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Abstract— This paper presents an approach to estimate the
ego-motion of a robot while moving. The employed sensor is a
Time-of-Flight (ToF) camera, the SR3000 from Mesa Imaging.
ToF cameras provide depth and reflectance data of the scene at
high frame rates.

The proposed method utilizes the coherence of depth and
reflectance data of ToF cameras by detecting image features on
reflectance data and estimating the motion on depth data. The
motion estimate of the camera is fused with inertial measure-
ments to gain higher accuracy and robustness.

The result of the algorithm is benchmarked against reference
poses determined by matching accurate 2D range scans. The
evaluation shows that fusing the pose estimate with the datafrom
the IMU improves the accuracy and robustness of the motion
estimate against distorted measurements from the sensor.

Index Terms— Ego-Motion Estimation, ToF Camera, Sensor
Fusion

I. I NTRODUCTION

Time-of-flight (ToF) cameras are relatively new, compact,
solid-state sensors that provide depth information at high
frame rates. They employ an array of infrared LEDs which il-
luminate the environment with a continuous wave modulation.
The reflected signal is received by a combined CCD/CMOS
chip. Depth information is gained by measuring the phase shift
of the reflected signal. The modulation signal is approximately
sinusoidal, with frequencies in the order of someMHz.
Measurements are performed in parallel for each pixel. The
performance of distance measurements with ToF cameras is
limited by a number of error sources. A detailed explanation
of the working principle and a definition of an error model
has been proposed by Lange [8] and by Schneider [18].

Compared to stereo vision, ToF cameras do not suffer
from missing texture in the scene or bad lighting conditions
with less computational expensiveness. The advantages of ToF
cameras over laser scanners are the high frame rates and
the compactness of the sensor. These advantages make them
ideally suited for 3D perception and motion reconstruction.

The work presented in this paper utilizes the ToF camera
for ego-motion estimation. Ego-motion estimation is solved
by incorporating reflectance and depth data of the sensor. In
order to increase the robustness of the motion estimate, the
estimate based on the camera data is fused with an inertial
measurement unit (IMU). The advantages of this approach and
the contributions are:

Incorporation of reflectance and depth data:Incorporat-
ing both sensor modalities has an advantage over pure range
image registration approaches in situations where the depth

image has less structure but the reflectance image shows image
structure, for example, when the sensor is moving orthogonal
to a planar wall that shows texture.

Sensor fusion with IMU data improves accuracy and
robustness:The fusion of the camera motion estimate with
IMU data improves the accuracy and robustness of the estimate
in situations where the camera information is distorted or
subject to measurement errors.

The remainder of the paper is structured as follows: Section
II summarizes the related work in this field. Section III and
IV describe the main contribution: an approach to estimate
the ego-motion from the camera data and a model to fuse
this estimate with inertial measurements. Section V illustrates
the experiments that have been carried out to benchmark the
proposed method.

II. RELATED WORK

The first robotics application of ToF cameras was published
in 2004. Weingarten et. al. [22] used a CSEM ToF camera
prototype for basic obstacle avoidance and local path planning.
They evaluated and compared the results to a trajectory from
2D laser range-finders. Their experiments showed that path
planning and obstacle avoidance based on the ToF camera
data could prevent the robot from colliding with an obstacle
that was not detected by the 2D laser range finder. The
employed ToF camera was a Swisranger SR-2 from Mesa.
Sheh et al. used a ToF camera for 3D mapping of a RoboCup
Rescue environment [19]. Because of the low apex angle, they
rotated the camera on a pan-tilt unit to gain a larger field of
view. The robot stopped at every location and took 10 range
images at different pan-tilt positions. The acquisition ofone
scan took 20 seconds. The registration of the acquired range
images was assisted by a human operator. Ohno et. al. [15]
use the ToF camera to estimate the robot’s ego-motion. The
ICP algorithm was used on a SR-2 camera from Mesa. The
resulting trajectory was compared to a reference trajectory.
The experiments involved almost straight trajectories with up
to 6.5 m distance. The authors mentioned that in larger scenes
with less structure the rotational error would be higher andthat
the use of a gyroscope could compensate this error. The above
publications mainly use algorithms that have been successfully
applied to laser range finder data. Applying these methods to
the ToF camera is not straightforward mainly for two reasons:

• Compared to laser ranger finders, the measurement accu-
racy of todays ToF cameras is lower.

• Due to the larger field of view of laser range-finders, the
registration of the range images is easier.



Because of the lower measurement accuracy of ToF cam-
eras, many groups addressed error modeling and calibration.
Lindner et al. [9] as well as Kahlmann et al. [6] estimate
intrinsic parameters of a ToF camera using the reflectance
image of a checkerboard and a planar test field with Near-
Infra-Red (NIR) LEDs, respectively. A per-pixel precisionof
at least 10mm was achieved.

Regarding the registration of range images, theIterative
Closest Point(ICP) algorithm is the most popular approach
[4]. ICP iteratively estimates the transformation betweentwo
point clouds, themodel point setand thescene point set. In
every iteration, the point correspondences between model and
scene are determined by a nearest neighbor search and the
transformation between the point correspondences is estimated
by a least squares minimization. The mean squared error of the
estimated transformation applied to the scene is determined in
every iteration. The algorithm iterates until the error converges
or a maximum number of iterations is reached. There are
many variations of the ICP algorithm. The application of
the ICP to ToF camera data has also been studied [12]. A
practical problem in the application of the ICP algorithm isthe
convergence to a local minimum. This is particularly the case
in scenes with low structure. These situations occur especially
often with the smaller field of view of ToF cameras. Sheh et. al.
[19] handled this problem by using a pan-tilt unit which results
in a low data acquisition rate. In scenes where the structureis
low but the texture of the objects is high, image features from
the reflectance image of the camera could contribute to a better
motion estimate. Combining registrations based on depth data
and reflectance data has been proposed by Swadzba et. al. [21]
and Huhle et. al. [5]. The approaches employ feature tracking
on reflectance data and range image registration on depth data.
Additionally the fusion with higher-resolution cameras has
been proposed [16, 17].

III. E GO-MOTION ESTIMATION

To estimate the cameras motion between two consecutive
frames, image features in the reflectance image of the ToF
camera are used to assign point correspondences between
the frames. To detect image features, theScale Invariant
Feature Transform(SIFT) [10, 11] is used. SIFT features are
invariant in rotation and scale and are robust against noise
and illumination changes. The SIFT algorithm has been shown
to outperform other feature extraction methods [14]. Various
refinements of the basic SIFT algorithm have been proposed:
PCA-SIFT [7], GLOH [13] and SURF [3] count as the most
important. Bauer et. al. [2] compares recent implementations
of SIFT and SURF. They show that SIFT yields the best results
regarding theratio of incorrect and correct matches and the
total number of correct matches.

In order to estimate the camera motion between two camera
frames, the features from the two frames are matched against
each other. As described in [11], the best match is thenearest
neighbor in the keypoint descriptor space. To determine the
nearest neighbor, the Euclidean distance is used. To measure
the quality of a match, thenearest neighborand thesecond-
nearest neighborare searched and the distance between them

is determined. If they are too close to each other, the match is
rejected. Being too close to each other means that the distance
of the nearest neighbortimescr is larger than the distance of
thesecond-nearest neighbor, wherecr is a suitable value in [0,
1]. Hence only features that are unambiguous in the descriptor
space are considered as matches. Experiments have shown that
cr = 0.6 results in the best rejection rates in our case.

Figure 1 (a) and (b) show the reflectance image of two
consecutive frames. The red and green dots show the detected
features from the two images. Figure 1 (c) shows the matching
results of the two images. The green dots are the features from
image (a) and the red dots are the matched features from frame
(b). The white lines, connecting the red and green dots indicate
the displacement of a feature over two consecutive frames. 245
features of frame (a) are successfully matched to features from
frame (b).

One match constitutes a point correspondence between two
frames. By knowing the depth of every pixel, a point corre-
spondence in 3D is known. The set of points from the current
frame is called thescenepoint set, and the set of corresponding
points in the previous frame is called themodel point set.
The scene is translated and rotated by the sensors ego motion.
Thus, the sensor ego-motion can be deduced by finding the
best transformation that maps the scene points to the model
points. A common way in estimating a rigid transformation is
described in [1]. It uses a closed form solution for estimating
the3×3 rotation matrixR and the translation vector~t, which
is based on singular value decomposition (SVD).

The distances between corresponding points, after applying
the estimated transformation, forms theRoot Mean Square
(RMS) error. The RMS error is often used in range registration
to evaluate the scene-to-model consistency. It can be seen as
a measure for the quality of the match: if the RMS error is
significantly high, the scene-to-model registration can not be
consistent. On the other hand, a low RMS error does not
imply a consistent scene-to-model registration, since this is
also depending on the number and distribution of the point
correspondences.

The translation vector~t is composed of(∆x, ∆y, ∆z)T ,
which is the translational change of the camera between two
camera frames. The rotation matrixR is the change of the
camera orientation between two frames. From the rotation
matrix the three Euler angles can be calculated.

Since the robot is moving on planar ground, the position
estimate can be simplified to 2D space. Hence, the translation
(∆x, ∆y)T and the rotation around the vertical (yaw) axis
∆θ can be considered as the transformation that describes the
camera’s motion between two frames.

From the(∆xk, ∆yk, ∆θk)T at framek the trajectory of
the camera can be built incrementally. The pose(xk, yk, θk)T

at framek can be calculated by

(xk, yk)T = (xk−1, yk−1)
T + R(θk−1)(∆xk, ∆yk)T (1)

and

θk = θk−1 + ∆θk, (2)



(a) (b) (c)

Fig. 1: SIFT feature extraction and matching applied on a ToFreflectance image. The scene shows a robot in the pavilion at
the Fraunhofer IAIS. Images (a) and (b) show the detected SIFT features on two consecutive camera frames.The number of
detected features are 475 (a) and 458 (b). Image (c) shows thematching result: 245 features from image (a) are matched to
features from image (b).

wherek−1 is the previous frame andR(∆θk−1) is the 2D
rotation matrix ofθk−1.

IV. FUSION OFMOTION ESTIMATES

The motion estimation described in the previous section
provides a translational(∆x, ∆y)T and rotational change∆θ

of the camera between two camera frames. By knowing the
time between two frames∆t, the translational and rotational
velocity is known. This is considered as observation

zk =
1

∆t
(∆x, ∆y, ∆θ)T (3)

at time stepk.
The employed IMU is a XSens MTi motion tracker, cal-

ibrated with the vendor’s calibration toolbox. It provides
measurements for the rotational velocityvθ and translational
acceleration on the x and y axis,(~ax,~ay). Themeanrotational
acceleration~aθ,k at time stepk can be calculated by the
difference between the velocity at time stepsk andk − 1:

~aθ,k = vθ,k − vθ,k−1. (4)

A Kalman filter predicts the system velocity estimate
(vx, vy, vθ)

T . The motion estimate from the camera is con-
sidered as observation, whereas the IMU data is considered
as control input to the system. The RMS error and its in-
dividual components of the estimated transformation reflects
the certainty of the observation and is therefore used as an
approximation of the observation covariance (similar to [20]).

V. EXPERIMENTS AND RESULTS

The following experiments demonstrate the accuracy and
robustness of the proposed procedure. A Sick LMS200 laser
range finder was used to incrementally construct an accurate
and consistent 2D map and to compute a reference trajectory.
To generate a reference trajectory, the ICP algorithm is applied.

Figure 2 shows the scene of the first experiment. The exper-
iment was carried out in the Robotic Pavilion at Fraunhofer
IAIS, Sankt Augustin. The image shows a wooden staircase
with a robot, some posters and a calibration pattern. The robot

Fig. 2: The scene of the first experiment carried out in the
Robotic Pavilion at Fraunhofer IAIS, Sankt Augustin. The
scene consists of a wooden staircase with a robot on it, some
posters and a calibration pattern. The robot moved on a square
with 120 cm side length.

moved along a square with 120 cm side length. Applying
the described motion estimation method to the sensor data
results in the estimated trajectory depicted in Figure 3a. The
black trajectory shows the reference trajectory based on the
2D laser range finder. The green trajectory shows the SIFT-
based motion estimate. On the upper left corner the trajectory
is distorted. The application of the sensor fusion is depicted in
the red trajectory. Comparing the green and the red trajectories
visually shows that the red trajectory is less distorted than the
green trajectory, especially in situations where the RMS error
is high, e.g. in curves. The blue ellipses on the red trajectory
depict thea posteriorisystem covariance of the Kalman filter.

Figure 3b depicts the RMS error of the estimated transfor-
mation applied to the matched point pairs. The RMS error
was considered as a measure for the quality of the match.
The first 150 frames show a relative low RMS error compared
to the peak at frame 245. To visualize the correlation of the
RMS error and the distorted trajectory, Figure 3c shows the
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Fig. 3: (a) Estimated trajectories. The black trajectory shows the reference data based on the 2D laser range finder. The green
trajectory shows the SIFT-based motion estimate. On the upper left corner, the trajectory is distorted. The application of the
sensor fusion is depicted in the red trajectory. (b) RMS error of the estimated transformation applied to the matched point
pairs for each frame. The first 150 frames show a relative low RMS error compared to the peak at frame 245. (c) Correlation
of the RMS error and the distorted trajectory.

estimated trajectory as well as the RMS error distribution.
The trajectory is plotted by a red line and the RMS error is
visualized by blue ellipses, where the magnitude of the RMS
error correlates to the size of the ellipsis. The figure shows
high RMS errors at those poses that deviate from the reference
trajectory.

Figure 4 shows the translational error in mm (4a), the
rotational error in degrees for every frame (4b), and the
cumulated rotational error, up to every frame (4c) for the
unfiltered and the filtered motion estimate. The blue dashed
lines illustrate the error of the unfiltered motion estimate. The
red line illustrates the Kalman-filtered motion estimate. The
Kalman-filtered motion estimate improves up to 1006 mm on
the translational error and up to 25.4 degree on the rotational
error.

Figure 5 shows the estimated trajectories of a second
experiment. The experiment involved a larger scene with
up to 8m diameter. Figure 6 depicts the translational and
rotational error of the applied methods, comparing the ego-
motion estimate based solely on the camera data to the fused
ego-motion estimate. The rotational error of the fused ego-
motion estimate improves up to 28.6 degree. The improvement
of the translational error in Figure 6a is up to 669mm.

Figure 7 shows the resulting 3D maps based on the es-
timated ego-motion. Figure 7a shows the unfiltered motion
estimate. The resulting map is squeezed on the end of the
trajectory due to the error in the ego-motion estimate. In
contrast, Figure 7b shows the improved map based on the
fused ego-motion estimate.

VI. CONCLUSIONS

This paper presented a way to estimate a robot’s ego-
motion while moving. An application of this motion estimate
is to map an unknown environment based on the sensor data.
The employed sensor is a ToF camera, the SR3000 by Mesa
Imaging. ToF cameras provide depth and reflectance data of
the scene at a high frame rate. They suffer from a set of error
sources which make them difficult to handle. The proposed
method utilizes the coherence of depth and reflectance data of
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Fig. 5: Estimated trajectories. The black trajectory showsthe
reference data from the 2D laser range finder. The green
trajectory shows the SIFT based motion estimate. The red
trajectory shows the Kalman-filtered motion estimate with the
fused IMU data. The red trajectory is less distorted than the
green one.

ToF cameras by detecting image features on the reflectance
data and estimating the motion on the depth data.

The visual motion estimate is fused with the IMU measure-
ments to gain higher accuracy and robustness. The result of the
algorithm is benchmarked against reference poses from a 2D
laser range finder. The evaluation shows that fusing the pose
estimate with the data from the IMU improves the translational
error up to 1006 mm and the rotational error up to 28.6 degree.
Hence, the proposed method

• Improves the accuracyof the motion estimate compared
to a reference pose from a 2D laser range finder.

• Improves the robustnessof the motion estimate against
distorted measurements from the sensor.

In the first setup the system was used in 3DOF. The
limitation of the robot, moving on a planar ground, and of the
2D laser range finder as reference system are the main reasons.
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Fig. 4: (a) Translational error of the unfiltered (dashed green) and filtered (red) motion estimate compared to the reference
data from the 2D laser range finder. (b) The rotational error in degrees for every frame. (c) The cumulated rotational error in
degrees up to every frame.
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Fig. 6: (a) Translational error of the unfiltered (dashed green) and filtered (red) motion estimate compared to the reference
data from the 2D laser range finder. (b) Rotational error in degrees for every frame. (c) Cumulated rotational error in degrees
up to every frame.

Future work will concentrate on the extension to 6DOF.
Another important point is the determination of the observa-

tion covariance. Here, the RMS error was used as an estimate.
In the future work, a camera specific error model has to be
considered.
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