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Abstract— Picking and transporting objects in an outdoor
environment with multiple lightweight MAVs is a demanding
task. The main challenges are sudden changes of flight dynamics
due to altered center of mass and weight, varying lighting
conditions for visual perception, and coordination of the MAVs
over unreliable wireless connections.

At the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) teams competed in a Treasure Hunt where three
MAVs had to collaboratively pick colored disks and drop them
into a designated box. Only little preparation and test time on-
site required robust algorithms and easily maintainable systems
to successfully achieve the challenge objectives.

We describe our multi-robot system employed at MBZIRC,
including a lightweight gripper, a vision system robust against
illumination and color changes, and a control architecture
allowing to operate multiple robots safely. With our system,
we—as part of the larger team NimbRo of ground and flying
robots—won the Grand Challenge and achieved a third place
in the Treasure Hunt.

I. INTRODUCTION

Aerial manipulation—especially picking, transporting, and
delivering objects—became an area of much interest in
recent years. Micro aerial vehicles (MAV) are well suited to
quickly deliver small, but valuable objects, e.g., spare parts
or medical substances. A particular advantage of employing
aerial vehicles to detect and pick objects is that—in contrast
to ground vehicles—they can reach otherwise hard to access
or even dangerous areas.

To facilitate the development in this field, one of the
tasks at the Mohamed Bin Zayed International Robotics
Challenge 2017 (MBZIRC) was collaborative picking with
MAVs. The Treasure Hunt task was to find and pick colored,
ferromagnetic discs from the ground of an outdoor arena
and to deliver them to a designated box in a predefined drop
zone. Fig. 1 shows one of our MAVs while picking a moving
object.

Teams were provided with rough specifications of the ob-
jects, i.e., diameter, height above ground, maximum weight
of 500 g, and the possible colors, in advance. The drop box
was specified by its approximate dimensions. Nevertheless,
the exact arena setup—including colored markings on the
ground making color-based perception challenging—was not
known in advance and teams had to develop robust and
flexible systems.
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Fig. 1. Picking a dynamic object. Our MAV follows the yellow disc with
visual servoing. The telescopic rod and the ball joint of our electromagnetic
gripper allow compliant picking without disturbing attitude control of the
MAV. The picked objects were delivered to a drop box up to 75m away.

In contrast to lab experiments or controlled field tests,
the particular challenge of the competition was the much
reduced testing time. The arena was only accessible for teams
at assigned time slots. In total, individual teams had two
rehearsal slots of 35 minutes and four competition trials—
two for the Treasure Hunt and two for the Grand Challenge.
The systems had to be set up in the arena in only five minutes
in each run. Consequently, complex algorithms that need
extensive fine-tuning or are prone to failing in some cases are
not an option for a competition system. Thus, we focused on
simple but robust approaches and tried to identify and cover
as many issues in advance as possible. Experiences gained
during trials had to be incorporated into the system without
additional testing before the next trial. Hence, the system
complexity needed to be as low as possible to eliminate error
sources. Furthermore, quickly changing overcast and light
sandstorms changed illumination and navigation conditions
significantly from trial to trial.

Due to these challenging conditions, only very few teams
managed to score in this task autonomously. Our main
contributions are

• robust detection of objects with only roughly specified
color under varying lighting conditions,

• relative navigation while picking and dropping,
• lightweight and flexible picking hardware,
• coordination of multiple MAV with and without WiFi

connections, and
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Fig. 2. Closeup of our MAV. The Matrice 100 is equipped with a down-
pointing color camera for object and drop box detection. Objects are picked
with an electromagnetic gripper on a telescopic rod. A small lidar sensor
measures the distance to the ground. All calculations are performed on a
powerful onboard PC.

• evaluation of our integrated multi MAV system in
challenging conditions at MBZIRC.

II. RELATED WORK

Aerial manipulation has been investigated by multiple
research groups.

Morton et al. [1], for example, developed an MAV with
manipulation capabilities for outdoor use. The MAV is
equipped with a 3-DoF arm which is operated in hover mode
without object perception or autonomous flight. An MAV
with a 2-DoF robot arm that can lift relatively heavy weights
is presented by the authors [2]. The controller explicitly
models the changes in the vehicle dynamics by attaching
a heavy object. The object positions are known beforehand.
We employ a trajectory generator that uses a very simple
dynamics model with frequent replanning on top of a model-
free attitude controller to achieve robustness against changes
in flight dynamics.

Ghadiok et al. [3] built a lightweight quadrotor for grasp-
ing objects in indoor environment. Similar to our work,
they have a lightweight and compliant gripper to cope with
uncertainties during grasping. Target objects are equipped
with infrared beacons; we detect objects based on coarse
color specifications. The ETH Zürich MBZIRC team Elec-
tronic Treasure Hunters describe a preliminary state of their
approach to solving the challenge in [4]. They employ an
electro-permanent magnetic gripper and color blob detection
for visual servoing.

Some work exists on cooperative transport of objects [5],
[6]. However, this work assumes a permanently connected
object, i.e., no picking and placing.

III. SYSTEM SETUP

Our picking MAV, depicted in Fig. 2, is based on the DJI
Matrice 100 quadcopter platform. This platform is designed
for research and development—and consequently offers an
easy ROS integration. We equipped the basic platform with
a small, but powerful Gigabyte GB-BSi7T-6500 onboard PC
with an Intel Core i7-6500U CPU running at 2.5/3.1GHz
and 16GB of RAM. For object and drop box detection, we
employ a downward facing Point Grey BFLY-U3-23S6C-C
color camera with a wide-angle lens.

For allocentric localization, we use the filter result from
the MAV flight control unit (FCU) fusing GNSS, barometer,
and IMU data. A small Garmin Lidar Lite measures the
distance to the ground to allow for exact, drift-free navigation
close to the ground. To avoid electromagnetic interference
between components—in particular USB3 and GPS—the
core of our MAV is wrapped in electromagnetic shielding
material. This increases the system stability significantly.

Our gripper is an electromagnet with a telescopic rod. The
rod is passively extended to its full length by gravity and can
be shortened up to 31 cm when in contact with an object. A
switch detects shortening the rod. Two dampers avoid fast
oscillations while still allowing the rod to align with the
gravity vector. The gripper weighs 220 g including mounting
and electronics.

All three MAVs are similar in hard- and software—also
most of the configuration is derived from a single copter
ID—to simplify the handling of multiple robots in stressful
competition situations.

To make all components easily transferable between the
test area at our lab and also different arenas on site, we
defined all coordinates (x, y, z, θyaw) in a field-centric coor-
dinate system. The center and orientation of the current field
were broadcasted by a base station PC to all active MAVs—
and the ground robot in the Grand Challenge. Furthermore,
the base station PC, an Intel NUC equipped with a DJI
N3 module, constantly measures its GNSS position and
broadcasts position correction offsets to eliminate larger
position deviations caused by atmospheric effects.

The communication among the MAVs and the base sta-
tion is conducted over a stationary WiFi infrastructure. For
robustness, we employ a UDP protocol that we developed
for connections with low-bandwith and high-latency [7].

IV. VISUAL PERCEPTION

The mission plan demands for robust perception in two
phases: when sweeping the field at a very high speed, the
copter has to detect and track the pickable objects with low
latency; after arrival in the drop zone the box has to be
reliably detected and tracked during approach.

A. Object Detection

The challenge rules define two kinds of pickable objects:
thin ferromagnetic disks with a diameter of 20 cm and thin
rectangular objects with a size of 200× 20 cm. The former
were colored in red, green, blue, and yellow while the
latter were exclusively orange. Since little detail was given
beforehand about the competition arena and, thus, possible
distracting objects, the detection algorithm was based on
both color and shape information where the specific color
was supposed to be trained quickly on-site when the actual
objects were available. The learned color distribution is also
able to model the effect of different lighting conditions and
reflective object surfaces.

Briefly, the camera image is scaled down depending on
the copter altitude and a bird’s-eye perspective transform
is applied in order to account for its attitude (see Fig. 3



Fig. 3. Overview of the object detection pipeline: (a) original camera
image, (b) undistorted bird’s-eye representation, (c) color likelihood images,
(d) detection hypothesis in green (accepted) and red (discarded).

(b)). Please note, that during maneuvering the camera can
be significantly tilted. A pixel-wise transform is computed
assigning the likelihood of belonging to one of the relevant
colors which results in one likelihood image per color (see
Fig. 3 (c)). A blob detection method identifies the connected
regions which are then filtered by several shape (aspect ratio,
convexity, size) and color (average likelihood, contrast to
background) criteria (see Fig. 3 (d)).

The initial image transform serves to simplify the detection
problem but also to limit the computational burden. Let
therefor be r the magnitude of the shorter side of a detectable
object in meters and h the MAV altitude obtained by relative
barometric and laser range measurements. The image is
scaled by

s := max
(
min

(
30 · h

rf , 1.
)
, 0.1

)
,

where f is the camera focal length. For later convenience, s
is rounded to the first position after the decimal point, hence,
s may only obtain one of ten possible values.

For defining the bird’s-eye transformation, let r̂z be the
IMU gravitational vector in camera coordinates. The rotation
matrix

R̂ := (r̂x, r̂y, r̂z)

with r̂x :=
(
0 1 0

)T × r̂z,
r̂y := r̂z × r̂x,

describes the rotation from the camera frame into a camera
frame where the image plane is aligned with the ground
plane, i.e., the matrix

M := sKcR̂K
−1
c

yields a pixel coordinate transform into the bird’s-eye rep-
resentation via homogeneous coordinates. Finally, taking the
lens distortion into account, we arrive at

(u, v) 7→M

(
d(u, v)

1

)
(1)

with an invertible radial-tangential lens undistortion function
d operating on the image coordinates (u, v). Kc is given
by the camera intrinsics. In order to efficiently execute this
transform, please note that d is static such that a pixel-wise
lookup table for each of the ten possible rounded scale factors
s can be precomputed. The second part of the mapping in
equation (1) is linear-projective and can be computed very
efficiently.

For detection processing, the color image is transformed
into HSV space. As pixel-wise color likelihood we use a
max-mixture of Gaussians model:

max
i

(
exp

{
− (x− ci)T diag

(
σ2
h, σ

2
s , σ

2
v

)
(x− ci)

})
(2)

where x = (xh, xs, xv)
T denotes the three channel pixel

value, ci = (ci,h, ci,s, ci,v)
T are a number of trained pro-

totype pixel values, and σh, σs, σv three hyperparameters.
During training, the channel-wise mean of all pixels from
a manually labeled object detection is computed and stored
in a single prototype pixel value ci. In order to efficiently
calculate (2), a lookup-table is set up where the HSV color
space is sampled with a grid of 20 × 20 × 20 points.

The resulting images contain a point-wise likelihood for
each of the detectable colors. As blob detection we use
the implementation by Nistér and Stewénius [8] of the
maximally-stable extremal regions (MSER) algorithm which
yields a number of initial hypotheses. In order to select the
final detections, we regard

• the size: the number of pixels of the region,
• the aspect ratio of its oriented bounding box,
• the convexity: the ratio of the number of pixels over the

area of their convex hull,
• the color: the average likelihood in the region, and
• the background: the average discrepancy between the

likelihood of pixels inside the region and pixels sampled
from a surrounding circle.

A classifier can be trained on these quantities, but for the
scope of this venture, the selection criteria were manually
and individually tuned which allowed us to better follow
the behavior of the detector and quickly adapt it in case of
failure.

Upon a significantly confident detection, the algorithm
switches to a tracking mode where only a window around
the last known object position is searched for only the
identified color. This enables a much faster detection rate, in
particular during the picking maneuver. In close proximity



to the ground when the object is expected to be only partly
visible in the image, the shape criteria are ignored when
filtering the hypothesis.

It is further possible to use this algorithm to detect whether
an object is attached to the gripper by filtering for very large
detections in the specific color.

B. Drop Box Detection

In contrast to the pickable objects, the drop box was not
specified by the challenge rules. Hence, we deployed a very
general approach, only assuming that the box was rectangular
and would provide some contrast to the surrounding ground.
It is explicitly not assumed that the box would be uni-
formly colored1. Nevertheless, the dimensions of the box are
parametrized. As for the object detection, the camera image
is transformed to a bird’s-eye perspective to account for the
copter attitude. A Hough transform of the resulting gradient
image yields line segments that are combined in a RANSAC-
like procedure. In order to combine only promising pairs of
line segments, a hash table with the line orientation as key is
set up and only approximately perpendicular line segments
are sampled. Testing the rectangularity, aspect ratio, and size
of all RANSAC hypotheses provides the detection.

V. STATE ESTIMATION

At the onboard PC, we use state estimation filters for
maintaining a height offset between the measured height over
ground and the barometer, and for estimating the position
and velocity of (faster) moving objects during picking. Our
generic filter design does not make any model assumptions
and all dimensions are treated independently. Thus, we can
employ the same filter with different dimensionality for both
use cases. We modified our state estimation filter from [9]
by replacing the acceleration-based prediction step with a
constant velocity assumption.

A. Laser Height Correction

The operation close to the ground during picking makes
a good height estimate over ground obligatory. The Matrice
100 provides absolute GNSS altitude and a barometric height
to a starting position. While the first is usually not very
accurate, especially close to the ground, the second is prone
to drift over time. Hence, we employ a laser distance sensor
in order to correct the drift. The laser measurements close to
the ground are very noisy, at greater heights they are assumed
to be not reliable due to bright sunlight, but if available
their measurement is correct. In contrast, the barometer is
very reliable and locally consistent. Thus, we maintain an
offset between laser height and barometric measurements and
use this offset to correct the barometer drift. To acquire the
correct heights, we first transform the laser measurements
into an attitude-corrected frame. If the resulting measurement
is between 0.1m to 6m, we use this value to correct the
height offset. The advantage of this approach is that even
without laser measurements over longer periods of time, the
MAV can safely navigate in higher altitudes, e.g., to explore

1As a matter of fact, it was uniformly colored.
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Fig. 4. Overview of our state machine. To avoid any false negatives, the
dotted part was shortcut during competition.

or deliver objects, but the filter still converges quickly to the
correct height over ground when picking.

B. Object Tracking

To track dynamic objects, we filter their positions and
velocities in an allocentric frame to omit the orientation
dimension. Furthermore, in contrast to our MAV state es-
timation filter, we only incorporate position measurements,
letting the filter predict velocities without explicit correction.
Outputs of the filter are allocentric 2D position and velocity
estimates, used to intercept the target objects. For the very
slow moving objects used in the actual MBZIRC challenges,
estimating the object velocities was not necessary such that
we omitted their estimation in favor of filter stability.

VI. NAVIGATION AND CONTROL

Whereas the competition arena is of rectangular shape
without larger obstacles and with good GNSS coverage,
picking small objects from the ground and the coordination
of a team of multiple collaborating robots pose challenges
for navigation and control.

The top-level coordination is achieved by is a state ma-
chine running at 50Hz, depicted in Fig. 4. The state machine
selects navigation targets and configures the perception and
navigation modules and the hardware. After takeoff, and
when the list of detected objects is empty, the system starts
to explore the arena in a spiral pattern at a height of 4m.
The maximum exploration speed is 6m/s. Immediately after
object detection, we approach the closest object for picking2.
When reaching a position above the detected object, we con-
firm its color and reconfigure the object perception to use its
fast tracking mode with only one color. With visual servoing,
the MAV descents within a cone around the object center
until a) contact of the gripper with the object is detected,
b) the measured distance to the ground from the laser falls
below a safety threshold, or c) the object is not perceivable
any more. If the object is no longer perceived, the MAV
enters the exploration mode, in the other cases it ascents and
starts visual confirmation that an object is attached. Please
note that during the MBZIRC we disabled the visual object
confirmation and assumed that every picking attempt was
successful as false positives were far less problematic than
false negatives regarding the scoring scheme. Furthermore,
the gripper was much more reliable than expected.

2Due to the high exploration velocity, it is possible to observe multiple
objects before switching to the approach state.



Fig. 5. Sectors for safe operation of multiple MAVs. We divide the arena
into one to three sectors, depending on the number of active MAVs, all
with access to the drop zone (white rectangle). The black lines depict the
exploration patterns.

To drop objects, the MAV enters the drop zone at a height
of 8m and starts a local exploration flight to detect the drop
box. If the drop box is detected, the MAV descents to 1m
height and drops the object. After a timeout, the MAV drops
the object at the predefined center of the drop zone. As long
as the drop zone is occupied, the MAV waits outside. It enters
the drop zone close to its border after a timeout to drop the
object safely for partial points.

The allocentric navigation is based on GNSS positions—
bias corrected with help of the base station—in a field-centric
coordinate system. Positions in the arena, e.g., endpoints of
exploration trajectories, starting points of picking attempts,
and the drop zone, are directly approached by means of
our time-optimal trajectory generator [10] with maximum
velocity. Except for exploration this is 8.33m/s. We use a
generic motion model in our trajectory generator combined
with frequent replanning. Our controller generates attitude
setpoints which are executed by the Matrice 100 onboard
controller. This approach is independent from the accurate
weight and other parameters that change when picking or
dropping objects and, thus, robust but still efficient.

To ensure safe operation of multiple MAVs flying at high
speed, we divide the arena into sectors (see Fig. 5). Sectors
are derived from the number of active robots and their IDs.
Within their sector, the MAVs are allowed to freely navigate
below a maximum altitude. Outside their sectors, the MAVs
transfer at assigned higher altitudes on straight lines.

We assume that wireless connections between agents are
unreliable. Consequently, we designed our system in a way
to stay operative without communication, but to employ
knowledge about the other agents to operate more efficiently,
if available. Our system has no central control instance or
explicit negotiation between agents. The MAVs broadcast
selected parts of their knowledge, namely a) allocentric 3D
position, b) current navigation target, c) detected objects
outside of own operation sector, d) if the MAV is flying
or landed. The received information is integrated into the
individual world models. If the team communication is
reliable, the agents can enter the drop zone immediately
if unoccupied and follow dynamic objects into neighboring
sectors while picking. In case of disturbed communication,
fallback strategies are in place, e.g., more conservative nav-
igation in other sectors and time slots for entering the drop
zone.

VII. EVALUATION

The competition objective was to pick metal discs with a
radius of 10 cm on a 20 cm stand in the colors red, green,
blue, and moving discs in yellow, and deliver them to a

Fig. 6. Arena at MBZIRC. The colored discs randomly distributed over
the arena had to be detected, picked, and dropped into the white box or
surrounding drop zone. Many white lines and colored markings on the
ground posed a challenge for object detection. Right: Closeup of some
objects.

designated drop zone. The elevated position of the disks
made it necessary to pick the objects during flight without
the possibility to land nearby. A white box with ground plane
of one square meter—the preferred place to drop objects—
was placed in the drop zone of size 10× 10m. Dropping
objects next to the box but into the drop zone was awarded
with half of the points. Overall, 16 discs were randomly
distributed over the 100× 60m arena. Furthermore, three
larger elongated objects of orange color were placed in the
arena, which we were able to detect, but did not attempt
to pick. The maximum challenge duration was 20 minutes.
Fig. 6 shows the arena setup in the Grand Challenge. Videos
of our evaluation can be found on our website3.

In the first attempt of the first trial, we began to explore
the arena with three MAVs simultaneously. The trial was
canceled because of very strong winds with a speed of up
to 9m/s. Qualitatively, all MAVs followed their assigned
exploration trajectories until then.

In the second attempt of the first trial, we explored the
arena with three MAVs and successfully picked two discs
on moving bases. One of the discs could be delivered into
the drop box. Before the second disc could be delivered, the
referees called a reset and the MAV landed with the disc still
attached. Due to conservative safety distances to the ground,
we could not pick that disc after the reset. Furthermore, two
MAVs arrived at the drop zone at the same time and were
kept in a deadlock situation. Modifications to the system
during the competition were not allowed, so we could only
address these issues between trials. This was the fourth-best
result of all 36 trials—18 teams with two trials per team
where the better trial counted for the final score—in the
Treasure Hunt and worth a third place.

The second trial took place with very strong wind. Objects
were detected reliably and the descent of the MAVs was
stable despite the wind, but the MAVs always had an offset
of a few centimeters into the wind direction when picking.

In the first trial of the Grand Challenge, we started with
three MAVs, one failed directly at takeoff due to a hardware
defect. The other two explored the arena and started picking
and delivering objects. As the field was not covered in full

3www.ais.uni-bonn.de/videos/ECMR_2017_Picking



Fig. 7. Treasure Hunt in the Grand Challenge. Each image shows the
trajectories of the active MAVs during the Grand Challenge (separated by 4
resets). Solid disks represent successful and rings show missed picks. The
dotted disks indicate disks lying on the ground. The left rectangle is the
starting zone, the right one the drop zone including the drop box. In Run 1
and Run 2, two MAVs were active. In Runs 3-5, only one MAV was active
since the other one worked erroneous. It flew way to high so we had to
call a reset. The following colored disks were picked (p) and missed (m)
during the Grand Challenge: Run 1: m-p; Run 2: p-p-p-p (the blue and the
red disk had to be put on the ground, because we called a reset. Each disk
is attempted to be picked twice later); Run 3: p-m-m-p (the yellow disk
was picked during a reset and had to be put back on the cart); Run 4: m-m;
Run 5: p-p-m-m-p-m. Total time airborne is 624 s.

due to one missing MAV, we reconfigured the system to use
only two MAVs in a reset. After a second reset due to another
hardware problem, the remaining MAV operated on the
whole arena. We successfully picked nine discs and were able
to deliver seven of them—six into the drop zone and one into

the drop box. Two discs were still attached to MAVs during a
reset and, thus, were lying on the ground after resuming the
trial. Overall, we scored 10.5 points and reached a second
place in this Grand Challenge subtask. Fig. 7 details our trial.
We canceled the second Grand Challenge trial due to severe
hardware issues without a score.

VIII. CONCLUSION

Operating complex robotic systems without manual adap-
tation to the current situation and with virtually no testing
time is very challenging. Whereas many highly sophisticated
state-of-the-art algorithms to all subproblems of the chal-
lenge exist, simpler and failsafe solutions are often key to
success. The complexity of the task is represented in the final
results: From 18 teams participating in the Treasure Hunt
only four were able to autonomously achieve partial task
fulfillment. Five more teams were able to deliver at least one
object with manual control. We came in third in the Treasure
Hunt after the second competition day, and, while winning
the Grand Challenge overall—in collaboration with an MAV
landing on a moving target and a ground robot operating a
valve—we achieved the second highest score in the Treasure
Hunt sub-challenge out of 14 participating teams.

We addressed many possible issues in advance; still,
unforeseen challenges occur during actual competitions, e.g.,
the unexpected strong wind and deadlock situations. The
system could be robustified by adding more elements of
randomness to the algorithms to prevent repetitive failing.
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