
Rendering and Tracking the Directional TSDF:
Modeling Surface Orientation for Coherent Maps

Malte Splietker and Sven Behnke

Abstract— Dense real-time tracking and mapping from
RGB-D images is an important tool for many robotic appli-
cations, such as navigation or grasping. The recently presented
Directional Truncated Signed Distance Function (DTSDF) is
an augmentation of the regular TSDF and shows potential for
more coherent maps and improved tracking performance. In
this work, we present methods for rendering depth- and color
maps from the DTSDF, making it a true drop-in replacement
for the regular TSDF in established trackers. We evaluate and
show, that our method increases re-usability of mapped scenes.
Furthermore, we add color integration which notably improves
color-correctness at adjacent surfaces.

I. INTRODUCTION

Since its first appearance in KinectFusion [1], GPU ac-
celerated TSDF algorithms have become a de-facto standard
in scene reconstruction from depth images, leveraging inex-
pensive sensors and massive parallel processing on GPUs
for good real-time performance. By modeling the closest
distance to the next surface with a signed distance function
(SDF), geometry can be reconstructed by finding the zero-
transition from positive (i.e. in front of the surface) to
negative (i.e. behind the surface) values. In practice, this
function is obtained by fusing measurements into a regular
grid, the so called voxels, and interpolating between them.
The necessity to store both front- and backside of the surface
implies, however, that there is a minimum thickness of
objects that can be represented. Especially with thin objects,
integration of new measurements might interfere with and
contradict old data belonging to a different surface, leading
to a corrupted model. We have explored this issue and
introduced the concept of the Directional Truncated Signed
Distance Function (DTSDF) in our previous work [2]. The
DTSDF uses six TSDF volumes, one for each positive
and negative coordinate axis, to store surface sections with
different orientations. We proposed a method for fusing depth
images into this data structure and for extracting meshes with
a modified marching cubes algorithm. The latter is, however,
not applicable for real-time tracking applications.

Instead, in this work we propose methods for rendering
virtual camera views, which allows to use standard geometric
ICP for real-time sensor motion tracking. Moreover, we
introduce color integration into the DTSDF, which helps
preserving color details of adjacent object surfaces, espe-
cially along sharp edges. With these additions, the DTSDF
becomes a true replacement for the regular TSDF with only

This research has been supported by MBZIRC 2017 price money.
All authors are with the Autonomous Intelligent Systems Group, University
of Bonn, Germany. splietker@ais.uni-bonn.de

DTSDF

X POS

Z NEG

combine

Rendering
TSDF

depth
map

RGB
render

ICP
Tracking

pose

Fig. 1: The top part shows a cut view of the reconstructed
Stanford copyroom scene. The lower left half is the rendered
depth, upper right shows the directions involved in rendering
in different colors, mixed whenever multiple directions con-
tributed. The bottom part shows the pipeline for rendering
and tracking with the DTSDF.

minor modifications to the fusion and rendering algorithms.
We evaluate our method on well-known datasets and show,
that the DTSDF has advantages in tracking certain types of
sequences and is better at preserving the overall map for later
reuse.

II. RELATED WORK

In 3D reconstruction and SLAM feature-based, sparse,
and dense methods are distinguished. Our work belongs to
the category of dense methods that describe closed surfaces,
separate objects, and even free space [3].

Research focus in this field has shifted in recent years
towards learned representations. Occupancy networks [4]
learn a binary descriptor describing the occupancy of space,
i.e. whether a point lies inside an object or not. In DeepSDF
by Park et al. [5], a representation is learned, which like
our work allows querying the signed distance to the closest
object for arbitrary points in space. Neural Radiance Fields
(NeRF) [6], [7] use deep networks to regress density and
color. While these approaches show impressive results, use
less memory to store the model or even enable scene comple-
tion, they have some shortcomings. The limited model size
results in a lack of detail for large scenes. Also training and
inference times are still several orders of magnitude higher,
making them unusable for real-time applications. Hence, the

978-1-6654-1213-1/21/$31.00 ©2021 IEEE

behnke
Schreibmaschine
10th European Conference on Mobile Robots (ECMR), Bonn, Germany, September 2021.

classic TSDF fusion algorithms are still state-of-the-art in
live mapping scenarios.

Since its first occurrence, the TSDF fusion algorithm
has seen widespread use cases and is mostly used without
changes to the representation. There have been attempts to
augment it, though. Dong et al. [8] created a hybrid data
structure, combining the TSDF with probabilistic surfels.
Multiple overlapping TSDF sub-volumes are used in pose
graphs for large-scale SLAM, enabling re-aligning parts of
the map on loop closure detection for consistency [9], [10].
This approach is similar to the DTSDF in that it maintains
several overlapping representations, but does not fix the
TSDF’s inability to represent thin objects observed from
opposite sides within the same volume. While this may not
be an issue for some applications, object scans and walk-
around type scenes profit from this capability.

Zhang et al. [11] give an overview of current RGB-D
SLAM algorithms. The typical method for localizing the sen-
sor pose in the TSDF is frame-to-model geometric ICP [1],
where a back-projected point cloud from the previous posi-
tion is used with the point-to-plane metric and Gauss Newton
for minimizing the registration error. There are modified
versions, such as the extended ICP tracker [12], which uses
the Huber-norm and has advanced outlier detection. But the
regular ICP is still most commonly used.

Photometric ICP instead uses a registration loss that is
based on RGB values [13]. This is helpful in geometrically
ambiguous scenes, e.g. planar surfaces. Hybrid approaches
combine both schemes [9], [14], [15]. Common for the
ICP family of algorithms is, that they use depth maps and
rendered images generated from the model for registering
current input images.

The direct volume matching line of algorithms directly
performs registration within the SDF. Point-to-SDF [16],
[17] and SDF-to-SDF [18] approaches can be distinguished.
Millane et al. [19] recently proposed a method for extracting
and matching local features directly on the SDF.

Further hybrid approaches utilize other tracking sources.
BundleFusion [15] is an advanced method that uses ICP error
minimization and visual SIFT features in a global bundle
adjustment, and then de- and reintegrates parts of scene to
keep an overall representation consistent.

The goal of this work is to make DTSDF usable as
replacement or supplement for the regular TSDF. To be able
to profit from established tracking methods without further
modifications we
• introduce color fusion into the DTSDF,
• present an efficient method for generating rendered

views of the DTSDF,
• use these rendered views to track sensor motion with

the ICP algorithm.

III. FUSION AND WEIGHTS

Formally, the signed distance function Φ : R3 −→
(d,wd, c, wc) maps an arbitrary point in space to a tuple
comprising signed distance to the closest surface d, distance
weight wd, RGB color c and color weight wc, where the

weights represent the confidence of the integrated informa-
tion. As reconstruction only requires information close to
the actual surface, the TSDF only maps points within a
truncation band around the actual surface. In practice, the
TSDF is stored as a evenly-spaced grid of voxels and Φ is
estimated by linear interpolation between the stored tuples.

The directional TSDF [2] Φdir(p) = (ΦD(p))D∈Directions
extends this representation by mapping a point to
multiple signed distance functions – one for each
direction {X+, X−, Y +, Y −, Z+, Z−} – corresponding
to the positive and negative coordinate axes v =
{(1, 0, 0)ᵀ, · · · , (0, 0,−1)ᵀ}. Observed depth points are
matched to those directions D that fulfill arccos〈n,vD〉 < θ
for depth normal n and angular threshold θ ∈ (π/4, π/2].

Fusion is the process of integrating new observations into
the voxels as weighted cumulative moving average, where
weights denote the certainty of the added information. While
there is no definite weighting scheme, most implementations
use a combination of factors to compensate for measurement
noise and for uncertainty by down-weighting voxels behind
the surface [1], [20], [21]. In addition to these factors, the
fusion weight in [2] includes a direction factor wDdir =〈
n,vD

〉
to linearly blend surfaces which fall into multiple

directions over the whole span of [0, π/4]. Then, all wDdir are
explicitly compared to threshold cos θ and fused, if larger.
Instead, we propose the membership function

wDdir(n) = min

(
max

(
1− arccos〈n,vD〉

2θ − π
4

, 0

)
, 1

)
(1)

which has two advantages: firstly, it only blends overlapping
parts up to θ with the full [0, 1] range (cf. Fig. 2), whereas
the old weight had an effective range of [4θ/π, 1] and
no exclusive area. Secondly, it makes explicit thresholding
superfluous.

angle

weight

1

π
4θ

overlapping
area

exclusive
area

Fig. 2: Direction weight function for angle between sur-
face normal and direction vector. The angular threshold θ
determines the width of exclusive (solid) and overlapping
(hatched) areas for two neighboring direction (yellow, cyan).

Color is fused analogous to distances, but with a different
weight. Again, there are different variants throughout liter-
ature. Dryanovski et al. [22] use the same constant weight
for depth and color to save computation time. Whelan et
al. [14] use angle between depth normal and view ray

to downweight steep observation angles, which Bylow et
al. [20] use in combination with the depth weight. This factor
is also included in our depth weight. We argue that using the
depth fusion weight for colors is important, as the uncertainty
is reflected in the choice of voxels associated with pixels. Our
color weight is

wnew
c = wnew

d

(
1−min

(
1,
||p− x||

τ

))
, (2)

where wnew
d is the depth fusion weight, p the depth point

and x the voxel position. The additional factor reduces the
confidence for voxels further away from the surface, as
multiple colors from various observations may blend together
here and there is no equivalent to the point-to-plane metric,
which mitigates this issue for depth fusion.

Free space, that is space between camera and observed
surface, is not explicitly mapped to save memory. Nonethe-
less, due to noise, sensor error, or dynamic objects it can
happen that spurious measurements are mapped in space,
that is unoccupied in reality, and it is important to remove
these artifacts. When the computed distance Eq. (3) is larger
than the truncation range τ , the voxel is located in free space
and updated with a SDF value of 1 and a constant weight.
No directional weight is used in this case, as the goal is to
carve everything in free space. Special care has to be taken
at depth discontinuities: carving can corrupt voxels of edges,
because aliasing and small tracking inaccuracies associate
the voxel with a more distant surface. Therefore, carving is
only applied if there is no depth difference of more than τ
in a radius of two pixels to the associated depth pixel. To
free up memory, voxels that are erroneously allocated but
become free space by repeated carving can be recycled in
an asynchronous process, as has been done in [23].

The signed distance ∈ [−1, 1] for a voxel position x is
computed with the point-to-plane metric

d =
1

τ
〈p− x,n〉 (3)

for depth point p with normal n and truncation range τ ,
which helps keeping the SDF consistent with varying obser-
vation angles as opposed to the point-to-point metric [20].

While in our previous work [2] we explored ray casting
similarly to Klingensmith et al. [24] for fusing individual
depth pixels along the view- or normal direction, this method
often shows bad results with noisy real-world data. For
tracking applications, voxel projection, like in the original
KinectFusion, has proven more robust. During voxel pro-
jection fusion, all allocated voxels in the view frustum are
projected into the current camera frame, associated with a
depth (and color) pixel, and updated by these values.

IV. DTSDF RAYCAST RENDERING

Rendering real-time views of the model from arbitrary
positions is useful for visualization and also tracking. Instead
of developing specialized tracking methods for the DTSDF,
our approach is to render a map of depth points and use
known and tested ICP-based algorithms [1], [12], [13], [9]
to register input depth images.

(a) high-resolution complete
combination

(b) Viewpoint-dependent com-
bination

Fig. 3: Two variants of combining the DTSDF. The black
outline represents the mapped object, green/red gradients
correspond to the positive/negative SDF values and the grid
denotes the voxel grid.

The rendering process involves casting a ray per pixel
of the virtual depth camera and extracting the iso-surface,
i.e. the first transition from positive to negative SDF values.
This involves probing the TSDF along the ray at regular
intervals, until the distance turns negative and then multiple
small steps, determined by the interpolated SDF value, to
minimize the absolute distance value. Similar to the meshing
presented in [2] the question is: how to combine up to six
SDF values from partially overlapping directions?

By its mathematical definition, the signed distance func-
tion can represent any given object. In other words, the
six directions could, given a fine enough resolution, be
combined into a single, conflict-free TSDF. But in practice,
the combination is not straight forward: overlapping free and
occupied space from different volumes has to be combined
in accordance with the orientation of mapped surfaces, while
considering corner cases, real-world noise and imperfections.
Also, the practical use is limited. Ray-cast rendering relies on
the width of the truncation range for finding zero-transitions,
which for thin objects can be easily missed. Instead, we made
an important observation:

Lemma 1. For a DTSDF and a fixed camera position, a
combined conflict-free regular TSDF with the same voxel
resolution can be computed.

The basic intuition behind this lemma is, that surfaces the
camera perceives from the backside are not relevant from a
given position. Fig. 3 depicts a comparison of both variants.
For the camera position in Fig. 3b, the free space above the
object is not required and the wider band of negative SDF
values makes it easier to ray-cast.

Computing the true combination of directions is compli-
cated and contains many corner cases. Instead we propose
a simple weighting scheme as approximation. For a point
x ∈ R3 and direction D, let nD be the normalized SDF
gradient (∂ΦD/∂x, ∂ΦD/∂y, ∂ΦD/∂z)ᵀ at x, wDd the stored
distance weight and r the normalized view ray from camera
center to x. Then the combination weight for direction D is
defined as

wDcomb = wDdir(n
D) · 〈nD,−r〉 · wDd . (4)

The first factor in Eq. (4) ensures that only gradients that

actually comply with the direction they are stored in are
used, with according weights to blend between directions.
The second factor ensures that only directions with eligible
surfaces are used, which is the main reason for using the
DTSDF. The approximation is not perfect and certain con-
stellations work only under the premise, that all direction’s
SDF weights are similar. On the other hand, it has shown
to be more robust in practice than other, more sophisticated
attempts we’ve tried.

These per-direction weights can be used to directly look
up the combined SDF value at any point in space as weighted
sum, but ray-casting becomes very slow, because many
TSDF lookups and memory reads have to be performed,
especially for the gradient computation. The massive parallel
computation also results in many cache misses, so the algo-
rithm becomes memory bound. As suggested in Lemma 1,
a view-dependent combined TSDF can be pre-computed by
calculating the combined SDF for every voxel in the view
frustum. This combined TSDF can then be used like a regular
TSDF, but only for ray-casting from the pose used during
combination. As a bonus, this opens up yet another class of
tracking algorithms: the direct volume matching type, that
perform registration directly within the SDF [16], [17], [18].

To always use the most recent observations, all voxels
that received new information during fusion also need to
be updated in the combined TSDF. But for static scenes
this is not always necessary. Instead, we use conditional
combination. Only meeting one of the following criteria
triggers an update of the combined TSDF:

framesSinceStart < 5, boot up (5)
framesSinceLastUpdate > 50, stale state (6)
‖pose− lastPose‖translation > 0.05 m, translation (7)

‖pose− lastPose‖angle > 0.05
π

2
. rotation (8)

The boot up condition Eq. (5) ensures, that during the first
frames where the map is still uncertain, always the most
recent data is used for tracking. Eq. (6) enforces regular
updates in case the camera does not move. Eq. (7, 8) are
a relaxation of Lemma 1, that states minor changes in the
camera pose don’t change the combined TSDF, similar to
small-motion assumption on which the data association for
ICP is based [1]. We experimentally chose the thresholds rel-
atively small, so as not to violate the underlying assumption.
A more thorough investigation on the impact of these limits
would be interesting. On the tested sequences, the update
is triggered on average around every third frame. By also
selecting voxels slightly beyond the camera frustum (±1/8
image size), motions of the camera will not leave the scope of
the combined TSDF before triggering a recalculation. Voxels
that receive data for the first time are always directly added
to the combined TSDF.

To prevent empty voxels in the absence of gradients in all
directions (e.g. at edges), the weights

wDnoGrad = wD · 〈vD,−r〉 (9)

are used instead.

(a) TSDF (b) Input RGB (c) DTSDF (d) Contribut-
ing directions

Fig. 4: Color bleeding effect on Stanford totempole sequence

V. IMPLEMENTATION DETAILS

Our implementation is based on InfiniTAM [25], with
significant modifications. For optimized memory usage, the
voxel hashing scheme introduced by Nießner et al. [26] is
used. Voxels are allocated in blocks of 8× 8× 8 only where
required and a hash map is used for constant-time access.
Among other changes, the implementation now uses the
stdgpu library by Stotko [27] to replace several components,
especially the original hash map, which could not allocate
blocks with colliding hash values within the same iteration.

Unlike the previous DTSDF implementation presented
in [2] where 6 separate TSDF volumes were used for the
different directions, here only a single TSDF is utilized. The
hash index is extended from (x, y, z) ∈ Z3 to (x, y, z,D) ∈
Z3 × Directions. This simplifies many functions and better
utilizes the statically allocated memory on the GPU: For
most scenes the DTSDF has an imbalance of direction-usage,
which wastes a lot of memory in the old scheme. Resizing the
volumes is an option, but requires additional overhead which
can be simply avoided by the aforementioned modification.

The time for computing the rendering TSDF is crucial for
real-time usage of our method. It can be significantly sped
up by taking advantage of the lookup positions being only
integer voxel positions. Hence, no trilinear interpolation is
required and the gradient can be computed with just looking
up the SDF values stored in the 6 neighboring voxels. We
further managed to halve the time by pre-caching the TSDF
lookups for all voxels of the same block in shared memory.
At the very most, for every direction there are the current
block and its six neighboring blocks, so a total of 48 are
looked up at the beginning.

As a proof of concept, we use the pipeline depicted in
Fig. 1 with the default geometric ICP tracker.

VI. EVALUATION

Fig. 4 clearly shows the DTSDF’s advantage in color
separation. While in the regular TSDF (Fig. 4a) the colors
blend because of fusion from two surfaces into the same
voxels, the DTSDF retains different colors across edges
(Fig. 4c). Fig. 4d shows which directions contribute to which
rendered pixel.

The datasets used in our evaluation are the Stanford 3D
Scene Data (totempole, etc.) [28], ICL NUIM [29], Zhou [30]
and the TUM RGB-D benchmark [31]. The sequences ICL
lr0 and ICL office kt1 are skipped, because they contain
a geometrically ambiguous segment which is not trackable
with geometric ICP.

A. ICP Tracking

For comparing the tracking performance, we evaluate the
regular TSDF (marked state-of-the-art, SoTA) against the
DTSDF by running scenes from the aforementioned datasets
and comparing the tracking results against the provided
ground-truth trajectory using the relative pose error (RPE)
with a window size of 30 frames (1 s). Note that this study
does not try to compare to complete SLAM algorithm with
loop closure detection and correction, but showcases the
performance of the DTSDF relative to the regular TSDF
as an enhanced data structure. All settings are equal across
both modes and the tracker uses the default geometric ICP
algorithm.

As expected, tracking does benefit from the DTSDF in
scenes, where the camera observes thin structure from dif-
ferent angles. Otherwise, there is no significant difference.

The first test on artificially generated sequences from the
ICL NUIM and Zhou datasets is reported in Tab. I for dif-
ferent voxel sizes. Note that the noise-augmented sequences
are being used. The tracking performance is similar for most
sequences, which is likely due to the mapped environments,
which are convex rooms where the regular TSDF does
not display its issues. The Zhou office sequences, a scene
of cluttered office desks scanned from different directions,
provides an environment where the DTSDF actually has an
advantage, which is reflected in the RPE. Tab. II does the
same comparison on the turntable-like dataset used in the
original DTSDF paper [2]. In those sequences the camera
orbits around a center point and only the model is visible,
which is challenging to track due to the details and high
percentage of thin structure wrt. to the whole scene. The
RPE distinctly shows the strength of the DTSDF.

Tab. III shows the results with real-world scans from
the TUM dataset, with very similar results. Large planar
surfaces with sharp corners (structure notex sequences) seem
to benefit from the DTSDF. Here, the measurements have to
be considered with care, as the underlying ground-truth is
not perfect.

B. Map Reusability

Overall, the tracking results show, that the DTSDF gener-
ally only has an advantage in sequences, where the camera
observes structure from different sides. In those sequences,
the performance is significantly better, especially with in-
creasing voxel size, as the problems of the regular TSDF
increase as well. In all other sequences the performance is
very similar, which is also due to the fact that the fusion
process makes the locally visible area compliant: given
enough observations from the current viewpoint, all conflicts
in the representation will be evened out due to the running

TABLE I: Tracking RPE in mm, mean memory usage,
and per-frame runtime of synthetic ICL NUIM [29] and
Zhou [30] sequences for different voxel sizes.

Voxel size 5 10 20
SoTA DTSDF SoTA DTSDF SoTA DTSDF

lr kt1n 4.8 4.9 4.9 4.8 5.3 4.7
lr kt2n 15.2 15.2 15.1 15.0 14.6 14.8
lr kt3n 13.1 16.5 21.9 19.6 55.8 26.2
office kt0n 11.8 11.4 11.2 11.3 11.1 11.2
office kt2n 17.1 17.4 16.0 16.1 16.4 16.2
office kt3n 185.4 191.6 299.1 287.1 640.2 326.2
Zhou lr1 2.9 2.9 2.9 3.0 4.1 4.0
Zhou lr2 2.5 2.4 2.6 2.8 4.0 3.6
Zhou office1 1.9 1.7 4.0 1.8 10.3 3.0
Zhou office2 2.9 2.4 5.8 3.3 12.5 4.3
∅ time [ms] 10.2 17.1 6.7 8.8 5.6 6.4
∅ mem [MB] 2263 3117 462 769 85 169

TABLE II: Tracking RPE in mm, mean memory usage,
and per-frame runtime of synthetic sequences rendered from
Stanford 3D models [2] for different voxel sizes.

Voxel size 5 10 20
SoTA DTSDF SoTA DTSDF SoTA DTSDF

armadillo 6.0 8.0 8.1 7.1 18.6 13.7
bunny 3.7 3.0 4.2 3.8 9.9 7.5
dragon 11.7 6.4 6.9 6.2 26.1 13.8
turbine blade 14.4 11.0 32.0 38.7 93.0 32.7
∅ time [ms] 4.8 5.1 4.4 4.7 4.2 4.5
∅ mem [MB] 18 39 4 12 1 4

TABLE III: Tracking RPE in mm, mean memory usage, and
per-frame runtime of TUM sequences [31] for different voxel
sizes.

Voxel size 5 10 20
SoTA DTSDF SoTA DTSDF SoTA DTSDF

desk1 62.4 60.9 55.2 56.1 49.2 50.3
long office 23.3 23.9 22.6 22.2 24.6 23.7
structure
notex far

31.9 26.8 33.8 33.8 17.8 18.9

structure
notex near

11.1 10.9 11.4 10.1 10.8 9.7

∅ time [ms] 7.5 11.9 5.9 7.2 5.4 6.0
∅ mem [MB] 681 1368 132 317 29 82

average (unless the conflicting side has been observed a long
time, resulting in a high weight). In many cases this does not
become apparent during tracking, but for the reusability of
the overwritten parts of the completed map it is important
to test these effects. To this end, we propose the post-
fusion per-frame error: after completing fusion of the entire
sequence, for every estimated pose, a depth map is rendered
again and compared to the corresponding input depth image
by computing the pixel-wise mean absolute error (MAE).
Fig. 5 shows on the example of the fr3 long office sequence
that although the tracking performance is very similar, the
DTSDF is better at retaining the map.

Tab. IV lists the post-fusion MAE of a selection of
sequences (a complete list can be found in the Ap-
pendix Tab. V). One can observe that in most cases there is
not too much difference, especially in concave rooms like
the ICL sequences. The effect usually only affects small

parts of the model, like a corner or a computer monitor.
Consequently, for the mean error over the whole image the
effect is not that significant, but visible nonetheless. Object-
scanning type sequence with the camera orbiting around
objects generally seem to profit from the DTSDF more
(c.f. Fig. 6). Decreasing the voxel size certainly does mitigate
some of these issues for the SoTA, but ultimately the effect
highlighted by the lower left rectangle remains for thin
surfaces. Also, as Tab. I, III show, halving the voxel size
instead of using the DTSDF will require more memory and
computation time.

Fig. 5: Post-fusion MAE (dot) and 95% confidence intervals
(bars) on example dataset TUM fr3 long office.

TABLE IV: MAE (in mm) for different voxel sizes and
datasets.

Voxel size [mm]
Dataset mode 5 10 20 30 40

SUN copyroom SoTA 56.4 36.5 53.3 65.9 92.8
DTSDF 51.2 37.1 35.5 47.0 62.2

SUN stonewall SoTA 78.4 33.3 35.7 45.6 216.8
DTSDF 32.5 65.8 34.8 38.1 83.6

ICL lr kt1n SoTA 55.3 77.8 128.3 183.7 207.1
DTSDF 46.9 58.4 103.1 111.6 115.4

ICL office kt3n SoTA 218.3 153.6 85.1 104.6 95.3
DTSDF 40.0 252.4 121.8 141.8 145.3

Zhou office2 SoTA 25.9 29.0 34.3 84.3 64.6
DTSDF 25.8 28.1 31.8 37.1 44.6

turbine blade SoTA 2.5 5.1 13.8 37.0 42.3
DTSDF 2.3 3.6 7.0 11.9 23.9

TUM fr1 desk1 SoTA 62.2 49.7 49.0 51.9 56.1
DTSDF 51.7 47.9 48.1 50.1 54.3

TUM fr3 long
office

SoTA 43.4 43.0 44.7 51.2 61.3
DTSDF 37.3 38.1 40.8 47.4 55.4

C. Runtime and Memory Consumption

All experiments were performed on an Intel i7-8700K
with 3.70GHz and a GeForce RTX 3090. The CPU part of
the code runs entirely on a single core. By reducing the
changes to rendering the DTSDF while keeping the rest of
the pipeline original, the runtime only differs in allocation,
fusion and rendering. Fig. 7 breaks down and compares
runtimes for different voxels sizes. One can observe that
the additional overhead is quite small. Note that for this
example conditional combination was activated, and a ren-
dering TSDF was computed for 35-40% of the frames with
the conditions specified in Eq. (5)-(8).

(a) regular TSDF (b) DTSDF

Fig. 6: Qualitative comparison of regular TSDF and DTSDF
on turntable-style sequences. The lower left rectangle high-
lights artifacts from data fused from the backside. The upper
right rectangle shows artifacts resulting from fusion conflicts
between right- and front side.

left: SoTA
right: DTSDF

Fig. 7: Mean per-frame update time comparison between
state-of-the-art and DTSDF on SUN totempole sequence for
different voxels sizes. Conditional combination is activated.

As expected, the memory usage of the DTSDF is higher,
as surfaces can overlap in up to three directions. In Fig. 8
the ratio of additional memory required by the DTSDF w.r.t.
the regular TSDF is displayed for ICL NUIM scenes. For
smaller voxels, the amount for extra memory is quite small.
With increasing voxel size, the ratio increases as blocks are
allocated in chunks of 8 × 8 × 8 voxels and more surfaces
with different orientations fall into the same block, though
the actual number of blocks is significantly smaller.

Fig. 9 plots the memory ratio for various sequences of the
datasets fused with 5 mm voxel size. It is also noticeable,
that synthetic datasets (ICL, Zhou) use less memory than
real ones. This is probably noise-related, as the depth-
noise augmented ICL sequences also have a higher ratio,
which suggests that with a more conservative allocation
scheme memory can be saved. At the moment even for stray
measurements blocks are allocated, as long as they have
a valid normal. As surfaces can be fused into up to three
directions, determined by Eq. (1), an interesting question is
how the alignment of the map coordinate frame to the scene
affects memory usage. For this, we pre-computed initial

Fig. 8: Ratio of allocated memory for DTSDF w.r.t. regular
TSDF for different voxel sizes and scenes form the ICL
NUIM dataset [29].

(a) best case: floor/walls aligned with coordinate axes.

(b) worst case: floor/walls 45◦ to all axes.

Fig. 9: Ratio of allocated memory for DTSDF wrt. regular
TSDF (red line) for various sequences of different datasets
and 5 mm voxel size.

poses for each sequence by identifying the largest planes
of the sequence. In the best case scenario (Fig. 9a), the
coordinate axes are parallel; in the worst case (Fig. 9b), tilted
45◦ to the identified planes. Noticeably, the alignment does
have an effect, but not very significant. This is, however,
highly dependent on the scenes and voxel sizes, because it
induces only a one-time cost. Automating this process at the
initialization phase of mapping is recommended.

Overall for the majority of scenes the DTSDF requires
around 1.5 to 2 times as much memory as the regular TSDF.

VII. CONCLUSIONS

In this work, we introduced the tools to use the DTSDF
as a drop-in replacement for regular TSDF for mapping,
tracking, and visualization applications. The ability to simply
extract a regular TSDF for a given pose enables using it for
a variety of tasks and with many algorithms that have been
developed over the years.

We have shown that the DTSDF has advantages over
the state-of-the-art for certain types sequences, like object
scans, in both quality and quantity. Moreover, with the
post-fusion MAE metric we shown that, while the regular
TSDF is usable for local maps, reusability and revisiting
of mapped places becomes problematic, if conflicting in-
formation from different surfaces corrupts the model. With
reasonable memory- and computation overhead, better results

and a more consistent map can be obtained by the proposed
DTSDF method.

APPENDIX
TABLE V: MAE (in mm) of state-of-the-art and DTSDF
compared for different voxel sizes and datasets.

Voxel Size [mm]
dataset mode 5 10 20 30 40

SUN burghers SoTA 155.5 63.1 51.8 54.5 61.3
DTSDF – 59.4 52.2 52.9 57.4

SUN copyroom SoTA 56.4 36.5 53.3 65.9 92.8
DTSDF 51.2 37.1 35.5 47.0 62.2

SUN cactusgarden SoTA 61.0 57.8 62.2 72.2 83.7
DTSDF 56.5 57.7 65.4 74.4 82.7

SUN lounge SoTA 61.3 61.1 63.2 67.1 72.6
DTSDF 59.2 60.8 62.9 65.7 69.6

SUN stonewall SoTA 78.4 33.3 35.7 45.6 216.8
DTSDF 32.5 65.8 34.8 38.1 83.6

SUN totempole SoTA 25.0 29.9 31.3 34.4 39.3
DTSDF 24.9 29.7 30.7 33.0 36.4

ICL lr kt1 SoTA 17.8 18.2 17.7 17.6 18.0
DTSDF 17.8 18.1 17.7 17.6 17.8

ICL lr kt2 SoTA 24.1 25.5 25.6 26.6 28.8
DTSDF 24.1 25.5 25.6 26.5 28.7

ICL lr kt3 SoTA 79.8 67.7 22.6 17.7 65.9
DTSDF 123.9 69.8 67.5 74.8 19.8

ICL lr kt1n SoTA 55.3 77.8 128.3 183.7 207.1
DTSDF 46.9 58.4 103.1 111.6 115.4

ICL lr kt2n SoTA 61.1 74.2 94.4 108.3 164.2
DTSDF 49.3 71.2 100.2 112.4 142.9

ICL lr kt3n SoTA 35.2 42.9 119.8 112.2 150.7
DTSDF 38.2 41.7 53.3 68.7 106.0

ICL office kt0 SoTA 20.9 24.6 26.4 27.7 28.1
DTSDF 20.9 24.7 26.5 27.6 28.1

ICL office kt2 SoTA 21.1 23.7 24.4 24.5 25.4
DTSDF 21.1 23.8 62.6 24.6 25.3

ICL office kt3 SoTA 14.9 15.8 16.0 16.1 16.7
DTSDF 14.9 15.9 16.0 16.1 16.6

ICL office kt0n SoTA 60.9 73.5 83.2 92.8 90.7
DTSDF 60.9 73.7 81.2 89.7 88.6

ICL office kt2n SoTA 53.3 59.3 64.7 63.3 65.1
DTSDF – 59.4 63.9 65.4 65.6

ICL office kt3n SoTA 218.3 153.6 85.1 104.6 95.3
DTSDF 40.0 252.4 121.8 141.8 145.3

Zhou lr1 SoTA 22.5 24.8 25.7 27.9 31.1
DTSDF 22.5 24.7 25.6 27.4 30.1

Zhou lr2 SoTA 17.5 19.0 21.6 25.0 28.5
DTSDF 17.3 18.6 20.9 23.9 27.2

Zhou office1 SoTA 29.0 32.7 36.4 47.2 54.1
DTSDF 29.1 32.5 35.0 38.2 43.3

Zhou office2 SoTA 25.9 29.0 34.3 84.3 64.6
DTSDF 25.8 28.1 31.8 37.1 44.6

armadillo SoTA 3.6 4.5 10.9 20.4 31.4
DTSDF 3.5 4.1 6.8 12.1 19.2

bunny SoTA 2.1 2.9 8.6 17.9 26.6
DTSDF 2.0 2.6 5.0 9.8 15.8

dragon SoTA 4.0 5.8 15.2 25.2 33.2
DTSDF 3.9 4.9 9.4 16.5 25.3

turbine blade SoTA 2.5 5.1 13.8 37.0 42.3
DTSDF 2.3 3.6 7.0 11.9 23.9

TUM fr1 desk1 SoTA 62.2 49.7 49.0 51.9 56.1
DTSDF 51.7 47.9 48.1 50.1 54.3

TUM fr3 long
office

SoTA 43.4 43.0 44.7 51.2 61.3
DTSDF 37.3 38.1 40.8 47.4 55.4

TUM fr3 structure
notexture far

SoTA 60.3 68.1 27.8 22.3 26.0
DTSDF 49.4 67.1 27.8 22.3 25.7

TUM fr3 structure
notexture near

SoTA 7.0 7.5 7.7 8.1 8.9
DTSDF 6.4 6.7 6.9 64.3 7.8

TUM fr3 structure
texture far

SoTA 41.6 26.2 22.1 24.0 25.7
DTSDF 40.4 25.4 21.6 22.9 25.1

TUM fr3 structure
texture near

SoTA 46.9 69.5 103.7 31.0 28.2
DTSDF 43.5 38.8 126.8 93.8 25.8

REFERENCES

[1] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR), 2011, pp. 127–136.

[2] M. Splietker and S. Behnke, “Directional TSDF: Modeling surface ori-
entation for coherent meshes,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019, pp. 1727–1734.

[3] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3D Euclidean signed distance fields for on-
board MAV planning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep. 2017, pp. 1366–1373.

[4] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3D reconstruction in function space,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 4455–4465.

[5] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: Learning continuous signed distance functions for shape
representation,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 165–174.

[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “NeRF: Representing scenes as neural radiance fields
for view synthesis.”

[7] D. Azinović, R. Martin-Brualla, D. B. Goldman, M. Nießner, and
J. Thies, “Neural RGB-D surface reconstruction,” arXiv:2104.04532,
2021.

[8] W. Dong, Q. Wang, X. Wang, and H. Zha, “PSDF Fusion: Probabilistic
signed distance function for on-the-fly 3D data fusion and scene
reconstruction,” in European Conference on Computer Vision (ECCV),
2018, pp. 701–717.

[9] P. Henry, D. Fox, A. Bhowmik, and R. Mongia, “Patch volumes:
Multiple fusion volumes for consistent RGB-D modeling,” in RSS
workshop on RGB-D: Advanced reasoning with depth cameras, Berlin,
Germany, 2013.

[10] A. Millane, Z. Taylor, H. Oleynikova, J. Nieto, R. Siegwart, and C. Ca-
dena, “C-blox: A scalable and consistent TSDF-based dense mapping
approach,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2018, pp. 995–1002.

[11] S. Zhang, L. Zheng, and W. Tao, “Survey and evaluation of RGB-D
SLAM,” IEEE Access, vol. 9, pp. 21 367–21 387, 2021.

[12] V. A. Prisacariu, O. Kähler, S. Golodetz, M. Sapienza, T. Cavallari,
P. H. Torr, and D. W. Murray, “InfiniTAM v3: A framework for large-
scale 3D reconstruction with loop closure,” arXiv:1708.00783, 2017.

[13] C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-D
cameras,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2013, pp. 2100–2106.

[14] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard,
and J. McDonald, “Real-time large-scale dense RGB-D SLAM with
volumetric fusion,” The International Journal of Robotics Research,
vol. 34, no. 4-5, pp. 598–626, 2015.

[15] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
fusion: Real-time globally consistent 3D reconstruction using on-the-
fly surface reintegration,” ACM Transactions on Graphics (TOG),
vol. 36, no. 3, p. 24, 2017.

[16] E. Bylow, C. Olsson, and F. Kahl, “Robust online 3D reconstruction
combining a depth sensor and sparse feature points,” in International
Conference on Pattern Recognition (ICPR), 2016, pp. 3709–3714.

[17] D. R. Canelhas, T. Stoyanov, and A. J. Lilienthal, “Sdf tracker: A
parallel algorithm for on-line pose estimation and scene reconstruc-
tion from depth images,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2013, pp. 3671–3676.

[18] M. Slavcheva, W. Kehl, N. Navab, and S. Ilic, “SDF-2-SDF registra-
tion for real-time 3D reconstruction from RGB-D data,” International
Journal of Computer Vision, vol. 126, pp. 615–636, 2018.

[19] A. Millane, H. Oleynikova, C. Lanegger, J. Delmerico, J. Nieto,
R. Siegwart, M. Pollefeys, and C. Cadena, “Freetures: Localization
in signed distance function maps,” arXiv:2010.09378, 2020.

[20] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, “Real-
time camera tracking and 3D reconstruction using signed distance
functions.” in Robotics: Science and Systems (RSS), vol. 2, 2013.

[21] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling Kinect sensor
noise for improved 3D reconstruction and tracking,” in International
Conference on 3D Imaging, Modeling, Processing, Visualization and
Transmission (3DIMPVT), 2012, pp. 524–530.

[22] I. Dryanovski, M. Klingensmith, S. S. Srinivasa, and J. Xiao, “Large-
scale, real-time 3D scene reconstruction on a mobile device,” Au-
tonomous Robots, vol. 41, pp. 1423–1445, 2017.

[23] W. Dong, J. Shi, W. Tang, X. Wang, and H. Zha, “An efficient
volumetric mesh representation for real-time scene reconstruction
using spatial hashing,” 2018.

[24] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao, “Chisel:
Real time large scale 3D reconstruction onboard a mobile device
using spatially hashed signed distance fields.” in Robotics: Science
and Systems (RSS), vol. 4, 2015.

[25] O. Kähler, V. Prisacariu, J. Valentin, and D. Murray, “Hierarchical
voxel block hashing for efficient integration of depth images,” IEEE
Robotics and Automation Letters, vol. 1, no. 1, pp. 192–197, 2015.

[26] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D reconstruction at scale using voxel hashing,” ACM Transactions
on Graphics (ToG), vol. 32, no. 6, p. 169, 2013.

[27] P. Stotko, “stdgpu: Efficient STL-like data structures on the GPU,”
arXiv:2010.09378, 2019.

[28] Q.-Y. Zhou and V. Koltun, “Dense scene reconstruction with points
of interest,” ACM Transactions on Graphics, vol. 32, no. 4, p. 112,
2013.

[29] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM,” in IEEE
International Conference on Robotics and Automation (ICRA), 2014,
pp. 1524–1531.

[30] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of in-
door scenes,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 5556–5565.

[31] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2012, pp. 573–580.

