
Neural Strands: Learning Hair Geometry
and Appearance from Multi-View Images

Supplementary Material

Radu Alexandru Rosu1, Shunsuke Saito3, Ziyan Wang2,3,
Chenglei Wu3, Sven Behnke1, and Giljoo Nam3

1 University of Bonn, Germany
2 Carnegie Mellon University

3 Reality Labs Research

1 Template Mesh Fitting

Using multi-view stereo (MVS), we reconstruct the face and body as a triangular
mesh. However, MVS also meshes the hair region which is an undesirable effect
for our purpose of generating hair on the scalp. We thus propose to deform the
original head mesh so that we obtain a “bald” mesh which can serve as a basis
for hair growing. The process is depicted in Fig. 1.

First, we manually define a binary mask on the head mesh that determines
the hair and face regions. Note that automatic methods like projecting 2D seg-
mentation could also be used. The mask does not need to be very accurate since
it is only used to define the region of the face that we want to preserve and the
rough region of hair which will be smoothed out.

The mesh vertices that fall on the face region are used to fit a FLAME
mesh [3]. FLAME provides a low-dimensional space for facial shape, expres-
sion and pose. We optimize the FLAME parameters using a Chamfer distance
between the face vertices and FLAME template:

Lface =
∑

x∈Xface

min
y∈Y

∥x− y∥2, (1)

where Xface is the set of 3D points on the facial region of the MVS mesh, and Y
are the points of the FLAME template. Note that we only optimize the distance
from MVS mesh towards and FLAME mesh, not a bidirectional Chamfer, since
we are only interested in accurately matching the facial region, not deforming
the template towards the hair.

More robust methods like facial keypoint matching could also be used but
we found that since we have a good initial guess for the head position, the model
tends to converge to a correct solution with a simple Chamfer distance.

Secondly, we deform the hair region of the original head mesh towards the
FLAME mesh, effectively smoothing out the hair region until it only covers the
scalp. For this, we deform the hair vertices by using another Chamfer distance

behnke
Schreibmaschine
European Conference on Computer Vision (ECCV), Tel Aviv, Israel, October 2022.

2 Radu Alexandru Rosu et al.

(a) Head mesh (b) Head mask (c) Fitted FLAME
mesh

(d) Bald head mesh

Fig. 1: Template fitting. Multi-View stereo meshes also the hair region. We fit
a FLAME model to the face and deform the hair region in order to recover a
plausible scalp geometry.

towards the FLAME mesh together with a Laplacian loss of the hair region to
ensure a smooth deformation.

Lhair =
∑

x∈Xhair

min
y∈Y

∥x− y∥2 +∆x. (2)

Lastly, we define a UV parametrized scalp mesh on the FLAME mesh which
we use as a consistent base for all the real and synthetic subjects.

2 Direction Diffusion

Our strand fitting relies on the Chamfer distance between the generated strands
and the LMVS segments. Our Chamfer distance also includes a term on the di-
rection of growth. For this, we require a directional vector for each line-segment
that corresponds with the hair growth direction. However, the raw line-segment
directions are ambiguous, in that they don’t necessarily correspond with the
growth direction. To solve this, we require a user to manually select the correct
stroke direction for some of the line-segments and we smoothly diffuse this di-
rection until we resolve all the line segments. The diffusion algorithm is similar
to the 2D diffusion proposed by Chai et al. [1] but we diffuse instead in 3D.

We denote each point from LMVS with xi and it’s ambiguous direction with
d̃i. Since the vertex order of the LMVS is arbitrary, the correct hair-growth
direction is denoted with di = sid̃i, where si ∈ {−1, 1}. The user selects a series
of points in the mesh and establishes a resolved direction for them: di = d̃i.

We define a score P for every point which defines how consistent a certain
vertex is w.r.t the neighbouring points with resolved direction:

Neural Strands 3

(a) Ambiguous directions (b) Diffused direction

Fig. 2: Direction disambiguation. Line-segments from multi-view stereo have ar-
bitrary direction. We diffuse the hair growth directions from user strokes in order
to recover the correct hair growth direction for every line-segment. The per-point
directions are visualized as RGB color.

P (xi) =
∑

dj∈Nx

di · dj , (3)

where Nx denotes the neighbours of point x which have a resolved direction.
Resolving the directions of all the points implies the following binary integer
problem:

argmax
si

∑
i

P (xi). (4)

To solve this, we use a greedy assignment algorithm consisting of three steps:

1. For each unresolved point that has a neighbouring resolved direction, estab-
lish a priority of |P (xi)| and add it to a priority list,

2. Pop from the unresolved set the point with the highest priority and set si
so that P (xi) is non-negative, and add the point to the resolved set, and

3. Update the priority of the points that are neighbouring the point we have
previously resolved.

In Fig. 2, we depict the original ambiguous directions of the line segments and
the final diffused ones.

3 Appearance Loss

Using only the geometric loss to fit our strand can sometimes lead to unrealistic
reconstruction. We observe that the appearance loss can offer an important su-
pervision signal for the strand fitting, allowing them to converge easier towards

4 Radu Alexandru Rosu et al.

GT strand
Decode xyz
Decode dir.Strand root

Fig. 4: Gradient integration. Predicting the gradient along the strand instead of
decoding directly the 3D position leads to more smooth strands, especially close
to the root.

a plausible solution. Fig. 3 shows the impact of disabling the appearance loss
when fitting strands.

4 Gradient integration

(a) Without
appearance

loss

(b) With
appearance

loss

Fig. 3: Joint optimization. Using only
the geometry loss, the hair strand can
look unrealistic and penetrate through
geometry (blue strands). Using a joint
loss of both geometry and appearance
helps the strand align better with the
line-segments depicted in yellow.

We experimented with both versions
of the decoder, one that predicts the
gradients of strands (Gdir) and the
other that directly predicts 3D posi-
tions (Gxyz). We observed that Gxyz

often generates unnatural strands
when fitting to LMVS data; the points
near the root can largely deviate from
the scalp (see image below).

Our gradient-based strand genera-
tor (Gdir) effectively solves the prob-
lem. We believe that this is due to
the nature of smooth gradients of hair
strands.

Also, the SIREN architecture in
Gdir is well known for its ability to
encode first-order derivative informa-
tion. While in theory Gdir can suffer
from the error accumulation problem,
we have not observed such an issue in
practice.

5 Occluded hair

Our method is only supervized in the
visible region of the hair with the ap-
pear ace loss and the geometric loss towards the sparse hair segments from
LMVS. We visualize the hair strands also in the occluded region by masking
out one half of the subject with the hair-bun. We observe that the hair strands

Neural Strands 5

Fig. 5: Occluded hair. Despite being supervised with the visible part of the hair,
our strand decoder shows reasonable and smooth hair strands even in occluded
regions.

follow a natural and smooth trajectory until they hit the scalp, indicating that
the strand generator learns a meaningful prior able to fit even with partial data.

6 Network Architectures

6.1 Strand Generator

We implement the strand generator network as a modulated SIREN [5]. The
strand generator takes as input the latent shape vector zg of size 64 and a
parameter t ∈ [0, 1] and outputs a direction vector for that strand node. The
directions of all the nodes are integrated in order to recover the explicit shape
of the strand.

The modulated SIREN consists of two MLP networks: a synthesizer and a
modulator. Each has 3 layers of size 32. Each layer of the modulator is element-
wise multiplied with the corresponding layer of the synthesizer as per the orig-
inal architecture of Mehta et al. [5]. The weights of the linear layers are
reparametrized using weight normalization [6]. The modulator uses the Swish
activation and the synthesizer uses a sine activation. The output of the syn-
thesizer is a 3D directional vector. A representation of the strand generator
architecture can be seen in Fig. 6.

6.2 Hair Renderer

The hair renderer is implemented as a UNet architecture. The input to the UNet
is a screen-space map of 23 channels (16 for the per-strand appearance, 3 for
the per-node direction, 1 for the t parameter and 3 for the view direction). The
output is an RGBA map of the hair region.

6 Radu Alexandru Rosu et al.

Fig. 6: Modulated SIREN. The latent
vector for the strand shape zg is con-
catenated at each layer of the modula-
tor network (top) which produces mod-
ulation signals. The synthetizer network
is given the t parameter corr responding
to the relative position on the strand.
The modulation signals are element-
wise multiplied with the sine activations
from the synthetizer. Finally a fully-
connected layer maps to the 3D direc-
tional vector.

The UNet starts by first map-
ping the input to 32 channels us-
ing a 3 × 3 convolutional layer. Sub-
sequently, we use 5 downsampling
stages which gradually increase the
number of channels up to the maxi-
mum of 512 at the coarsest level. The
decoder mimics the encoder and grad-
ually upsamples and concatenates the
corresponding maps from the down-
sampling stage.

For downsampling and upsam-
pling, we use the approach presented
by Karras et al. [2] which uses a
6-tap filter. Additionally, we use the
filtered leaky ReLU non-linearity [4]
which performs an upsampling, acti-
vation and downsampling of the input
map in order to prevent aliasing. Sim-
ilar to their architecture, we also limit
the cutoff frequency for the coarse
maps of the decoder and gradually in-
crease it until reaching the Nyquist
limit at the end of the decoder. At the
end of the UNet architecture, we use
two layers which are critically sam-
pled (filter cutoff is set exactly to the
Nyquist limit).

All layers of the UNet use 3×3 convolutions followed by filtered leaky ReLU.
The convolutional layers are reparametrized using weight normalization [6].

7 Training Details

We jointly optimize the parameters of the shape texture Zg, appearance texture
Za, and UNet parameters using the geometric loss and the appearance loss.
Additionally, we also learn a body and background texture. We use the Adam
optimizer and set learning rate 1 × 10−3 for the textures and 1 × 10−4 for the
UNet hair renderer. Coarse-to-fine optimization for the shape texture is only
performed for the first 10 000 iterations. Root-to-tip is done for the first 1000
iterations.

We create 20 000 strands of 100 points each and their root positions are
kept fixed during optimization. The Chamfer distance for the geometric loss is
computed between a random batch of 300 000 points from the generated strands
and 30 000 points from the line-segments. At each iteration, different batch of
random points are chosen from the generated strand and the line-segments to

Neural Strands 7

ensure full coverage. The appearance loss is computed on the full image of size
1024× 667

References

1. Chai, M., Wang, L., Weng, Y., Jin, X., Zhou, K.: Dynamic hair manipulation in
images and videos. ACM Transactions on Graphics (TOG) 32(4), 75 (2013)

2. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila, T.:
Alias-free generative adversarial networks. arXiv preprint arXiv:2106.12423 (2021)

3. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape
and expression from 4d scans. ACM Trans. Graph. 36(6), 194–1 (2017)

4. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural
network acoustic models. In: Proc. icml. vol. 30, p. 3. Citeseer (2013)

5. Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker,
M.: Modulated periodic activations for generalizable local functional representa-
tions. arXiv preprint arXiv:2104.03960 (2021)

6. Salimans, T., Kingma, D.P.: Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. Advances in neural information pro-
cessing systems 29, 901–909 (2016)

