filtered,
and assigned to person hypotheses. We use these person hypotheses to
repeatedly solve optimization problems in the form of factor graphs.
Given suitable observations of one or multiple persons traversing the
scene, the estimated camera poses converge towards a coherent extrinsic
calibration within a few minutes. We evaluate our approach in real-world
settings and show that the calibration with our method achieves lower
reprojection errors compared to a reference calibration generated by an
offline method using a traditional calibration target.

Keywords: camera calibration · human pose estimation · factor graphs

1 Introduction

Sensor calibration is an essential prerequisite for most intelligent systems, as they
combine data from numerous sensors to perceive a scene. To successfully interpret
and fuse the measurements of multiple sensors, they need to be transformed
into a common coordinate frame. This requires the sensor poses in a common
reference frame—their extrinsic calibration. An imprecise calibration can lead to
degradation in performance and can possibly cause critical safety issues.
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Fig. 1. Extrinsic camera calibration using person keypoint detections (a) computed
locally on different smart edge sensors: (b) based on a Google EdgeTPU Dev Board [12]
and (c) based on an Nvidia Jetson Xavier NX Developer Kit [26]. 2D keypoints from
multiple views are synchronized, filtered, and assigned to 3D person hypotheses (d)
on a central backend. Observations are accumulated over time and a factor graph
optimization is solved to obtain the optimal camera poses (coordinate systems in (d),
with the blues axis being the view direction).

For multiple reasons, the task of camera calibration is an inherently difficult
one to solve [25]: First, the calibration parameters change over time, by normal
usage, e.g. due to vibration, thermal expansion, or moving parts. Therefore, it is
not sufficient to calibrate the parameters only once during the construction of the
system. Instead, calibration must be performed repeatedly throughout its lifetime.
Second, the calibration parameters cannot be measured directly with sufficient
precision; they must be inferred from the data captured by the considered cameras.
Typically, the calibration is performed by actively deploying a calibration target
of known correspondences in front of the cameras, e.g. a checkerboard pattern [34].
However, this requires expertise and might be perceived as cumbersome and
lengthy when it has to be applied repeatedly for a large multi-camera system.
Further challenges for inferring calibration parameters from image data involve
accounting for noisy measurements and collecting a sufficient amount of data
points spread over the entirety of the image planes.

In this work, we develop a novel, marker-free method for calibrating the
extrinsic parameters of a network of static smart edge sensors, where each sensor
runs inference for 2D human pose estimation. In particular, we infer the relative
poses between the cameras of the deployed smart edge sensor boards in real
time using the person keypoint detections transmitted by the sensors [3], as
illustrated in Fig. 1. 2D keypoints from multiple views are synchronized, filtered,
and assigned to 3D person hypotheses on a central backend, where observations
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are accumulated over time and a factor graph optimization [8] is solved to obtain
the optimal camera poses. The method can handle multiple persons in the scene,
as well as arbitrary occlusions, e.g. from tables or pillars. We assume the intrinsic
parameters of the cameras to be known and a rough initial estimate of the
extrinsic calibration to be available, which can easily be obtained, e.g. from a
floor plan or by tape measure.

Our proposed method alleviates many of the issues mentioned above: No
specific calibration target is required; it suffices for one or several persons to
walk through the scene. The method handles data association between multiple
observed persons and their unknown dimensions. We propose an efficient online
algorithm that optimizes the camera poses on-the-fly, giving direct feedback on
success and when enough data has been captured. The calibration procedure thus
can be repeated easily to account for parameter change over time, without expert
knowledge. Furthermore, person keypoints can be detected from a significantly
larger range of viewing angles (e.g. front, back, or side-view) than the pattern of
a classical checkerboard calibration target, which is well detected only from a
frontal view. This facilitates the collection of a sufficient amount of corresponding
data points visible in multiple cameras that well constrain the factor graph
optimization, further reducing the time required for calibration.

We evaluate the proposed approach in real-world settings and show that
the calibration obtained with our method achieves better results in terms of
reprojection errors in the targeted application domain of 3D multi-person pose
estimation, compared to a reference calibration generated by an offline method
using a traditional calibration target. We make our implementation publicly
available1.

2 Related Work

Camera Calibration. Traditional methods for camera calibration are based on
using artificial image features, so-called fiducials. Their common idea is to deploy
a calibration target with known correspondences in the overlapping field of view
(FoV) of the considered cameras. Zhang [34] utilizes a checkerboard pattern on
a planar surface to perform intrinsic calibration of single cameras. The kalibr
toolkit [28] uses a planar grid of AprilTags [27] to perform offline extrinsic and
intrinsic calibration of multiple cameras, which allows to fully resolve the target’s
orientation towards the cameras and is robust against occlusions. We apply this
method to obtain a reference calibration for evaluating our work.

Reinke et al. [29] propose an offline method for finding the relative poses
between a set of (two) cameras and the base frame of a quadruped robot. They
use a fiducial marker mounted on the end-effector of a limb as the calibration
target. The camera poses are resolved using a factor graph [8], modeling kinematic
constraints between the marker frame and the base frame together with the visual
constraints. We take up the idea of using factor graphs to model the calibration
constraints in our work.
1 https://github.com/AIS-Bonn/ExtrCamCalib_PersonKeypoints

https://github.com/AIS-Bonn/ExtrCamCalib_PersonKeypoints
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To cope with the issues of traditional approaches, methods for camera cali-
bration have been proposed that do not extract fiducial features from calibration
targets but use naturally occurring features instead. Komorowski et al. [18]
extract SIFT features [23] and find correspondences between multiple views using
RANSAC [11]. They use segmentation to remove dynamic objects and validate
their approach on stereo vision datasets. Their method is targeted towards one
or a few small-baseline stereo cameras and offline processing of a small batch
of images. Bhardwaj et al. [1] calibrate traffic cameras by extracting vehicle
instances via deep neural networks (DNNs) and matching them to a database
of popular car models. The extracted features and known dimensions of the car
models are then used to formulate a PnP problem [11]. They assume a planar
ground surface in the vicinity of the cars and process results offline.

A variety of methods considering surveillance scenarios use pedestrians as
calibration targets. Lv et al. [24] track head & feet detections of a single pedes-
trian walking on a planar surface during the leg-crossing phases to perform offline
extrinsic calibration of a single camera based on the geometric properties of
vanishing points. Following a tracking approach, they resolve the corresponding
intrinsic parameters based on Zhang [34]. Hödlmoser et al. [16] use a similar
approach as [24], but expand the method to calibrate a camera network from
pairwise relative calibrations. The absolute scale of the camera network is re-
solved by manually specifying the height of the walking person. Liu et al. [21]
require a moderately crowded scene to perform online intrinsic and extrinsic
calibration of a single camera by assuming strong prior knowledge regarding
the height distribution of the observed pedestrians. The approach is based on
computing vanishing points using RANSAC. In [22] they expand their method
by introducing a joint calibration for a network of cameras based on the Direct
Linear Transform [14]. Henning et al. [15] jointly optimize the trajectory of a
monocular camera and a human body mesh by formulating an optimization
problem in the form of a factor graph. They apply a human motion model to
constrain sequential body postures and to resolve scale.

Guan et al. [13,31] detect head & feet keypoints for each observable pedes-
trian and perform pairwise triangulation assuming an average height for all
visible persons in the image pair. They then compute the calibration offline,
using RANSAC, followed by a gradient descent-based refinement scheme. Their
resulting calibration is only defined up to an unknown scale factor, which must be
resolved manually. The method assumes the center lines between all pedestrians
to be parallel, in other words, all persons are assumed to stand upright during
the calibration, whereas other poses, e.g. sitting persons, are not supported. Our
method, in contrast, extracts up to 17 keypoints per person [20] using convolu-
tional neural networks (CNNs) and assumes neither the dimensions or height of
the persons, nor their pose or orientation towards the cameras to be known. As
for the unknown dimensions of the persons, the scale of our calibration is also
ambiguous up to a single scale factor. To address this issue, we force the scale of
the initial estimate of the extrinsic calibration to be maintained throughout the
calibration procedure.
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Human Pose Estimation. Human pose estimation refers to the task of de-
tecting anatomical keypoints of persons on images. Early works use manually
designed feature extractors like HOG-descriptors [6] or pictorial structures [10,9].
In recent years, approaches using CNNs have become popular and yield impres-
sive results. Two well-known state-of-the-art and publicly available methods for
human pose estimation are OpenPose [5] and AlphaPose [19]. Both methods
estimate the poses of multiple persons simultaneously and in real time.

2D keypoint detections from multiple, calibrated camera views can be fused to
obtain 3D human poses. We consider a network of smart edge sensors, introduced
by Bultmann et al. [3,4], performing 3D human pose estimation in real time. Each
smart edge sensor performs 2D human pose estimation, processing the image data
locally on the sensor boards and transmitting only the obtained keypoint data. A
central backend fuses the data received by the sensors to perform 3D human pose
estimation via direct triangulation, and a semantic feedback loop is implemented
to improve the 2D pose estimation on the sensor boards by incorporating global
context information.

We adopt the smart edge sensor network [3] for our work, using the 2D person
keypoints detected by the sensors as calibration features and aim to improve and
facilitate the camera calibration required for this application scenario.

3 Method

Our method uses the image streams of a multi-camera system SN with N > 1
projective cameras Ci, i ∈ [0 . . N − 1], to extract and maximize knowledge about
the relative poses between all cameras in real-time, i.e. finding the translation
tij ∈ R3 and rotation Rij ∈ SO(3) ⊂ R3×3 between all camera pairs ij, where
the pose of the optical center of Ci is defined by

Ci =
(

Ri ti

0 1

)
∈ SE (3) . (1)

We call this the extrinsic calibration of the multi-camera system SN . Without loss
of generality, we chose the first camera C0 to be the origin of the global reference
frame and set C0 = I4×4. In its local coordinate system, the view direction of
each camera is the z-axis.

Fig. 2 gives an overview of our proposed pipeline. Each camera stream is
fed into a person keypoint detector on the connected inference accelerator [3].
We refer to the unity of camera and detector as a smart edge sensor. The
keypoint detections are transmitted to a central backend where they are time-
synchronized and processed further. The clocks of sensors and backend are
software-synchronized via NTP and each keypoint detection message includes a
timestamp representing the capture time of the corresponding image.

The preprocessing stage removes redundant and noisy detections after which
data association is performed, where correspondences between person detections
from multiple views are established. Corresponding person detections are fused
to form a person hypothesis and attached to a queue, which serves to decouple
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Fig. 2. Proposed pipeline for extrinsic camera calibration using smart edge sensors
and person keypoint detections. Images are analyzed locally on the sensor boards.
Keypoint detections are transmitted to the backend where multiple views are fused to
construct and solve optimization problems using factor graphs. A queue decouples the
preprocessing and optimization stages.

the preprocessing stage from the rest of the pipeline. The optimization stage
continuously reads from this queue, selects several person hypotheses, and uses
them to construct and solve an optimization problem in the form of a factor
graph [8]. The refinement stage updates the current estimate of the extrinsic
calibration by smoothing the intermediate results generated by the optimization
and compensates for scaling drift w.r.t. the initialization. As prerequisites for
our method, we assume the intrinsic parameters of the cameras to be known and
a rough initial estimate of the extrinsic calibration to be available, e.g. by tape
measure or from a floor plan. The FoVs of all cameras must overlap in such a
way that SN forms a connected graph.

3.1 Preprocessing

The backend receives N person keypoint detection streams and synchronizes and
preprocesses them such that they can be used for optimization. Each keypoint
detection Dp

j is associated to a person instance p and defined as

Dp
j = { (u, v)T, c , Σ } , (2)

where (u, v)T are the image coordinates, c ∈ [0, 1] is the confidence, Σ ∈ R2×2

is the covariance of the detection, and j is the joint index. The covariance Σ is
determined from the heatmaps used for keypoint estimation [3]. First, incoming
streams are synchronized into sets of time-corresponding detection messages of
size N , which we will refer to as framesets in the following. Preprocessing then
rejects false, noisy, redundant, and low-quality detections, passing through only
detections that are considered accurate and suitable for contributing to improving
the extrinsic calibration. For this, we check different conditions for each frameset,
which address the number of detections per sensor, the timestamps associated to
each sensor, or the confidence value of each detection. In particular, we reject all
framesets where the maximum span or standard deviation of timestamps exceeds
a threshold and consider only joint detections with a minimum confidence of
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Fig. 3. Data Association: 3D back-projection rays embedded in the global coordinate
system for the joint detections of one person (black), the corresponding reduction to
line segments after applying depth estimation (green), and the center of mass of the
corresponding person hypothesis (black). 3D human pose estimation according to [3]
shown for illustration purposes only.

0.6. We further require the hip and shoulder detections of each person to be
valid, which is necessary for robust data association. After filtering, we use the
distortion coefficients of each camera to undistort the coordinates of all valid
detections using the OpenCV library [2].

3.2 Data Association

In the data association step, we find correspondences between detections from
different sensors based on the current estimate of the multi-view geometry of the
camera network, which can still be inaccurate. First, we back-project each 2D
detection D into 3D, obtaining a ray pD with undetermined depth originating at
the optical center of the respective camera. Next, we reduce each ray pD to a line
segment lD by estimating the interval [zmin, zmax] in which the depth z of each
detection D lies, as illustrated in Fig. 3. For the depth interval estimation, we
assume a minimum and maximum torso height and width for the detected persons,
derived by a specified minimum and maximum person height to be expected
during calibration. The four torso keypoints (shoulders and hips) empirically are
the most stable and least occluded ones, and the physical distances between them
can be assumed constant for a person due to the human anatomy, independent
of the pose. The respective measured distance, however, depends on the persons’
orientation towards the cameras. Here, we assume worst-case orientations, leading
to larger depth intervals. In summary, we do not require persons to always stand
upright but support arbitrary poses and orientations towards the cameras instead.
Specifying a short person height interval leads to a more constrained search space
during data association, accommodating for an inaccurate initial estimate of
the extrinsic calibration or a crowded scene. A wider interval, however, yields
equal results in common scenarios, while supporting small and tall persons as
calibration targets alike. Depth estimation is the only component in the pipeline,
where human anatomy is exploited.

To find the correspondences between person detections from multiple views,
we deploy an iterative greedy search method similar to the approach of Tanke et
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al. [30], using the distances between the previously estimated line segments as
data association cost. We define the distance of two line segments l1, l2 as the
Closest Point-distance described by Wirtz et al. [33]:

dclosestpoint(l1, l2) = min (d⊥ (l1, l2) , d⊥ (l2, l1)) . (3)

To further improve the robustness of the approach, as the extrinsic calibration
is not precisely known, we iterate over all person detections, sorted in ascend-
ing depth order, utilizing the depth estimation (zmin + zmax)/2 of each person
detection. This exploits the fact that near person detections have a relatively
short interval [zmin, zmax] and, thus, a more constrained localization in 3D space.
Lastly, we compute the center of mass for each person hypothesis, which serves
to give a rough localization of each person hypothesis in 3D space, by averaging
the center points of the line segments of all assigned torso keypoints.

The data association stage outputs a list of person hypotheses that have been
observed by at least two different cameras, which will be used to construct a
factor graph optimization problem in the following.

3.3 Factor Graph Optimization

The optimization stage processes the person hypotheses obtained through data
association to extract knowledge about the extrinsic calibration of the utilized
multi-camera system. To this end, we construct a factor graph [7] encoding
projective constraints, based on a selection of person hypotheses, as well as
prior knowledge on the camera poses w.r.t. the initial estimate of the extrinsic
calibration or the results of previous optimization cycles.

The optimal selection of person hypotheses used in an optimization cycle
is determined by a selection algorithm from all available hypotheses, ensuring
an optimal spatial and temporal distribution of the observations, to obtain a
well-constrained optimization problem while also maintaining a reasonable degree
of entropy between selections over consecutive optimization cycles. For this, we
generate a random permutation of the indices of all available person hypotheses,
which is biased towards selecting newer hypotheses first. Selecting newer hypothe-
ses with higher probability is advantageous, as their data association and center
of mass are estimated more reliably, given that the extrinsic calibration improves
over time. Additionally, we ensure a minimum spacing between all selected person
hypotheses, w.r.t. to their center of mass, by only including the next person
hypothesis within the permutation if its distance towards all previously selected
person hypotheses is above a spacing threshold s = 0.2 m.

For each optimization cycle t, we construct a factor graph Gt by using a
selection of person hypotheses Ht. A factor graph is a bipartite graph consisting
of variable nodes and factor nodes [8]. Variable nodes represent the unknown
random variables of the optimization problem, i.e. the 3D joint positions of the
person hypotheses in Ht (landmark nodes) and the considered camera poses of
the multi-camera system SN (camera nodes). Factor nodes constrain the variable
nodes by encoding the available knowledge about the underlying distribution
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Fig. 4. Factor graph with camera variable nodes for the camera poses Ci and landmark
variable nodes for the 3D person joint positions Lj . Camera and landmark nodes can be
connected via binary projection factors to constrain the reprojection error of a person
keypoint detection. Each landmark node must be connected to at least two projection
factors for allowing triangulation. All camera nodes are connected to a unary prior
factor that encodes the initial uncertainty of the camera pose.

of the considered random variables. In particular, this refers to the obtained
observations contained in Ht as well as the resulting camera poses from previous
optimization cycles. Each factor node uses a Gaussian noise model that reflects
the confidence in the constraint it represents. The constructed factor graph is
illustrated in Fig. 4. We equip every camera node Ct

i with a unary prior factor,
encoding prior knowledge about the camera pose and its uncertainty, and use
binary projection factors connecting camera nodes to landmark nodes to encode
observation constraints based on person keypoint detections. Projection factors
calculate the reprojection error for a 2D detection w.r.t. the corresponding camera
pose and landmark position using the known intrinsic parameters Ki. Camera
nodes are initialized with the current estimate for the extrinsic calibration (for
t = 0, we use the initial estimate and for t > 0, we resuse the result of the
previous time step). Landmark nodes are initialized by triangulation of the
2D observations using the latest camera geometry estimate [14]. Note, that we
perform triangulation in every optimization cycle, even when using a person
hypothesis that was already utilized in a previous optimization cycle. Hence, the
triangulation results are updated based on the current estimate of the extrinsic
calibration. We solve each factor graph Gt for the most likely camera poses by
applying a Levenberg-Marquardt optimization scheme, provided by the GTSAM
framework [7]. A successful optimization yields a new candidate for the extrinsic
calibration of SN . We forward this candidate to the refinement stage where
the current estimate of the extrinsic calibration will be updated based on this
candidate. The updated estimate for the extrinsic calibration will then be used
for constructing and initializing the factor graph in the next optimization cycle.

3.4 Camera Pose Refinement

After each successful optimization, we obtain new candidates Ĉt
i for the extrinsic

calibration of a subset of cameras i ⊆ SN that were constrained by the factor
graph Gt. We smooth between the previous state and the new measurement using a
Kalman filter to obtain the current estimate of the extrinsic calibration Ct

i . As each
optimization cycle contains only a limited number of observations in the factor
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graph to enable real-time operation, smoothing prevents overconfidence towards
a specific set of observations and improves the convergence behavior. We update
the previous estimate with the result of the factor graph optimization using the
marginalized uncertainty from the optimized factor graph as measurement noise.
Between optimization cycles, we add a constant process noise to each predicted
camera pose uncertainty, enabling convergence over longer time horizons. Finally,
we prevent scaling drift of the updated extrinsic calibration by applying the
scaling factor that minimizes the distance towards the initial estimate of the
extrinsic calibration according to Umeyama’s method [32].

4 Evaluation

We evaluate the proposed method in challenging real-world settings in our lab, a
large room with an area of ∼240m2 and a height of 3.2m. As the room is partly
a robotics workshop and partly a desk-based workspace, it is densely filled with
different objects and furniture, which can cause false detections and occlusion.
The cameras are distributed throughout the room as illustrated in Fig. 5 at
similar heights of around 2.6m. We deploy 20 smart edge sensors, 16 of which
are based on the Google EdgeTPU, and 4 are based on the Nvidia Jetson Xavier
NX (cf. Fig. 1). Both sensor types provide person keypoint detections in identical
format and will be treated in the same way during the experiments.

For evaluation, we apply our pipeline to recordings of one and two persons
(1.96m & 1.70m ) crossing the room and generating detections in all cameras
over ∼180 s. We repeat the experiment 10 times with different initializations
and compare our results towards a reference calibration obtained by applying
the kalibr toolkit [28]. We apply an initial error of 0.25m and 10◦ in a random
direction w.r.t. the reference calibration for all cameras Ci for i > 0 and use
default parameters provided in the linked repository. We empirically verified that
errors of this order of magnitude are easily attainable via manual initialization
utilizing a floor plan, height measurements, and RGB images from all cameras.

5 meters

C0

C1C2

C3

C4
C5

C6

C7

C8

C9 C10 C11

C12

C13

C14

C15C16

C17

C18C19

Fig. 5. Sketched floor plan with camera poses for the evaluation experiments.
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Table 1. Statistics of the position and orientation error towards the reference calibration
averaged over 10 repetitions of the experiment.

1 Person 2 Persons
Error Avg. Std. Min. Max. Avg. Std. Min. Max.
Position 0.053m 0.030m 0.011m 0.119m 0.052m 0.030m 0.017m 0.122m

Orientation 0.390◦ 0.184◦ 0.120◦ 0.891◦ 0.436◦ 0.177◦ 0.154◦ 0.818◦
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Fig. 6. Evolution of mean and min–max span of (a) position and (b) orientation error
towards the reference calibration. Convergence is faster when observing multiple persons.

Tab. 1 shows the statistics of the final position and orientation error distri-
butions towards the reference calibration averaged over all repetitions of the
experiments with one or two persons present in the scene, respectively. The
position error is obtained by rigid alignment of the calibration result towards the
reference according to Umeyama’s method [32] without rescaling. The orientation
error is computed as the angle between two orientations via the shortest arc [17].
We do not observe a significant difference in the final result between calibrating
with one or two persons. However, convergence is faster in the two-person case,
as all cameras provide detections earlier in the procedure.

Fig. 6 shows the evolution of the error over time for one exemplary repetition
of the resp. experiment with one or two persons. The majority of the convergence
takes place in the first ∼50 optimization cycles or ∼35 s and after ∼100 optimiza-
tions, the camera poses and errors remain stable in the two-person experiment.
With only a single person, convergence is slower. Observations from all cameras
are obtained after ∼110 optimization cycles and it takes ∼150 iterations for the
poses to remain stable.

Tab. 2 shows the final position error for different initialization errors with
two persons. Convergence remains stable for initial errors up to 35 cm and 15◦
but becomes less reliable for larger errors. In particular, the likelihood of the
camera poses being stuck in a local minimum consistent with queued person
hypotheses containing false data association increases with larger initialization
errors, as the accuracy of the data association relies on the geometry of the
provided initialization.

Additionally, we compare reprojection errors, measured using two different
evaluation pipelines, using the calibration obtained from our experiments with
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Table 2. Position error towards the reference calibration for different initial errors.

Initial Error 0.10 m, 5◦ 0.25 m, 10◦ 0.35 m, 15◦ 0.50 m, 20◦ 0.75 m, 20◦

Final Error 0.050m 0.052m 0.067m 0.118m 0.214m
Std. 0.003m 0.030m 0.011m 0.073m 0.164m
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Fig. 7. Comparison of the reprojection error per camera between our method and the
reference calibration using (a) keypoint- and (b) marker-based evaluation pipelines.

two persons. The first evaluation processes keypoint detections for 3D human pose
estimation [3] and matches the domain in which our calibration was obtained.
Here, we use a distinct recording unseen during the calibration. The second
pipeline uses a sequence of multi-view images of the AprilTag grid used to obtain
the reference calibration [28] and, thus, matches its data domain. In general,
the keypoint-based evaluation is biased towards our keypoint-based calibration
method, while the AprilTag evaluation is biased towards the reference calibration.

Fig. 7 shows the reprojection error per camera for both evaluation pipelines and
Tab. 3 reports the averaged reprojection error. For the keypoint-based evaluation,
we observe that our calibration achieves lower reprojection errors for all but
two cameras. For the marker-based evaluation, our calibration achieves similar
reprojection errors as for the keypoint-based pipeline, while the reprojection
errors of the reference calibration are significantly lower. Our flexible, marker-free
method achieves lower reprojection errors for the envisaged application of 3D
multi-person pose estimation and still achieves a coherent result when evaluating
with a traditional calibration target. The difference in accuracy for the second
evaluation is mainly due to our method being marker-free using features from
persons of unknown dimensions for calibration, while the reference method knows
the exact scale of the calibration (and evaluation) target. Also, the noise in the
joint detections may be larger than for the tag detections.

The averaged reprojection error per joint group for the keypoint-based evalu-
ation is shown in Tab. 4. Our method achieves lower reprojection errors in all
categories. The reprojection error is larger for faster-moving joints like ankles
and wrists, while it is smaller for more stable joints. This can be explained by
limitations in the synchronization within framesets.

It is worth noting that the measured reprojection error does not exclusively
originate from the provided extrinsic calibration, but also from other factors, e.g.
the intrinsic camera calibration, or the approach for detection, data association,
and triangulation.
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Table 3. Comparison of the average reprojection error of our method and the reference
calibration for keypoint- and AprilTag-based evaluations, averaged over 10 repetitions.

Calibration Keypoints AprilTag Grid
Reference 4.57 px 1.95 px

Our Method 4.01 px 5.00 px

Table 4. Comparison of the reprojection errors per joint group between our method
and the reference calibration averaged over 10 repetitions of the experiment.

Calibration Head Hips Knees Ankles Shlds Elbows Wrists

Reference 4.02 px 5.10 px 4.83 px 5.88 px 3.61 px 4.29 px 5.14 px
Our Method 3.55 px 4.28 px 4.20 px 5.27 px 3.21 px 3.75 px 4.55 px

5 Conclusion

In this work, we developed a marker-free online method for extrinsic camera
calibration in a scene observed by multiple smart edge sensors, relying solely on
person keypoint detections. The keypoint detections are fused into 3D person
hypotheses at a central backend by synchronization, filtering, and data asso-
ciation. Factor graph optimization problems are repeatedly solved to estimate
the camera poses constrained by the observations. Knowledge about the camera
poses obtained through the optimization of one factor graph is used during the
construction of the next factor graph, enabling the accumulation of knowledge and
the convergence of all cameras towards an accurate pose. Lastly, the convergence
behavior is improved by a refinement scheme based on a Kalman filter.

Our method is designed to be robust against false or sparse sets of detections
and occlusions, and is free of many typical assumptions of similar methods: It
does not require a specific calibration target, can cope with and exploit the
detections of multiple persons simultaneously, and handles arbitrary person poses.
We evaluate the proposed method in a series of experiments and compare our
calibration results to a reference calibration obtained by an offline calibration
method based on traditional calibration targets. We show that our calibration
results are more accurate than the reference calibration by reliably achieving
lower reprojection errors in a 3D multi-person pose estimation pipeline used
as application scenario. Not only provides our method a quick and easy-to-use
calibration utility, but it also achieves state-of-the-art accuracy.

The limitations of our method are mainly related to scaling ambiguity and
data association: The scale of the initial estimate of the extrinsic calibration is
maintained throughout the calibration procedure. It inherently cannot resolve
the scale in case the initial estimate is biased or inaccurate, as the dimensions
of the persons used as calibration targets are unknown. Data association could
be improved for inaccurate initial estimates of the extrinsic calibration by using
visual re-id descriptors. We assume the intrisic camera calibration to be known.
Our method could be extended by including intrinsic camera parameters in the
optimization. Finally, our method could be extended by also using additional
environment features for calibration.
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