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Abstract Deep learning’s success in perception, natural language processing, etc. in-
spires hopes for advancements in autonomous robotics. However, real-world robotics
face challenges like variability, high-dimensional state spaces, non-linear dependen-
cies, and partial observability. A key issue is non-stationarity of robots, environments,
and tasks, leading to performance drops with out-of-distribution data. Unlike current
machine learning models, humans adapt quickly to changes and new tasks due to a
cognitive architecture that enables systematic generalization and meta-cognition. Hu-
man brain’s System 1 handles routine tasks unconsciously, while System 2 manages
complex tasks consciously, facilitating flexible problem-solving and self-monitoring.
For robots to achieve human-like learning and reasoning, they need to integrate causal
models, working memory, planning, and metacognitive processing. By incorporat-
ing human cognition insights, the next generation of service robots will handle novel
situations and monitor themselves to avoid risks and mitigate errors.

1 Introduction

Industries like car manufacturing impressively demonstrate the utility of robots.
Recent developments in sensing, actuation, and – most importantly – artificial intel-
ligence (AI) make it conceivable that robots will revolutionize many new application
domains such as the flexible production of small lots, logistics, agriculture, secu-
rity, inspection, professional services, and personal assistance. All of these domains,
however, require, cognitive capabilities far beyond those of today’s robots.

Current robotic systems rely on structuring the environments and tasks, e.g. by
providing objects in well-defined locations. In open-ended settings, such as our ev-
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eryday environments, robot-friendly structuring is impossible. Instead, autonomous
service robots must instantiate models of their environment from sensor measure-
ments, plan actions to achieve goals, carry out plans in the presence of disturbances,
and monitor their execution. They also must familiarize with new objects and tools
and need to improve their behavior through learning. Finally, they must communi-
cate with persons in a human-understandable way, to receive instructions, answer
questions, and explain their behavior.

The tremendous success of deep learning [64, 98] in visual perception, speech
recognition, natural language processing, vision-language tasks, and multimodal
tasks gives rise to hope that these methods will lead to revolutionary advances in
autonomous robot performance.

2 Related Work

Personal service robots Personal robots that assist handicapped or elderly persons
in their activities of daily living have attracted much attention in robotics research. An
increasing number of research groups are working on robots for service applications.
Examples include PR2 [74] that was used in a household marathon experiment [52],
Everyday Robots’ mobile manipulator [42], and Toyota Human Support Robot [125],
a standard platform in the international RoboCup@Home competitions. My team
NimbRo won these competitions 2024 with two PAL Robotics TIAGo++ robots [75]
and 2011–2013 with our cognitive service robot Cosero [105, 106], demonstrating
a large variety of domestic service tasks. Further examples include Care-O-Bot
4 [55], Armar-6/7 [2], HRP-5P [59], TORO [53], E2-DR [127], and our Centauro
robot [56, 57] which demonstrated challenging locomotion and manipulation tasks
including the use of tools. For the ANA Avatar XPRIZE competition [8,40], capable
systems have been developed, including iCub3 [20], Pollen Robotics Reachy, and
our winning Avatar system [66, 99]. Scene perception. In order to act in complex
indoor environments, service robots must perceive the room structure, obstacles,
persons, objects, etc. To this end, they are equipped with cameras and depth sensors.
Estimating the sensor poses and registering the measurements yields environment
maps [87]. In addition to modeling the environment geometry and appearance,
semantic perception is needed [95].

Deep learning For pattern recognition, deep learning [64] methods are ex-
tremely successful. They revolutionized visual perception [23, 92], speech recog-
nition [88, 91], natural language processing [1, 85], vision-language tasks [69, 107],
and multimodal tasks [33, 39]. Supervised deep learning requires large annotated
data sets like ImageNet-21K [25], JFT-3B [129], and Kinetics [14], though, which
are expensive to obtain. To address variability that should not change output, data
augmentation methods such as image transformations [101] and generative mod-
els [128] are used to generate variants of training examples. For robotic tasks such as
mobile manipulation, large-scale annotated datasets do not exist. To avoid the need
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for large labeled datasets, much research focuses on methods that can adapt to new
conditions through transfer learning and domain adaptation. Transfer learning [58]
uses representations learned from large data to learn a related task from small data,
e.g. by continuation of training. Semi-supervised, weakly supervised, and unsuper-
vised learning methods use fewer, low quality, and no labels at all, respectively. One
example of semi-supervised methods is the student-teacher approach [124], where
a teacher is trained on a small labeled data set and then generates pseudo labels for
a large unlabeled data set to train the student. Because unlabeled data is much eas-
ier to obtain than annotated data, unsupervised methods are often used to pre-train
models [10, 16]. The hope is to discover useful structure in the data which might
aid target tasks. A promising subclass of unsupervised learning is self-supervised
learning [37], which requires only unlabeled data to formulate a pretext task, for
which a target objective can be computed without supervision. These pretext tasks
must be designed in a way that high-level data understanding is useful for solving
them, e.g. prediction of occluded image parts [41] or future video frames. As a
result, the intermediate layers of trained models encode high-level semantic repre-
sentations that are useful for solving downstream tasks. One form of self-supervision
is contrastive learning [15], where two different data augmentations are applied to
an image and a model is trained to maximize agreement between the outputs and
minimize agreement with outputs for other images. Contrastive learning of dense
descriptors for object surface elements has been applied to learn visuomotor manipu-
lation policies [28] that generalize within a category of objects and are able to handle
deformable objects. Other possibilities for self-supervised learning are to maximize
mutual information between input and model output [45] and joint embeddings of
two inputs with variance-invariance-covariance regularization [3].

Large language models Self-supervised training is the basis for the impressive
performance of recent large language models (LLMs) such as GPT-4 [85] and
Palm 2 [1] that continue text in plausible ways. Their large transformer networks [114]
were trained on massive data to predict the next token. In contrast to recurrent se-
quence models, transformers flexibly re-route and combine information from rel-
evant parts of the sequence through learned self-attention, which is implemented
using content-based access to information values by matching keys to queries. Re-
cently, autoregressively trained LLMs have shown sparks of artificial general intelli-
gence [13]. Such models can acquire human-like systematic generalization through
meta-learning [61], but this requires generating a training set of systematic gener-
alization example problems. On the other hand, LLMs often lack common sense,
hallucinate facts, fail at arithmetic, have difficulty reasoning, and cannot make proper
plans. For these reasons, LLMs are combined with external tools [89] such as search
engines, calculators, planners [68], etc. Multimodal models such as PaLM-E [26]
and ImageBind [33] combine text and other modalities such as images in joint em-
beddings. Generative models are not restricted to producing text but are also used to
generate, e.g., images [86] and video [90] from text inputs.

3D models To address the 3D nature of scenes, Neural Radiance Fields (NeRF)
have been proposed, which learn a neural network mapping 5D coordinates to
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density and color by predicting images from multiple views through volumetric
rendering [77]. In our recent work PermutoSDF [93], the 3D shape of objects is
represented by a neural signed distance function (SDF). By modeling individual
objects as permutation-invariant slots, object representations can be learned through
novel-view synthesis [94]. If conditioned on latent variables, category-level shape
spaces can be learned, e.g., for articulated human bodies [24]. Compositional gener-
ative scene models that represent objects and their relations can be learned without
image-level supervision [31].

Scene prediction In dynamic scenes, the motion of objects and persons must be
estimated and predicted. Scenes with moving agents (e.g., humans or robots) can
be represented with 3D dynamic scene graphs [47]. Motion is the strongest cue for
perceptual grouping and predictive models are widely used to explain human vi-
sual perception [30]. Consequently, optimization of a prediction loss can be used to
segment moving objects in videos [119]. SlotFormer [121] models spatio-temporal
object relationships and predicts object states. Our recent work on object-centric
video prediction decouples the processing of temporal dynamics and object inter-
actions [116]. This facilitates learning of tasks that require understanding of object
relations [81]. A fundamental problem when predicting the future is that often
multiple plausible futures exist. MultiPath++ [113] predicts a distribution of future
trajectories of road users parameterized as a Gaussian Mixture Model (GMM). Mul-
tiverse [67] predicts the distribution over multiple possible future paths of persons
using convolutional recurrent neural networks (RNNs) over graphs. World model-
ing. Prediction of future scene states and planning own actions require world models
that are conditioned on actions. Playable Video Generation [76] learns a discrete
set of actions from unlabeled video that are used to interactively generate video
from actions. This task has been extended to Playable Environments [76] that can
control multiple objects in 3D scenes with action labels that are discovered in an
unsupervised way. DayDreamer [120] learns action-conditioned forward models in
a latent space for multiple robots. GenAD [126] and GameNGen [112] are world
models for autonomous driving and a video game, respectively.

Deep reinforcement learning Reinforcement learning (RL) addresses the develop-
ment of situated agents that learn how to behave while interacting with the environ-
ment [108]. This problem is formulated as an agent-centric optimization in which
the objective is to select actions based on the estimated state in order to obtain as
much reward from the environment as possible in the long run. Impressive success
has been achieved by combining this approach with deep learning. One example is
MuZero [97] which combines tree-based search with a learned model and achieves
superhuman performance in a range of challenging and visually complex domains
(Atari games, Go, chess, and shogi), without any prior knowledge of their underlying
dynamics. MuZero learns a model that predicts the quantities relevant to action plan-
ning: the reward, the action-selection policy, and the value function. AlphaStar [117]
learned the multi-agent game StarCraft II from ∼500K human games and 120M
self-played games. Gran Turismo Sophy [123] learned from carefully engineered
state and reward in more than five years of simulated driving hours to compete with
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the world’s best drivers. Playing soccer with humanoid agents was learned from
decades of match simulations [70]. Soccer skills for a humanoid robot and 1v1 play
were learned from 2.5 years of simulated experience [38].

These numbers indicate that it would be impractical to collect that much expe-
rience with a real robotic system. Consequently, real-robot reinforcement learning
mostly focuses on individual skills. For example, Google X learned grasping from
cluttered bins with a simple manipulator under closed-loop monocular vision-based
control [50]. They operated seven experimental setups for four months to collect
580K real-world grasp attempts to train a deep neural network Q-function with
over 1.2M parameters and report a 96% grasp success rate on unseen objects. The
method learned regrasping strategies, probing or repositioning objects to find the
most effective grasps, performing other non-prehensile pre-grasp manipulations, and
responding dynamically to disturbances and perturbations. Sorting recyclables and
trash was learned from simulation and 9,527 hours of real-robot experience obtained
with a fleet of 23 mobile manipulators [42].

Real-robot RL needs suitable inductive biases [43] to learn from little experience.
These biases represent domain knowledge and can take many forms, e.g., the structure
of the agent-environment interface and the policy generation mechanism. To improve
the data efficiency of RL, transfer learning has been investigated. By pre-training
on RoboNet [21], a data set providing 15M video frames from seven different robot
platforms, and fine-tuning on a held-out target platform, it has been demonstrated
that simple manipulation tasks such as pushing and pick-and-place can be learned
from limited experience. Multi-task learning amortizes experience over multiple
tasks [51]. It generalizes to structurally similar tasks and acquires distinct new
tasks more quickly. One way to address the combinatorial complexity of multi-
object scenes is to factorize them into objects. Object-centric perception, prediction,
and planning [115] learns to discover objects in visual scenes and models their
dynamics and appearance without supervision. A model-based reinforcement learner
that predicts and plans block stacking on this abstract level generalizes to novel
configurations and more objects. Action Schema Networks [110] learn generalized
policies for probabilistic planning problems. By mimicking the relational structure
of planning problems, they generalize over all instances of a given planning domain.
Manipulation inherently involves contact and often requires both haptic and visual
feedback. Lee et al. [65] use self-supervision to learn a compact and multimodal
representation of sensory inputs, which is then used to improve the sample efficiency
of policy learning as demonstrated for peg insertion. To avoid random exploration,
imitation of human experts can be used. RT-1 [12] is a transformer-based controller
trained on 130K demonstrations of a large variety of pick and place tasks in kitchen
environments. Open X-Embodiment [84] is a large data set of camera images and
end-effector movements from 22 different robots, demonstrating 527 skills (160,266
tasks). The RT-X model trained on this data exhibits positive transfer and improves
the capabilities of multiple robots by leveraging experience from other platforms.
970k episodes from this data set were used to train OpenVLA [54], starting from
a large language model and a visual encoder. OpenVLA demonstrates generalist
manipulation capabilities and can be adapted to new robots via fine-tuning.
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3 Challenges

Despite much research and progress, capable mobile manipulation robots that can
cope with the complexity of open-ended real-world applications have not yet been
realized. Developing such robots is a tremendous challenge, due to the typical char-
acteristics of these applications.

Many sources of variability There are many sources of variability that a mo-
bile manipulation robot must cope with. These include varying shape, texture, and
physical properties of objects – even within a category. Furthermore, the 6D ob-
ject pose, speed, and articulation state may vary. Environmental conditions, such as
lighting, and surface properties, such as shininess, transparency, texturelessness, or
non-reflectivity greatly impact appearance in camera images and consequently the
completeness and precision of depth estimates. The variability of single objects is
exponentiated by the infinite possibilities for multi-object arrangements. Similarly,
the robot environments such as rooms and apartments vary greatly in layout, geom-
etry, surface properties, and other factors. The manipulation and locomotion tasks
that capable robots need to perform are highly variable as well. Hence, learning
methods are needed that generalize to novel, unseen situations.

High-dimensional state and action spaces Input and output of mobile manipu-
lation robot controllers are high-dimensional. Typical camera images are of size
1920×1080×3, already more than 6M dimensions. Depth cameras, 3D LiDARs,
force-torque & haptic, inertial, and joint sensors add many more input dimensions.
The sensors measure at high rates, e.g., at 30 Hz, producing hundreds of million
measurements per second. The output dimensionality is high as well, with typically
more than 50 DoF for anthropomorphic robots. These joints need to be controlled at
high rates with target positions, velocities, or torques. Hence, learning methods are
needed that can cope with high-dimensional state and action spaces.

Hybrid discrete-continuous variables Some variables, such as the presence of
objects or the task category, are discrete while other variables, such as 6D object
poses or task parameters, are continuous. This creates the need for learning methods
that can cope with both discrete and continuous variables.

Non-linear dependencies Objects are typically in contact with support surfaces
and with each other and the robot must make and release contacts with its end-
effectors or other body parts to manipulate them. This induces highly non-linear
constraints. While objects may be easily moved away from the contact point, moving
them further towards the colliding surface is not possible. Similarly, occlusion effects
and the transition between stick friction and sliding are highly non-linear. Learning
methods must address such non-linearities.

Stochasticity There is much randomness in the world. Unmodeled environmental
factors and other agents might also be perceived as non-determinism from our
robot’s point of view. Furthermore, robot sensors are noisy and unreliable; and robot
actuators are imperfect and induce stochasticity. Hence, the state must be estimated
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from unreliable observations and predictions are hard to make and become more
and more uncertain for larger time horizons. Learning methods must cope with such
uncertainties.

Partial observability Due to the projection of the 3D world onto 2D cameras
and other sensors, limited sensor ranges, resolutions, accuracies, etc., not all state
variables that would be needed for action planning are directly accessible. Hence,
learning methods must consider the distribution of possible states and must generate
actions to acquire more information, for example changing the camera pose to see
occluded objects, touching objects to sense physical properties like weight and
stiffness, and opening containers to see what is inside.

Underactuation Robots have limited action capabilities to influence the state of the
environment. Their drives have limited speed and acceleration, their manipulators
have limited reach, strength, and dexterity. Some environmental variables cannot be
influenced directly, but only through indirect means like tools. Learning methods
must respect these constraints and generate behavior such as improvised tool use to
overcome them.

Multimodality Mobile manipulation involves multiple modalities, such as vision,
distance measurements, forces, and haptics on the input, and also multiple outputs,
such as mobility, manipulation, and active sensing. Hence, learning methods must
jointly address these modalities and come up, for example, with grasping strategies
that transition smoothly from vision-based scene understanding and grasp selection,
to visual tracking and correction of the approaching motion, to grasping execution
and re-grasping based on haptic feedback.

Non-stationarity One unique challenge is the non-stationarity of robots and their
environments. Not only do robot bodies change due to wear and tear, also the open-
ended environments in which they operate and the tasks they perform are constantly
changing. Already the ancient philosopher Heraclitus noted that the only constant in
life is change. Such changes violate the fundamental assumption underlying current
machine learning that a learned model will be used on the same distribution of data
it has been trained on. When using a trained model on a different distribution (out-
of-distribution, OOD), one cannot expect good performance [80]. In fact, seemingly
small changes can lead to catastrophic failure [17].

4 Human Cognitive Functions

Humans are able to cope with such changes and quickly learn new tasks. My hypoth-
esis is that the cognitive architecture of the human mind has evolved to continuously
interact with changing environments and that equipping robots with key elements of
this architecture will enable flexible handling of OOD data and systematic general-
ization. Systematic generalization was first studied in linguistics [5,60] because it is a
core property of language that meaning for a novel composition of existing concepts
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(e.g. words) can be derived systematically from the meaning of the composed con-
cepts and the way they are composed. Humans exhibit systematic generalization also
when understanding a new object by combining properties or parts which compose
it [62]. Compositionality is the principle that complex objects can be described by
their constituent parts and their relations to each other [29]. It allows to generate
infinite variants from a finite set of building blocks, enables open-world zero-shot
learning [71], and even makes it possible to generalize to new combinations that
have zero probability under the training distribution.

Fig. 1 Human cognitive functions according to Kahneman [49]
(System 1, System 2) and Dehaene et al. [22] (C0, C1, C2).

While humans perform
many routine tasks like
walking or riding a bike
without much attention,
object manipulation, com-
munication, and handling
novelty are different. Cog-
nitive science distinguishes
habitual and controlled
processing [11]. Habit-
ual processing effortlessly
generates default behav-
iors that are performed routinely. In contrast, controlled processing requires attention
and mental effort to generate non-routine behaviors. Kahneman [49] introduced the
framework of fast and slow thinking and corresponding processing systems in our
brain (see Fig. 1). Routine, habitual tasks can be achieved quickly in parallel with-
out conscious attention using only System 1 abilities, whereas more complex tasks
also require System 2 that is more capable but slower, serial and involves conscious
processing. System 2 uses explicit, verbalizable knowledge and explicit processing
while System 1 relies on implicit, non-verbalizable, intuitive knowledge. We can act
in fast and precise habitual ways without having to think consciously, but the reverse
is not true: conscious processing builds on the unconscious System 1.

System 2 is very flexible and powerful. It allows to solve novel problems cre-
atively by recombining existing pieces of knowledge, to discover and use causal
dependencies, to imagine future outcomes, to plan actions, to find explanations, to
reason, etc. It is also at that level that we communicate with others through natural
language, e.g. to receive task specifications or new knowledge and rules that we can
apply immediately. The capacity of System 2 is very limited, though. Our working
memory can only hold 3-5 meaningful items active simultaneously [19]. Baars in-
troduced the Global Workspace Theory [4] that identifies conscious processing as
the communication bottleneck between selected parts of the brain that are called
upon when addressing a current task. There is a threshold of relevance beyond which
information that was previously handled unconsciously gains access to this bottle-
neck and is instantiated in working memory. When this happens, the information is
broadcast throughout the brain, allowing its various relevant parts to synchronize
and choose configurations and interpretations of their piece of information that are
globally coherent with the configurations chosen in other parts of the brain.
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While this severe communication bottleneck might appear to be a weakness, it can
also be advantageous. Firstly, there is pressure to combine multiple lower-level items
that frequently occur together to larger, composite items, facilitating abstracting
away irrelevant detail and providing compositionality. Secondly, when focusing on
a few relevant items of a scene for conscious planning, we essentially ignore all
other items, which are irrelevant for the task at hand. This leads to systematic
generalization, because we can reuse the task knowledge in infinitely many novel
situations in which the irrelevant items change. System 2 is slow, has limited capacity,
and involves conscious effort; hence, there is pressure to migrate tasks to System 1
wherever possible. Through rehearsal, frequently performed tasks become habitual.

Dehaene et al. [22] characterize consciousness further. They distinguish uncon-
scious processing (C0) and two orthogonal dimensions of conscious computations:
global availability of information (C1) and meta-cognition (C2).

C1 – global availability – is a consequence of the distributed organization of the
brain as a deep hierarchy of specialized subsystems that must be synchronized and
of the need to act, which means that we cannot stick to a diversity of probabilistic
interpretations and action options, but must decide in favor of a single course of
action. Such decision-making requires efficient pooling over all available sources
of information, considering the available action options and selecting the best one,
sticking to this choice over time, and coordinating internal and external processes
towards the achievement of that subgoal. Attention – selective processing of infor-
mation – is crucial for items entering consciousness, but attention is not limited
to conscious processing. Unconscious C0 processing also includes bottom-up and
top-down attentional mechanisms, which operate in parallel to prioritize and flexi-
bly route information – often without bringing it to consciousness. The hierarchical
system of sieves that operate unconsciously computes probability distributions, but
only a single sample drawn from these becomes conscious at a given time, making
it available globally to all specialized modules. Alternative interpretations might
become conscious at other points in time, thus, C1 consciousness is causally respon-
sible for our serial information-processing bottleneck. Attention also implements
variable binding [36]. The association of information elements to roles in relations
and rules is crucial for applying these templates to varying input and, hence, for
multi-step inference and systematic generalization.

Consciousness in the second sense (C2) is characterized by the ability to re-
flexively represent oneself. When making decisions, we feel more or less confident
about our choices. Our brain does not only make perception and action decisions,
but also estimates its degree of confidence. State estimation and learning also rely
on confidence, for example, we weigh existing knowledge versus new evidence, like
a Kalman filter [109]. Error detection is another example of self-monitoring: just
after responding, we sometimes realize that we made an error and change our minds.
This might be explained by further evidence that arrived after the decision or by
slower C2-processing monitoring fast C0 sensory-motor execution. We don’t just
have knowledge, but we also know what we don’t know. Such meta-knowledge is
crucial for assessing our limits and for learning.
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C1 and C2 are largely orthogonal and complementary dimensions of conscious-
ness. Their joint possession may have synergistic benefits to organisms and robots.
Bringing probabilistic metacognitive C2 information into the global C1 workspace
allows it to be held over time, integrated into explicit long-term reflection, and shared
with others. On the other hand, the possession of an explicit repertoire of one’s own
abilities (C2) improves the efficiency with which C1 information is processed.

5 The Need for Conscious Robots

Despite tremendous progress in C0-like deep neural networks trained end-to-end
in tasks such as object recognition, video games, and board games, truly human-
like learning and thinking machines will need to go beyond current engineering
trends in both what they learn and how they learn it [62]. They need to build causal
models of their environment that support explanation and understanding and must
harness compositionality and learning-to-learn to rapidly acquire and generalize
knowledge to new tasks and situations [96]. For this, equipping machines with C1
and C2 conscious processing will be crucial. Upon success, they would behave as if
they were conscious; e.g., they would know that they are seeing something, express
confidence in it, report it to others, and may even experience the same perceptual
illusions as humans.

Of course, traditional symbolic AI systems (GOFAI), like Hierarchical Task Net-
work Planners [82] and CRAM [7], exhibit some of the properties that are associated
with conscious System 2 processing, like compositionality. However, such symbol
manipulation systems often lack semantic grounding of the higher-level concepts
in terms of the lower-level observations and actions. Whereas pure symbolic repre-
sentations put every symbol at the same distance from every other symbol, learned
embeddings represent concepts through a vector of attributes – with related concepts
being close-by and interpolations being meaningful. GOFAI systems often are too
rigid to account for real-world data with outliers, etc. Further, GOFAI search and
inference are generally intractable and need to be approximated. Here, learning rep-
resentations together with inference procedures is needed to generate fast habitual
C0 behavior. Finally, GOFAI approaches often do not handle uncertainty, which is
crucial for partially observable, stochastic environments.

In recent years, neuro-symbolic approaches [32, 44, 73] have been proposed that
integrate symbolic and subsymbolic representations, inference, and learning. How-
ever, hybrid neuro-symbolic systems [18,34,63,72,83,100,102,111,130] inherently
use different representations and tools for neural and symbolic computations, which
are difficult to integrate tightly.

Neurocompositional computing [103] is based on the principles of composition-
ality and continuity. It encodes structures in vectors that are processed by neural
networks and shows promising results by quickly learning tasks from small data
sets that require systematic generalization. The Differentiable Tree Machine [104]
compiles high-level symbolic tree operations into subsymbolic matrix operations on
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tensors. Here, an agent learns to sequentially select tree operations to execute tree
transformations with the help of a tree memory.

Recently, autoregressively trained embodied multimodal models have been used
for generating robotic skills such as grasping and placing objects [12, 54] and for
higher levels of robot control [26]. These models lack System 2 conscious processing,
though. They need much data [84] and computing power; and the addressed scenarios
are still relatively simple.

My hypothesis is that using insights from human cognition for the cognitive
architectures of robots by incorporating C1 global availability and C2 metacognition
will enable the next level of robot capabilities.

Because it extends highly successful C0 processing without a change in tools, I
am convinced that a bottom-up way towards consciousness-inspired higher-level
cognitive functions for service robots is the way to go.

6 Objectives

My overall goal is to develop methods for learning higher-level cognitive functions
for service robots, which go beyond unconscious routine tasks by incorporating
conscious processing to cope with novel situations and self-monitor.

Unconscious perception and control The System 1 / C0 routine processing directly
interacts with the environment and is hence the basis for any higher-level cognitive
functions.

Fig. 2 Scene perception and prediction on three
levels: in the sensor coordinate frame (bottom),
in 3D multimodal embeddings (center), and with
objects and their relations (top).

Starting from raw sensory measure-
ments, such as video, depth, forces, and
haptics, structured representations of
mobile manipulation robot workspaces
shall be learned on multiple levels
of spatio-temporal abstraction. Abstrac-
tion will be realized by coarser spatio-
temporal scales and more expressive,
sparser representations on the higher
levels. The elements of these represen-
tations will correspond to increasingly
larger entities (parts, objects, groups of
objects) in the scene and will be increas-
ingly semantic. The learned representa-
tions shall transition from sensor coor-
dinate systems (e.g. the camera frame)
to 3D representations of the scene and joint multimodal embeddings.

They shall model individual objects and the robot end-effectors in their own
canonical frame. This will enable learning of category-level shape and appearance
spaces within a hierarchical categorization. Scene parsing shall instantiate these
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models and estimate object parameters, such as pose, shape descriptors, and appear-
ance descriptors. Predictive models for these scene representations shall be learned
on all levels of abstraction (see Fig. 2). Prediction of low-level detail shall be done
only for short time horizons. Higher-layer representations shall be predicted with
coarser temporal granularity over longer time horizons. These predictions shall be
based on individual object dynamics models and on pairwise relational models to
account for object interactions, such as contact. The graph of object relations shall
be sparsely instantiated according to the relevant object interactions. The predicted
representations shall be compared to the feed-forward interpretation of new mea-
surements, such that prediction error can be used to update the representations on
all levels.

The learned predictive models shall be extended by conditioning them on robot
actions. This will allow for the rollout of possible futures of robot-environment inter-
action. Coarse-to-fine model-predictive control of routine skills that do not require
conscious attention shall be learned from imagined rollouts on the multiple levels of
abstraction. Higher layers shall plan abstract actions longer into the future, which are
concretized on lower levels for shorter time horizons. A large variety of skills shall
be learned for modular behaviors that activate coarse-to-fine actors according to the
situation. Binding objects or places to roles shall yield parametrizable skills, such
as grasping or placing an object or navigating towards a waypoint while avoiding
obstacles.

Conscious prediction and planning Methods for selecting a small set of ele-
ments from the highest-level C0 representations and for maintaining them in a
working memory (WM) shall be learned. This WM will be the basis for learning
action-conditioned predictions, based on binding selected elements to variables of
applicable rules.

Fig. 3 Conscious planning. The WM state is
rolled out using actions 1–4. Actions 1 and 3 are
unfeasible (unreachable top grasp and unstable
placement, respectively).

Structured predictions of state transi-
tion rewards, value, and action selection
probabilities shall be learned from in-
teractions with simulated and real envi-
ronments. LLMs shall be incorporated
as oracles.

As illustrated in Fig. 3, the learned
WM world models shall be used for
efficient action planning by sequential
search. A spatio-temporal action ab-
straction shall be learned, such that sub-
plans are reused in different contexts.
The learned models shall be used for
autonomous operation of mobile manipulation in complex novel situations.

Conscious self-monitoring Methods for assessing the confidence of perceptions
and predictions shall be developed. They shall be based on learning the distributions
of latent variables on which multiple plausible futures can be conditioned (see Fig. 4).
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Fig. 4 Predicting multiple plausi-
ble futures conditioned on latent
variable 𝑧.

By sampling from these variables, a tree-manifold of
state-action rollouts can be generated, such that not
only average value, but also its variance and worst-
case return can be estimated. These quantities shall
be incorporated into perception and action selec-
tion, to obtain policies that collect more information
when needed and avoid dangers. Furthermore, the
execution of low-level skills shall be monitored by
comparing the current percept to expected outcomes
to detect errors and to mitigate them.

7 Methodology

My approach will be to add suitable inductive biases to deep reinforcement learning
(DRL), such that structured representations and conscious processing are enforced,
which will enable systematic generalization and self-monitoring. Inductive biases
reflect assumptions about the statistics of modeled scenes and robot-environment
interactions and are necessary for generalization [78]. For instance, hierarchical
convolutional neural networks (CNNs) [64] hardwire local dependencies, translation
equivariance, hierarchical structure, and invariance to local deformations; whereas
recurrent neural networks [46] exploit equivariance over time.

Further biases are needed for higher cognitive functions. One example of these is
choosing the appropriate frame of reference for modeling. Commonly, deep neural
networks represent visual scenes in a sensor coordinate system. Describing objects
in object-centered canonical frames normalizes away the variability induced by the
6D object pose [118]. In such object-centered frames, shape and appearance spaces
can be learned much easier. Of course, such canonical frames are also useful for
individual parts of objects, for which the 6D pose relative to the object-centered
frame must be modeled. The projection of the 3D world to 2D images induces
occlusions and discontinuities at object boundaries. Modeling the scene in 2.5D
by individual depth layers or directly in 3D allows for more complete, continuous
representations where occluded parts are present and hence unoccluded parts can be
predicted. Much of the image motion can be explained by camera motion. Hence,
approaches that explicitly model the projection from 3D to the variable camera view
can represent this dependency compactly. One particularly powerful assumption
is relational inductive bias [6]. It expresses the observation that scenes can often
be described in terms of entities (objects, parts, groups) and their sparse pairwise
interactions (relations). Relations describe interactions between entities on adjacent
levels of abstraction, e.g. between the whole object and its parts, which represents
the compositional structure of the world. Such compositional hierarchy can also be
found on the action side, where tasks are composed of multiple subtasks and subtasks
are composed of individual skills (see Fig. 5).
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Fig. 5 Modeling actions on multiple levels of abstraction.

Relations are also present
between closely interacting en-
tities on the same level of de-
scription, e.g. for objects that
are in contact or for adjacent
subtasks. In hierarchical cate-
gorization, objects or actions
are categorized on multiple
granularities [25]. This allows
for pooling instances of mul-
tiple finer categories to learn
models of coarser categories. Planning in the now [48] refers to the assumption
that typical planning problems are not like mazes but can be solved by plans that
consist of only a few steps which are described on a detailed, concrete level for the
immediate future and on coarser, more abstract levels for the more distant future. This
makes planning exponentially more efficient than detailed long-horizon planning.

Crucial is the consciousness prior proposed by Bengio [9]. It assumes that from
subconscious, massively parallel computed representations, a small subset of el-
ements is selected by attention mechanisms for sequential processing. This cor-
responds to a sparse factor graph on a conceptual, symbolic level, which affords
abstract reasoning. Generic factors are probabilistic analogs of logical rules with
quantifiers, i.e., with variables or arguments that can be bound [35]. On this level,
graph neural networks [122] are applicable, which exploit equivariance over entities
and relations.

Self-attention used in transformer networks [114] provides flexible information
routing and learns sparse features with the sample complexity scaling only logarith-
mically with the context size [27]. High-level representations that describe verbaliz-
able concepts as semantic variables that play a causal role can be encouraged with
an inductive bias towards words [35]. When planning is restricted to maintaining
a single state consisting of few elements and search is serial and can consist of
few action-conditioned WM state predictions only, there is pressure to aggregate
elements to higher-level entities by discovering new concepts and macro actions.

Inductive biases alone will not suffice to address complex, open-ended real-
world domains, because real-robot experience is expensive to obtain and cannot be
collected in large enough quantities. Fortunately, foundation models for vision [23,
92], language [1, 85], and multimodal data [33, 39] are available. They have been
trained on Internet-scale data and summarize much more experience than real robots
could make. Incorporating this knowledge through distillation will be a crucial
factor for success. Another source of knowledge that I will incorporate is human
guidance and demonstrations. Still, it will be necessary to develop methods first in a
photorealistic physics-based simulation [79], where experience can be made cheaply
in large quantities without endangering the real robot, before transferring them to
the real world.

I will not approach human-like mobile manipulation in its full generality in a
single step, but will increase the level of difficulty gradually along the following
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a) b)

Fig. 6 a) NimbRo Avatar system [66]; b) NimbRo@Home robot [75].

dimensions: Number of objects: Starting without an object (learning a self-model),
proceeding with a single object (grasping, placing, pushing), and finally considering
the manipulation of two objects and the use of tools. DoF of the robot: From single-
handed object manipulation over bimanual tasks to mobile manipulation tasks. DoF
of objects: From rigid objects, to articulated objects, to deformable objects. Feedback
modalities: Starting with RGB-D camera-based feedback, adding simple robot state
and force-torque sensing, to rich multimodal feedback incorporating haptic mea-
surements and 3D LiDAR. Familiarity of objects and tasks: From known objects
and tasks, over variations of known requiring parameter adaptations, to unfamiliar
objects and tasks requiring compositional generalization. Level of abstraction: Start-
ing with motion control on a fast time scale, proceeding with movement primitives,
continuing with skills, such as grasping or placing an object, and finally considering
chaining of skills to solve entire tasks. Dynamics: Starting with quasi-static mo-
tion by considering only kinematics, proceeding with slow, compliant motion with
interaction forces, and finally modeling dynamic effects of fast movements.

Intuitive immersive telepresence systems enable transporting human presence to
remote locations in real time. My team NimbRo developed the winning entry for the
ANA Avatar XPRIZE competition [66] (see Fig. 6a). Telepresence also provides a
rich source of environment interaction data for learning structured perception and
autonomous behavior.

My team NimbRo develops perception, planning, and learning for anthropomor-
phic mobile manipulation robots providing personal assistance [105] and benchmarks
them in the RoboCup@Home league, where we recently won the German Open 2024
and RoboCup 2024 OPL competitions [75] (see Fig. 6b).

8 Conclusions

By incorporating insights from human cognition, the next generation of service
robots will systematically generalize their knowledge to cope with novelty. This
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new generation of robots will also monitor themselves to obtain more information
when needed, to avoid risks, and to detect and mitigate errors. Conscious service
robots have much potential for numerous open-ended application domains, including
assistance in everyday environments. Moreover, artificial conscious processing will
contribute to a better understanding of consciousness in humans and other animals.
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110. Toyer, S., Trevizan, F.W., Thiébaux, S., Xie, L.: Action schema networks: Generalised policies

with deep learning. In: 32nd Conf. on Artificial Intelligence (AAAI), pp. 6294–6301 (2018)
111. Trinh, T.H., Wu, Y., Le, Q.V., He, H., Luong, T.: Solving olympiad geometry without human

demonstrations. Nature 625(7995), 476–482 (2024)
112. Valevski, D., Leviathan, Y., Arar, M., Fruchter, S.: Diffusion models are real-time game

engines. CoRR (2024). ArXiv:2408.14837
113. Varadarajan, B., et al.: MultiPath++: Efficient information fusion and trajectory aggregation

for behavior prediction. In: Int. Conf. on Robotics and Automation (ICRA) (2022)
114. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural

Information Processing Systems 30 (NeurIPS), pp. 5998–6008 (2017)
115. Veerapaneni, R., Co-Reyes, J.D., Chang, M., Janner, M., et al.: Entity abstraction in visual

model-based reinforcement learning. In: Conference on Robot Learning (CoRL) (2019)
116. Villar-Corrales, A., Wahdan, I., Behnke, S.: Object-centric video prediction via decoupling

of object dynamics and interactions. In: IEEE International Conference on Image Processing
(ICIP), pp. 570–574 (2023)

117. Vinyals, O., Babuschkin, I., Czarnecki, W.M., et al.: Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)

118. Wang, H., et al.: Normalized object coordinate space for category-level 6D object pose and
size estimation. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2019)

119. Wang, X., Misra, I., Zeng, Z., et al.: VideoCutLER: Surprisingly simple unsupervised video
instance segmentation. In: IEEE/CVF Conf. on CVPR (2024)

120. Wu, P., Escontrela, A., Hafner, D., Abbeel, P., Goldberg, K.: DayDreamer: World models for
physical robot learning. In: Conference on Robot Learning (CoRL), pp. 2226–2240 (2022)

121. Wu, Z., Dvornik, N., Greff, K., et al.: SlotFormer: Unsupervised visual dynamics simulation
with object-centric models. In: 11th Int. Conf. on Learning Representations (ICLR) (2023)

122. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph
neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2021)

123. Wurman, P.R., Barrett, S., Kawamoto, K., et al.: Outracing champion Gran Turismo drivers
with deep reinforcement learning. Nature 602(7896), 223–228 (2022)

124. Xie, Q., Luong, M., et al.: Self-training with noisy student improves ImageNet classification.
In: IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) (2020)

125. Yamamoto, T., Takagi, Y., et al.: Human support robot as research platform of domestic
mobile manipulator. In: RoboCup 2019: Robot World Cup XXIII. Springer (2019)

126. Yang, J., Gao, S., Qiu, Y., et al.: Generalized predictive model for autonomous driving. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

127. Yoshiike, T., et al.: The experimental humanoid robot E2-DR: A design for inspection and
disaster response in industrial environments. IEEE Robo. Autom. Mag. 26(4), 46–58 (2019)

128. Yu, T., Xiao, T., Tompson, J., et al.: Scaling robot learning with semantically imagined
experience. In: Robotics: Science and Systems XIX (RSS) (2023)

129. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1204–1213 (2022)

130. Zhou, Y., Feinman, R., Lake, B.M.: Compositional diversity in visual concept learning.
Cognition 244, 105711 (2024)


	Towards Conscious Service Robots
	Sven Behnke[0000-0002-5040-7525]
	Introduction
	Related Work
	Challenges
	Human Cognitive Functions
	The Need for Conscious Robots
	Objectives
	Methodology
	Conclusions
	References
	References





