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Abstract—The automation of Kitting tasks—collecting a set
of parts for one particular car into a kit—has a huge impact in
the automotive industry. It considerably increases the automation
levels of tasks typically conducted by human workers. Collecting
the parts involves picking up objects from pallets and bins as
well as placing them in the respective compartments of the
kitting box. In this paper, we present a complete system for
automated kitting with a mobile manipulator thereby focusing
on depalletizing tasks and placing. In order to allow for low
cycle times, we present particularly efficient solutions to object
perception as well as motion planning and execution. For easy
portability to different platforms, all components are integrated
into a skill-based framework that is tightly coupled with a task
planning component. We present results of experiments at both
a research laboratory environment and at the industrial site of
PSA Peugeot Citroén serving as a proof of concept for the overall
system design and implementation.

Keywords—Object detection, grasping, motion planning, pre-
computed trajectories, skill framework

I. INTRODUCTION

In the past decades, the paradigm of car production has
shifted from mass production to increased customization of
products (build-to-order). More customized products with in-
creased assembly combinations implicitly means more compo-
nents to store, transport and feed to the production line. Due
to this variability of the production and to the diversity of
suppliers and parts, part handling during the assembly stages
in the automotive industry is the only task with automation
levels below 30%.

Following this trend, kitting type distribution has developed
massively in the automotive industry over the past few years.
The main idea is to concentrate the value added on the
production line and decentralize re-packing operations. Kitting
operations are usually performed by operators called pickers.
These pickers collect parts as needed from the respective
containers, i.e., bins and pallets, and place them in Kkitting
boxes with several compartments. Once complete, the kits
are delivered to the production line and synchronized with
the cars being produced. The full automation of such task
will not only have a huge impact in the automotive industry
but will also act as a cornerstone in the development of
advanced mobile robotic manipulators capable of dealing with
unstructured environments possibly shared with human co-
workers, thus opening new possibilities for the automotive
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Fig. 1: Robot platforms and pallets, left: the lab setup used
for development, right: demonstrator at the industrial end-user
site. The platforms are equipped, respectively, with a Universal
Robots UR10 and a FANUC M-20iA/35M arm, a Robotiq 3-
finger gripper, and four RGB-D cameras for perceiving the
workspace and objects in front of the gripper.

industry and mobile robots in the factory of the future in
general.

In the course of a larger project on kitting using mobile
manipulators (Fig. 1), we have developed a system for auto-
mated grasping of parts from pallets and placing them in kitting
boxes. This task comprises three major problem domains:
1) environment and object perception, 2) motion planning and
execution, and 3) integrating all components into a reliable and
easy-to-use system. We make the following contributions:

e We present a particularly efficient object perception
pipeline that explicitly exploits the characteristics of de-
palletizing problems such as well-separated parts (under
the assumption that intermediate packaging is removed).
The pipeline allows detecting and localizing parts in as
little as 300ms, thus allowing for low cycle times.

e In order to further decrease cycle times, we propose a
mixture of motion planning and pre-computed trajectories
between common poses, thus considerably decreasing the
need for computationally expensive motion planning and
making the overall system particularly efficient.

e In order to facilitate integration and portability between
different robots and setups, we present a novel skill-based
framework, in which the complete object perception and
manipulation pipeline is integrated.
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The system is based on a multi-layered architecture, where
low level primitives interact directly with the robot hardware,
robot skills coordinate the primitives to provide a higher-level
functionality, and fasks aim to solve a high-level goal in the
factory, by using the skills.

II. RELATED WORK
A. Architectures

The complexity of a robot system increases drastically
when including perception and advanced reasoning into the
set of robot capabilities. In deployed systems, there is there-
fore a need of a rigorous software architecture to integrate
the knowledge and manage teaching, learning and execution
phases. Moreover, it is important to subdivide the software
into modular parts, to increase the portability and the code re-
usability. A common approach is to split the software into
several abstraction layers. For example, the KDMF frame-
work [1] uses a classical component-based architecture, divides
the process into components and uses semantic reasoning to
automatically connect them. A more ambitious, but less prac-
tical, architectural pattern is the 5C-composition pattern [2],
that aims to create software blocks that internally can be
composed of other blocks, without limiting the possible levels
of abstraction. Our software framework, SkiROS, lies in the
middle and is organized in four layers that gradually abstract
the programming using device, primitive, skill and task layers.

Numerous middlewares have been proposed to support the
implementation of robotics applications, such as the Robot
Operating System (ROS)! and OROCOS?. These middlewares
hide the complexity of the robot system from the developer
and highly simplify the development of a distributed software.
Robotic software frameworks nowadays are usually built on
top of these middlewares. Our framework, SkiROS, is build on
top of ROS. Other ROS projects in a similar direction include
Movelt! [3], ROSCo® and SMACH®*. The former is focused on
industrial manipulators and embeds many useful mechanism,
like collision-detection, arm motion planning and trajectory
execution, etc., suitable for the low-level layer we define as
primitives. ROSco and SMACH work on a higher level of
abstraction with respect to Movelt!, and are comparable to our
skill layer. These are frameworks for rapidly creating complex
robot behaviors, under the form of a hierarchical finite state
machine. Both frameworks only allow static compositions of
behaviors and cannot adapt those to new situations during
execution.

More adaptive solutions that can be used at a skill level are
the Reactive Action Packages (RAP) [4], specifically designed
to create short-term reactive robot behaviors, Object Action
Complexes (OAC) [5], or the manipulation primitive nets [6].
Other approaches that try to integrate skill programming with
learning capabilities are the works presented in [7] and [8].
The latter starts from an initial set of predefined primitives
and generates artificial neural-networks to connect them.

At task level, research is focused on planning. One of
the earliest developments in autonomous robots, Shakey, uses
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symbolic representations of tasks and the STRIPS planner
to reason about which actions may lead to accomplishing a
goal [9]. Dozens of other algorithms have followed, based
on the same ideas, in which they act on a set of actions
that alter the current world state. Planning algorithms require
a description of the world state on which they can reason
about. A widely used approach to create this knowledge is
to formalize it under the form of an ontology. The KnowRob
framework [10] is a prominent example of that way of thinking
in the area of service robotics. It is based on SWI-Prolog and
its Semantic Web library which allows loading and accessing
ontologies represented in the Web Ontology Language (OWL).
A similar approach, which differs in the implementation of
the semantic database, based in this case on openRDF, is the
one presented in [11], [12], [13] for the Rosetta project. Both
KnowRob and Rosetta use the semantic web standard, and
exploit the ontologies not only to define the world model, but
also to formalize the robot actions, the devices and the robot
self-description. Another solution is to define a world model
using a Domain Specific Language (DSL) definition tool, like
it has been done by [14].

B. Perception for Depalletizing and Bin-Picking

Using vision sensors for object detection and pose esti-
mation in industrial robotics applications has been focus of
research within the last decades. Early work used very specific
geometric features of objects which are found in intensity
images. Rothwell et al. [15] use invariants of such geometric
features under perspective transformation for fast indexing
and matching of observed edges of planar shapes to a model
database. Other works such as [16], use singulated geometric
shapes such as circular or polygonal structures on the objects as
landmark features to find the pose of the object. Such features
have also been extracted from range images—one prominent
early example being the 3DPO system [17].

More recently, Papazov et al. [18] use depth images of
a Microsoft Kinect sensor to find objects in a scene for
picking and placing by a robot. Their recognition approach
compares surfel-pair matches between scene point cloud and
object model in a RANSAC scheme for detection and pose
estimation. Drost et al. [19] propose to use Hough voting with
surfel-pair matches instead. This approach has been extended
by Choi et al. [20] with oriented points on contours of the
object. They acquire point clouds of small objects in a transport
box, and grasp them with a high success rate with an industrial
robot arm. Skotheim et al. [21] also propose a voting scheme
based on pairs of oriented points in 3D point clouds. Their
approach mounts a laser triangulation sensor directly at the
wrist of the robot such that the robot could scan the object from
arbitrary view points. Our approach finds a highly accurate
pose of the object through segmentation and dense model
alignment by exploiting that in a depalletizing scenario, a
coarse initial guess of the object orientation on the palette is
typically known.

Pretto et al. [22] use a monocular vision system in a
bin picking scenario, i.e., they find objects using intensity
images. The approach is based on matching contours in the
scene with the object model, assuming planar surfaces on the
objects. They report cycle times of up to 7s in a statically
mounted robot setup. Our approach does not make such



strong assumptions on object shape. Brachmann et al. [23]
use a learned object representation combining dense 3D object
coordinate labeling and dense class labeling for textured and
texture-less objects. They achieve high detection accuracies
and runtimes around 500 ms, but only for single objects as
opposed to scenes containing multiple instances of the same
object.

In own previous work [24], we have developed an approach
to mobile robot bin picking where objects are modeled using
geometric primitives. Compounds of both 2D contour and 3D
shape primitives are found by graph matching of primitives
detected in 3D point clouds. Our new approach is less restric-
tive in the sense that objects need not to be composed from
geometric primitives. Instead, dense registration of acquired
color and depth information is used to accurately localize parts.
In addition, the registration confidence is used to verify that
the found part does not deviate from the known object model,
e.g., if the container contains a wrong part.

III. SKILL FRAMEWORK

The background of this work is a European Project on
shop floor logistics and mobile manipulation in industrial
settings and automating kitting tasks in particular. One of the
cornerstones of the project is vertical integration: A so-called
logistic planner coordinates the enterprise information, enter-
prise resource and manufacturing execution systems (MES) of
the end-user and connects it to a central mission planner. The
mission planner coordinates a fleet of mobile manipulators, by
generating and delegating kitting orders. The kitting orders are
processed by the individual mobile manipulators. Each mobile
manipulation robot processes two kitting orders at a time.

On each robot, a task manager constitutes the connection
point with the logistic planner. The task manager provides to
the logistic planner a list of available robot skills and receives
from the logistic planner 1) the kitting orders, with preliminary
sequences of skills required to complete them, and 2) a portion
of the world instance, that is injected into the local memory of
the robot and used to reason about the environment. The task
manager schedules the execution of skills by connecting to the
skill managers and quickly re-plans the skill sequence in case
of failures during execution. An overview of these interactions
is shown in Fig 2a. In the following, we focus on the skill
manager, the underlying world model, and the developed skills
for efficient part localization and manipulation, using the use-
case of picking parts from pallets.

A. System Overview

In this paper, we neglect the vertical integration to the
logistic planner and assume that the robot’s task manager has
received a preliminary plan of collecting a number of parts for
a kit. This plan comprises a sequence of high-level robot skills
and their parameters, e.g. ‘pick up alternator model X’. The
robot system sequentially executes the robot skills in the plan
through the skill framework and the skill model explained in
the following section.

As a demonstrator for this work, we use two similar robot
systems, equipped with a robot arm mounted on a frame and a
mobile base. Referring to Fig. 1, we use a total of four RGB-D
cameras on each system for perceiving the workspace around

the robot, the kitting boxes at the front of the robot, and objects
in front of the gripper. For manipulation, we use a Universal
Robots UR10 and a Fanuc M-20iA/35M robot arm. Both arms
are equipped with a Robotiq 3-finger underactuated robot hand.
The mobile base—based on an autonomous forklift—has its
own available skills, namely autonomous navigation, but they
will not be discussed in this paper. Note that only the final
demonstrator used at the end-user site features the mobile base.
In the lab setup, we only use the manipulation part.

B. Skills, Framework and Managers

The core idea of our robot skills is that they are funda-
mental software building blocks causing a modification on
the world state. The set of available skills and the encoded
modifications of the world state define the input to the mission
and task planners.

The conceptual model of a complete robot skill is shown
in Fig. 2b. The input parameters to skills are objects from
the world model, i.e. the skills are object-centric and do not
require complex parameters to be executed. This does not only
simplify the planning problem to only deal with classical task
planning, but also enables shop floor workers to explicitly
program the robot on the skill-level, as we have previously
shown in [25]. However, the execution routine within the skill
needs to be more advanced than traditional robot macros. We
will give an example of a skill implementation in Section IV.

An integral part of the skills concept is concatenation, i.e.,
skills can be combined to form a complete robot program or
task. To ensure both concatenation and verbosity and robust-
ness of the skills they include pre- and postcondition checks,
as well as continuous evaluation of their performance. This
allows to provide information of skill failures to the higher-
level components, as well as ensuring proper concatenation.

We will not give a further, comprehensive introduction
to the robot skills in this paper, but instead refer to our
previous works [26], [27]. For this work, it suffices to say
that the manipulation skills presented below are implemented
according to the conceptual model shown in Fig. 2b in our
skill framework, SkiROS.

As illustrated in Fig. 2¢, SkiROS is divided into 4 layers
to organize the software processes. The abstraction layers of
SkiROS are:

1) Device layer: realizes the hardware abstraction and
presents an interface to the devices that make up the system.

2) Primitive layer: embeds and coordinates a) motion
primitives, i.e. software blocks that realize a movement con-
trolled with a multi-sensor feedback, and b) services, i.e. soft-
ware modules that realize a generic computation. An integral
part of this layer are the primitive managers. The common
characteristic of the modules in this layer is that they do not
influence the world state in the shared world model, but only
the intrinsic robot state, which is not needed by the higher-level
layers.

3) Skill layer: embeds and coordinates skills. An integral
part of this layer are the skill managers that are associated
to every sub-system of a single robot, e.g., the mobile base
and the manipulator in our platform, The purpose of the skill
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Fig. 2: (a) The task manager reads the world state and operates on it by sending commands to the skill managers. (b) Each skill
is modeled by an abstract description with pre-conditions and predictions of the world state change as well as functional blocks.
Their execution is always coupled with pre-condition and post-condition checks. (c) The framework is divided into four layers:
the device layer, the primitive layer, the skill layer, and the task layer.

manager is to execute the skills, and concurrently supervise
their status and execution, as well as relay information about
available skills to the upper layers.

4) Task layer: the higher level embeds task-level program-
ming and planning capabilities, as well as execution of saved
tasks. Each complete robot system has an associated fask
manager. This connects to the various skill managers in the
system and collects the complete list of available skills. The
task manager is designed to accept from outside two possible
inputs: a skill sequence or a desired goal state in the world
model. In the former, a skill sequence, including parameters,
is specified by e.g. the mission planner or a human operator. In
the latter, the task manager’s integrated planner automatically
finds a skill sequence for the given goal state.

The common characteristic of the managers in every layer
is that they import the defined modules as ROS plugins® and
present the set of plugins to the upper layer over the ROS
network. As the managers communicate over the ROS network
they can be executed on different machines, creating a flexible
distributed network. Our structure of our architecture reduces
the ROS network communication by having each manager
collecting internally, on a single process with a shared-memory
communication, sets of related modules. The purpose of the
modular abstraction layers presented in this section is to
1) organize and give a clear structure to the code and the
ROS nodes, 2) create an intuitive workspace on every level
of abstraction, and 3) support autonomous run-time selection
of the best module to use for the problem at hand. To realize
the latter, a support from a knowledge integration framework
is fundamental. It is provided from our world model server,
presented in the next section.

C. World Model

The world model plays a central role in all advanced
knowledge-driven systems, as every planning system relies on
a world model to organize the knowledge about the objects
in the world, their properties and their relations. Starting from
this information, the planner can apply logic rules to discover a
correct sequence of actions (skills), in order to reach a desired
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Fig. 3: Example of a world model instance

goal state from the initial state. Constructing a knowledge
base for robot application is a challenging task since robotic
applications have very specific demands. Generally, knowledge
is hard-coded in the task planner in a suitable way but this
solution is a problem when there is necessity to modify the
knowledge and propagate it over different software modules.
In our system we decided to embed a world model server to
store and organize a-priori and learned knowledge. The server
is shared between all software processes, that have shared
access to read or modify it. Our world model ontology is con-
ceptually defined using the Web Ontology Language (OWL)
standard, which is a good solution for knowledge sharing and
maintainability, and the possibility of automated inference of
new concepts. The knowledge encoded in the OWL format
is automatically imported into our system and loaded into an
Oracle database using the Redland C library. Based on rules
imposed by the OWL ontology, we generate a model for the
spatial 3D environment, that we call generically world model.
This is modeled as an asymmetric, not-weighted and acyclic
graph, inspired by the scene graphs used in computer games.
An example of a world instance is presented in Fig. 3.

The graph nodes represent world objects, and we refer to
them as elements. The graph arcs represent qualitative spatial
relations. Qualitative means that they are not precise metric



positions, but instead they give a semantic specification of
the position in accordance to human knowledge (e.g. hasA,
contains). This is usually sufficient information for a planning
algorithm and can be quickly and easily specified by a human.
It is important, nevertheless, to create a mapping between
qualitative definitions and more precise metric information. For
a robot to grasp an object it is not sufficient to know that the
object is “over” the table, but it is required a specific geometric
pose of the object in the space with respect to the robot
body. Consequently, the skill requires more precise discrete
information besides the semantic information. It also requires
to share this information with other skills. The elements in our
world model are mapped into classes and characterized by the
following data: type, id, label and a flexible list of attributes.
All skills operate and share information by means of this data
structure. As input, the skills get one or more elements, operate
on them, and update the world model accordingly. The meth-
ods to reason on the data of the elements during this process
are collected in special classes called discrete reasoners. The
role of discrete reasoners is two-fold: 1) convert the sensor
data to data in elements and vice-versa, and 2) offer an abstract
API to the semantic level in order to reason about the data.
Once an element is filled up with data from a reasoner it
is marked and associated to that particular reasoner in order
to inform other software modules about which reasoners are
possible to apply on that particular element. To summarize,
the SkiROS world model server is now used in two ways:

1) maintain a world instance, to a) parameterize our skills
and b) share information between the different software
modules, as well as to

2) maintain a knowledge integration framework, that sup-
ports a-priori knowledge definition and teaching phases.

In the close future we will use the world instance to support
the task planning. We also foresee a clear path to gradually
reduce the ad-hoc code inside our skills and increase the
artificial reasoning and learning, by using the world model
server to manage the concepts and the modular structure idea
presented in the previous section to map the concepts to
software structures.

IV. PICKING SKILL IMPLEMENTATION

This section will go into details with explaining the pro-
cessing pipeline for the picking skill (Fig. 4), integrated into
the SkiROS framework explained in the previous section.

A. Part Perception and Grasping Pipeline

Referring to the overview in Fig. 4, our object perception
and grasping pipeline comprises the following steps.

1) Using the respective workspace camera (to the left or
right side of the robot), we detect the pallet and object
candidates. If no object is found (e.g., when the pallet is
cleared) the robot stops and reports to the operator.

2) The wrist camera is positioned on top of the object
candidate being closest to the pallet center.

3) Using the wrist camera, we recognize and localize the
part. The quality of the found matching is used for
object verification. Poor matching quality indicates that
a wrong object was found. In case of a wrong object, the
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Fig. 4: Execution block with precondition and postcondition
checks of the picking skill with the perception pipeline and
the internal data flow.

robot stops, reports the error and waits for an operator
instruction to continue its operation.

4) A grasp is selected from a set of predefined grasps and
the robot plans a motion to reach it.

5) The robot grasps the object and plans a motion to an
intermediate pose for for subsequent placement in the
kitting box.

B. Initial Part Detection

The task of picking an object from the pallet starts, respec-
tively, when navigation has already taken place and the robot is
positioned in the vicinity of the pallet. In order to compensate
for potential misalignments or inaccuracies in the estimated
poses of robot and pallet, we first use the workspace camera
to find the pallet and to get a first estimate of where to find
potential object candidates. Assuming that we know on which
side of the robot the pallet is located, we acquire images of
the corresponding workspace camera and search for horizontal
support surfaces above the ground plane. In order to achieve
real-time performance, we efficiently compute local surface
normals using integral images, extract points whose normals
point along the gravity vector, and fit planes perpendicular to
the normals of the extracted points [28].

Referring to Fig. 5, we restrict the extracted (horizontal)
planes to lie in the region where we expect to find the pallet,
e.g., not outside the robot’s reachable workspace, and neglect
others such as the ground plane. In order to find potential
object candidates, we then select the most dominant support
plane, compute both convex hull and minimum area bounding
box, and select all RGB-D measurements lying within these
polygons and above the extracted support plane. Thereby,
we slightly shrink the limiting polygons in order to neglect
measurements caused by the exterior walls of the pallet. The
selected points are clustered (to obtain object candidates), and
the cluster being closest to the center of the pallet is selected
to be approached first.

After approaching the selected object candidate with the
end effector, the same procedure is repeated with the wrist
camera in order to separate potential objects from the support
surface. Using the centroid of the extracted cluster as well as
the main axes (as derived from principal component analysis),



Fig. 5: Typical results of object detection and localization. From left to right: workspace camera point cloud with extracted object
candidates (yellow) and selected object (red), and wrist camera point clouds during localization, approach and grasping.

we obtain a rough initial guess of the object pose. With the
subsequent registration stage, it does not matter when objects
are not well segmented (connected in a single cluster) or when
the initial pose estimate is inaccurate.

C. Object Pose Refinement

The initial part detection only provides a rough estimate
of the position of the object candidate. In order to accurately
determine both position and orientation of the part, we apply
a dense registration of a close-range depth image acquired
with the wrist camera with a pre-trained model of the part.
We use multi-resolution surfel maps (MRSMaps, [29]) as a
concise dense representation of the RGB-D measurements on
an object. In a training phase, we collect one to several views
on the object whose view poses can be optimized using pose
graph optimization techniques. Our pose refinement approach
is closely related to our soft-assignment surfel registration
approach in [30] for registering sparse 3D point clouds.

Instead of considering each point individually, we map the
RGB-D image acquired by the wrist camera into an MRSMap
and match surfels. This needs several orders of magnitudes
less map elements for registration. Optimization of the surfel
matches (and the underlying joint data-likelihood) yields the
rigid 6 degree-of-freedom (DoF) transformation from scene to
model, i.e., the pose of the object in the coordinate frame of the
camera. The actual optimization is done through expectation-
maximization [31].

D. Object Verification

After pose refinement, we verify that the observed segment
fits to the object model for the estimated pose. We can thus
find wrong registration results, e.g., if the observed object and
the known object model do not match or if a wrong object
has been placed on the pallet. In such cases the robot stops
immediately and reports to the operator (a special requirement
of the end-user).

For the actual verification, we establish surfel associations
between segment and object model map, and determine the ob-
servation likelihood similar as in the object pose refinement. In
addition to the surfel observation likelihood, we also consider
occlusions by model surfels of the observed RGB-D image as
highly unlikely. Such occlusions can be efficiently determined
by projecting model surfels into the RGB-D image given the
estimated alignment pose and determining the difference in

depth at the projected pixel position. The resulting segment
observation likelihood is compared with a baseline likelihood
of observing the model MRSMap by itself, in order to avoid the
calculation of the partition function of the joint data likelihood.
We determine a detection confidence from the rescaled ratio
of both log likelihoods thresholded between 0 and 1. For more
details on the part detection and localization pipeline we refer
to [32].

E. Motion Planning and Execution

In each pipeline cycle, we need a series of individual
motions in order to localize, pick, and place an object. Since
planning every single motion is a time consuming task, we use
pre-computed motions whenever the arm is moved between
predefined poses. Pre-computed trajectories are planned and
stored only once per platform, and simply retrieved whenever
the robot needs to follow the resulting motion. For being
able to use pre-computed motions, we define several fixed
poses, e.g., the initial pose of the robot (used while navigating
with the mobile base). In addition, we define rectangular
grids (Fig. 6) of poses in different heights to the sides of the
robot and above the kitting boxes. For every pose in the grid,
we pre-compute a joint trajectory from the initial pose to the
grid pose as well as from the grid pose to an intermediate
pose and the placement pose above the right compartment of
the kitting box.

Whenever possible, the robot uses pre-computed trajecto-
ries to reach its goal, or approaches the closest pose reachable
with pre-computed trajectories and only plans the residual
motion from that pose on. By this means, we only need to
plan short trajectories that are computed faster and only check
if collisions exist between the robot and the environment for
every pre-computed motion before execution, which is not as
time consuming as motion planning. In an average picking
cycle, following this scheme reduces motion planning time by
more than 25 %. For both motion planning and execution we
use Movelt! [3]. We use standard components where available
such as the standard drivers for arm and gripper as made
available within the ROS Industrial initiative®.

V. EXPERIMENTS AND RESULTS

For validating our approach, we have run two series of
experiments, one with the lab setup focusing on the individual

%For more information on ROS industrial, see http://rosindustrial.org.
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Fig. 6: Lab setup and examples of end-effector poses in the
respective pose grids for picking parts to the left and right of
the robot as well as placing parts in the kitting boxes.

components of the pipeline and another series with the final
demonstrator platform at an industrial end-user site in order to
show a proof-of-concept for the portability of the system.

A. Performance Evaluation at the Research Site

As evaluation criteria, we focused on the success rates,
the execution times of the individual components, and the
overall cycle times (for picking an object from the pallet) of the
integrated system. In all experiments, we use the same platform
and lab setup in order to be able to fully control the conditions
under which the tests are executed, e.g., testing under different
lighting conditions. The lab platform consists of a Universal
Robots UR10 6 degree-of-freedom arm, a Robotiq 3-finger
gripper, an ASUS RGB-D camera (workspace camera), and a
PrimeSense RGB-D camera (wrist camera). Gripper and wrist
camera are mounted on a linear linkage extending the robot’s
reachable workspace for being able to reach into corners of
deeper boxes and lower layers of pallets.

In the experiments, the pallet is equipped with a total of
12 objects: 10 being the right part to pick, and two wrong
objects (a very similar one and a very different one). A typical
experiment setup is depicted in Fig. 7a. Instead of waiting for a
particular order, the robot is repeatedly asked to pick an object
from the pallet. The robot is expected to clear the pallet by
grasping all (correct) objects, stop and report when it has found
a wrong object, and to report when the pallet is empty. In case
of failure (wrong object, empty pallet, etc.), the robot waits
for commands from an operator, e.g., to continue operation.
The latter is a special requirement by the industrial partner.

We present detailed results in Fig. 7. Only a single of the
100 grasps fails due to a collision. The robot reports the error
and successfully grasps the object after being commanded to
continue.

B. Experiments at the Industrial End-User Site

Lab environments can be particularly helpful for the initial
research and development in order to build a prototype im-
plementation. However, they often cannot adequately simulate
the conditions of an industrial end-user site. In a final series of

experiments, we applied the developed system at the industrial
end-user site of PSA Peugeot Citroén. Furthermore, to provide
a proof-of-concept for the portability of the system by means
of the skill-based architecture, we have ported the complete
pipeline to the actual robot setup as being used for automated
kitting tasks at the end-user site.

Porting the system to the new platform essentially required:
1) Modeling the platform in terms of the Unified Robot
Description Format (URDF), based on a CAD model of the
platform and existing URDF models, e.g., of the FANUC arm.
2) Interfacing the new hardware, i.e., executing trajectories on
the arm and retrieving joint states. 3) Pre-computing trajec-
tories for the setup (including the adaptation of joint limits
and pose grids for the new platform). The only problems
experienced were related to the physical platform deviating
from the provided CAD model. The problems could be fixed
on site. We experienced no other problems.

As a proof-of-concept for the overall system, we conducted
integrated experiments involving both the higher level plan-
ning components and the skills for navigation, picking, and
placing. The procedure of the experiments was as follows:
using the higher level planning components kitting instructions
were generated for retrieving compressors from two different
pallets. The skill manager then called the respective skills for
navigating to the pallet, picking up the part, and placing it in
the kitting box. A photo sequence captured during one of these
runs and the measured cycle times are presented in Fig. 8.

The measured cycle times are considerably longer than
those measured in the lab environment. This is primarily
caused by the main computer on the platform (an older dual
core Xeon processor), which is considerably slower than the
newer Intel Core i7 processor used in the lab setup. During
the experiments, the computer was running at full load causing
several processes to run delayed and to take longer. Moreover,
for safety reasons and regulations through the system integrator
and the end-user site, the arm was operated at very low
velocities compared to the UR10 arm in the lab setup (15 % of
the maximum speed of the FANUC arm). It can be expected
that using a more decent on-board computer and relaxing the
strong constraints on the maximum velocities of the arm will
considerably lower both the execution times of the individual
components and the overall cycle time.

VI. CONCLUSIONS

In this paper, we have presented a complete system for
picking parts in the context of automating kitting tasks in the
automotive industry. The system is based on a skill framework
that allows easy integration and replacement of components
(both software and hardware) and easy porting to other robots
and setups. It features an object perception and manipulation
pipeline specifically developed for efficiency. The pipeline
comprises real-time pallet and initial part detection, near real-
time object localization and verification, and pre-computing
trajectories to drastically minimize motion planning time.
Since objects and grasp poses are trained in a setup phase, the
system can manipulate any object that can be detected with an
RGB-D sensor, and be grasped with the used Robotiq gripper.

The performance of the system has been evaluated in terms
of success rate and cycle times in a lab environment. The



(a) Photos taken during the picking experiments in the lab environment. Full videos at http://www.ais.uni-bonn.de/STAMINA.

Execution times Success Rate
Component Mean Stdev Min Max Successful / Total
Initial part detection 26.3ms 10.3ms 15.2ms 38.5ms 120 / 120 (100 %)
Part localization & verification 532.7ms 98.2ms 297.0ms 800.1ms 100 / 100 (100 %)
Grasping a found part 7.80s 0.56s 6.90s 10.12s 99 /100 (99 %)
Overall cycle time picking (incl. release) 34.57s 3.01s 29.53s 49.52s 99 /100 (99 %)

(b) Execution times and success rates per component (measured over 10 complete runs, i.e., 100 grasps)

Fig. 7: Detailed results of the lab experiments: in a total of 10 runs, the robot clears the pallet each containing 10 correct parts
and 2 wrong parts (a). It correctly detects the objects on the pallet and detects, localizes, and verifies parts with high success
rates and low execution times (b). Wrong objects and empty pallets are correctly detected (both without false positives). Overall,
we achieve cycle times for grasping objects of approx. 13s and approx. 35s for grasping a part, placing it in the placeholder

kitting box, and returning to the initial pose.

| | Picking | | Navigation |

Placing

(a) Snapshots of an integrated run with navigation, picking and placing. Full videos at http://www.ais.uni-bonn.de/STAMINA.

Execution times
Mean Stdev Min Max

Component
Overall skill execution time picking 74.650s 3.745s 68.330s 83.536s
Overall skill execution time placing 44.325s 1.334s 42.559s 46.307s

(b) Cycle times for picking and placing. Skill execution times include moving back to the initial pose.

Fig. 8: Results of integrated runs: navigating to two pallets and, at each pallet, picking up a part and placing it in the kitting
box. Shown are snapshots of a video that was captured using a GoPro attached to the upper rack (a), and the cycle times for
picking and placing (b). Note that the arm was operated with only 15 % of its maximum speed for safety reasons.



system only showed a single grasp failure in 100 runs (the
part was successfully grasped in a second attempt immediately
after) and particularly low cycle times with all perception steps
conducted in less than a second.

In a final series of experiments, the system was successfully
integrated on a different mobile manipulator at an industrial
end-user site. The main task here was to establish the low-
level interfaces to the skill framework, after which the system
could be set up exactly as for the lab demonstrator, thus
demonstrating a certain degree of hardware abstraction. In the
conducted experiments, the system could successfully navigate
to pallets, pick up parts, and place them in the kitting box. It
is a matter of ongoing and future work to extend the system
to classic bin picking problems and to further improve the
components on the different layers of the architecture to exploit
the full potential of the vertical integration.
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