
Multispectral Pedestrian Detection using Deep
Fusion Convolutional Neural Networks

Jörg Wagner1,2, Volker Fischer1, Michael Herman1 and Sven Behnke2

1- Robert Bosch GmbH - 70442 Stuttgart - Germany

2- University Bonn - Computer Science VI, Autonomous Intelligent Systems
Friedrich-Ebert-Allee 144, 53113 Bonn - Germany

Abstract. Robust vision-based pedestrian detection is a crucial feature
of future autonomous systems. Thermal cameras provide an additional
input channel that helps solving this task and deep convolutional networks
are the currently leading approach for many pattern recognition problems,
including object detection. In this paper, we explore the potential of deep
models for multispectral pedestrian detection. We investigate two deep
fusion architectures and analyze their performance on multispectral data.
Our results show that a pre-trained late-fusion architecture significantly
outperforms the current state-of-the-art ACF+T+THOG solution.

1 Introduction

Vision-based pedestrian detection is a crucial competence for many autonomous
systems, such as self-driving cars or mobile robots. Although the topic has been
intensively investigated in the last decade [1, 2, 3], it is still a challenging task.
This is due to the variability of the environment as well as the variability between
pedestrians, e.g. in shape or pose.

The majority of past research focused on the detection of pedestrians in vis-
ible spectrum images, where multiple benchmark datasets with comparatively
large amounts of annotated pedestrians are available [1]. For a long period
of time, approaches using hand-crafted features dominated these benchmarks.
With the recent interest of the vision community in convolutional neural net-
works (CNNs), an increasing number of top performing detectors utilize CNNs.

A major drawback of visible image based pedestrian detectors is their poor
performance at night time, as well as their sensitivity to illumination changes.
To overcome these drawbacks, it is helpful to fuse the information of a visible
camera with the information provided by a long-wavelength infrared (thermal)
camera [3]. Due to the spectral band in which a thermal camera operates, it does
not only omit the need for an external light source, but is also less affected by bad
weather conditions. On the other hand, due to a high background temperature,
thermal cameras often exhibit a decrease in image quality during daytime.

In the past, multispectral detectors (i.e. detectors which utilize the informa-
tion of visible and thermal cameras) were mainly used in military and surveil-
lance applications. With the recent decline in the price of thermal cameras,
these detectors are becoming increasingly attractive for other applications.

Multispectral pedestrian detectors can be divided into three categories based
on the level of abstraction at which the fusion takes place – pixel-level, feature-
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level, and decision-level fusion. Choi et al. [4] apply a joint bilinear filter to fuse
the thermal- and a visible image at pixel-level. In [5], a feature-level fusion based
approach is developed by extending the aggregated channel features detector of
[6]. Torresan et al. [7] detect and track pedestrians in the visible and thermal
images separately and introduce an additional merging and validation process
to combine the information at decision level.

This paper exploits deep model based detection methods, which have been
successful in the visible domain, and extends these approaches to the multispec-
tral case. To the best of our knowledge, it is the first attempt to fuse the images
of a visible and thermal camera using deep models. We evaluate the introduced
models and training methods on the KAIST multispectral pedestrain detection
benchmark [5] and compare them to a state-of-the-art approach. We show that
a late-fusion based deep model, which is additionally pre-trained, significantly
outperforms the state-of-the-art baseline.

2 Multispectral Benchmark and Baseline

The KAIST multispectral pedestrian benchmark dataset [5] consists of tem-
porally and spatially aligned visible and thermal images with a resolution of
640 × 512 pixels. In total, the dataset contains 95.3k pairs of visible-thermal
images, split into a training set of 50.2k images with 41.5k labeled pedestrians
and a test set of 45.1k images with 44.7k labeled pedestrians.

Currently, the best performing approach on the KAIST benchmark is an ex-
tension of the aggregated channel features (ACF) detector, which is introduced
in [6]. The original ACF detector operates in a sliding window manner and uses
subsampled and filtered channels as features. These channels are the compo-
nents of the CIELUV color space, the normalized gradient magnitude and the
histogram of oriented gradients. The multispectral extension of the ACF detec-
tor (ACF+T+THOG) additionally incorporates a contrast-enhanced version of
the thermal images as well as HOG features of the thermal image as channels.
The ACF+T+THOG detector which is used in our experiments is a retrained
version of the current detector provided by the KAIST benchmark dataset. In
the retrained version, we adjusted the standardization process of the ground
truth bounding boxes. As suggested in [2], we standardize the bounding boxes
by keeping the height and center fixed and only adjust the width.

3 Multispectral Deep Models

Our models are build upon the R-CNN detection framework [8], which is first
applied in [9] to detect pedestrians. In the R-CNN framework, a proposal gen-
erator is used to generate candidate bounding boxes. Image data from these
proposals is transformed into a standardized size and evaluated using a CNN.

To generate the proposals, we use the ACF+T+THOG detector. Based on
these proposals, a CNN is used to fuse the information of the different modalities
and to perform a binary classification.



3.1 Fusion Architectures

We investigate an early- and a late-fusion based CNN architecture to fuse the
information of the visible and thermal image (Figure 1). The early-fusion archi-
tecture (EarlyFusion) combines the information of the two modalities on pixel-
level. In contrast, the late-fusion CNN (LateFusion) uses separate subnetworks
to generate a feature representation for each modality. These representations
are combined in an additional fully connected layer. Similar late-fusion archi-
tectures have been used in [10] to perform RGB-D object recognition and in [11]
for action recognition in videos. The structure of the early-fusion architecture,
as well as the subnetworks of the late-fusion architecture, are based on CaffeNet
[12]. The following introduced network parameters are the result of a rough
hand-tuned hyperparameter evaluation.
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Fig. 1: Architectures with changes compared to CaffeNet [12] visualized. C(f,s)
represents a convolutional layer with f filters and a stride of s.

Early Fusion Architecture. For this architecture, we use CaffeNet and in-
crease the number of filters per convolutional layer by a factor of 4/3, to compen-
sate the fourth input channel. Additionally, we decrease the number of neurons
in the fully connected layers to 2048 and replace the 1000 class classification
layer by a binary classification layer. Furthermore, the stride of the first con-
volutional layer is reduced to two, to obtain a sufficient spatial resolution after
the last convolutional layer. By combining the two modalities at pixel-level, we
expect a better utilization of inherent relations between the sensor modalities.

Late Fusion Architecture. The late-fusion architecture processes the data
of the two modalities separately in subnetworks and fuses the resulting feature
representations in a fully connected layer. Both subnetworks are based on Caf-
feNet without its classification layer and use, analogous to the early-fusion CNN,
2048 neurons in their fully connected layers, as well as a stride of 2 in their first
convolutional layer. In the subnetwork, which processes the thermal images we
additionally halve the number of filters per convolutional layer. The factor 0.5 is
derived based on the number of grayscale filters in the first convolutional layer
of CaffeNet. The resulting activations, generated by the second fully connected
layer, of the two subnetworks are concatenated and fused in a fully connected
layer with 4096 neurons. The fusion layer is followed by a ReLU non-linear layer,
a dropout layer, and finally a binary classification layer. The parameters of the
late-fusion network are learned in an end-to-end fashion.



3.2 Training Procedure

The availability of a sufficiently large amount of labeled data is often a crucial
point when training deep networks. Due to the cost associated with data gen-
eration and labeling, the amount of available training data is limited in most
applications. One popular approach to overcome this problem is to pre-train the
network on a large auxiliary dataset. To show the benefit of pre-training, we
train our networks twice. Both by only using the training data provided by the
multispectral benchmark and by additionally pre-training the networks on aux-
iliary datasets. Due to the lack of available large visible-thermal image datasets,
we pre-train our models on visible data. The red channel is used as a crude
approximation of the thermal channel. Thus, during pre-training, the images of
the early-fusion architecture contain the red channel twice. This approximation
may be too rough, given the difference between red and thermal images in real
data. Furthermore, it is questionable whether the early-fusion architecture can
learn complementary features which utilize the substituted thermal channel.

Our pre-training procedure consists of the following two steps: In the first
step, the convolutional layers of the CaffeNet-T, CaffeNet-RGB and EarlyFusion
network are trained on the task of image classification using the ImageNet [13]
dataset. In the second step, we fine-tune these networks using all images of the
CALTECH benchmark [2]. Therefor we adopt the weights of the already trained
convolutional layers and initialize the weights of the fully connected layers with
random values. Additionally, we add a randomly initialized classification layer
to each of these networks. During the aforementioned pre-training steps, the
two subnetworks of the late-fusion architecture are solely trained separately.

The training of the late-fusion model on the KAIST data occurs in two steps
as well: Depending on whether we use pre-training or not, the two subnetworks
of the LateFusion architecture are initialized with either pre-trained weights, or
random values. Starting from these parameters, we separately optimize the two
subnetworks. The second step encompasses a joint fine-tuning of the whole late-
fusion architecture. As suggested by [10], the best fusion results can be reached
when the weights of the subnetworks are fixed and only the fusion layers are
trained. Due to its simple structure, the early-fusion network can be trained or
fine-tuned, depending on the usage of pre-training, in a regular fashion.

In contrast to the data sampling policy of the baseline detector, we analo-
gously to [9] use every second frame of the KAIST training dataset. Additionally,
we split the original training data into a training set containing 92% of the im-
ages and a validation set containing the remaining 8% of the images.

4 Results

The evaluation of the detectors is performed on the reasonable subsets of the
KAIST test data. The reasonable day and reasonable night subset respectively
contain images captured during daytime and nighttime, the reasonable all data
is formed by the union of these to datasets. We follow the evaluation protocol
defined in [5] and additionally standardize in accordance to [2] the aspect ra-



tio of bounding boxes to a fixed value of 0.41, by means of width adjustment.
Figure 2 shows the ROC curves of the detectors, as well as their log-average
miss rates, as defined in [2]. For each fusion architecture, we report the perfor-
mance with and without pre-training, marked by the PreTraining suffix. In ad-
dition, the performance of the two pre-trained late-fusion subnetworks CaffeNet-
T+PreTraining and CaffeNet-RGB+PreTraining is visualized. The pre-trained
late-fusion based deep architecture significantly outperforms the state-of-the-art
ACF+T+THOG baseline, as well as all other evaluated detectors in all three test
set splits. At daytime, the performance of the LateFusion+PreTraining archi-
tecture is 5.12% better than the baseline and at nighttime 10.4%. Even though
during pre-training the substitution of the thermal channel with the red channel
is a very rough approximation, it leads to a significant performance increase in
all architectures. Most of the time, the early-fusion architecture is not able to
reach state-of-the-art ACF+T+THOG performance. In our opinion, there are
at least three reasons for this observation: The poor performance of the early-
fusion network without pre-training can most likely be traced back to the limited
amount of data available in the KAIST dataset. Additionally, we suspect that
the early-fusion network did not learn meaningful multimodal features during
the pre-training process, due to the absence of complementary information in
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Fig. 2: Detection performance comparison of the introduced fusion architectures,
with the recent state-of-the-art detector ACF+T+THOG.



the chosen approximation of the thermal channel. A third reason for the poor
performance of the early-fusion architectures is a small non-systematic align-
ment error, which is noticeable in some images of the dataset. The late-fusion
network is able to cope with such errors, because it fuses information at a stage
where spatial information is less relevant. As expected, the thermal modality
has advantages over the visible at nighttime and vice versa at daytime.

5 Conclusion

We introduced a first application of deep CNNs for pedestrian detection on the
basis of multispectral image data and evaluated two deep architectures, one for
early- and the other for late-fusion. Our analysis on the KAIST Multispectral
Benchmark dataset shows that a pre-trained late-fusion based architecture can
significantly outperform the state-of-the-art ACF+T+THOG solution, whereas
most of the time the early-fusion architecture is not able to reach state-of-the-
art performance. This may be due to the inability of the early-fusion network
to learn meaningful multimodal abstract features in the given setting.
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