
Feature-Preserving Mesh Decimation for Normal Integration

Moritz Heep
PhenoRob

University of Bonn
mheep@uni-bonn.de

Sven Behnke
Autonomous Intelligent Systems

University of Bonn
behnke@ais.uni-bonn.de

Eduard Zell

Independent Researcher

ezell@hotmail.de

Abstract

Normal integration reconstructs 3D surfaces from normal
maps obtained e.g. by photometric stereo. These normal
maps capture surface details down to the pixel level but re-
quire large computational resources for integration at high
resolutions. In this work, we replace the dense pixel grid
with a sparse anisotropic triangle mesh prior to normal
integration. We adapt the triangle mesh to the local ge-
ometry in the case of complex surface structures and re-
move oversampling from flat featureless regions. For high-
resolution images, the resulting compression reduces nor-
mal integration runtimes from hours to minutes while main-
taining high surface accuracy. Our main contribution is
the derivation of the well-known quadric error measure
from mesh decimation for screen space applications and
its combination with optimal Delaunay triangulation. Code
is available at https://moritzheep.github.io/
anisotropic-screen-meshing.

1. Introduction
Normal maps can be estimated from images through shape-
from-shading [15] or photometric stereo [29] down to the
pixel level, capturing delicate surface details. Normal inte-
gration reconstructs the underlying surface using these nor-
mals. The surface is usually estimated as a pixel-based
depth map [7] by solving a linear system. At the pixel level,
doubling the geometric resolution requires doubling both,
image height and width. Due to this quadratic growth of the
number of variables in the linear system, normal integration
scales poorly to higher image resolutions. The fundamen-
tal problem of a regular grid is that fine details somewhere
on screen require increasing the resolution everywhere on
screen.

Recent research proposes substituting the pixel grid with
an adaptive 2D triangle mesh prior to integration [14]. Tri-
angle meshes allow local control of the resolution: the res-
olution remains high in areas of delicate details and is low-
ered within smooth areas. While this reduces the number

Isotropic Remeshing

21k Vertices

Our Decimation

20k Vertices

Figure 1. Visual comparison between the isotropic remeshing [14]
(left) and our anisotropic decimation (right). In both examples,
the 20482 normal map is compressed into a triangle mesh with ap-
proximately 20k vertices before integration. By aligning vertices
and edges to ridges and furrows, we achieve higher accuracy with
the same number of vertices.

of vertices compared to the number of pixels (and conse-
quently runtime), this approach is isotropic and struggles
with ridges and furrows by design. Our proposed method
overcomes this limitation by shifting to an anisotropic for-
mulation: By analysing the normal maps, we align edges
and vertices of the mesh with ridges and furrows of the un-
derlying geometry. Our mesh decimation technique main-
tains delicate surface details more effectively than previous
methods, even with high compression ratios, see Fig. 1. In
summary, our contributions are:
• We derive quadrics [11], originally designed for 3D

meshes and crucial to mesh decimation methods but take

1

behnke
Schreibmaschine
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville TN, USA, June 2025.

normal maps as input to facilitate mesh decimation in
screen space.

• By taking advantage of the similarity between quadrics
and a generalized Delaunay criterion [4], we align tri-
angle edges with ridges and furrows, thus outperforming
previous methods [14].

• We present a simple iterative algorithm, consisting only
of three local mesh operations: edge collapse, edge flip,
and vertex position update.

Our results suggest that even at around 90% compres-
sion, we achieve surfaces within the sub-millimetre range
of pixel-based approaches. Furthermore, given a simi-
lar time range we can triangulate, decimate and integrate
a 16MP normal map, while pixel-based integration suc-
ceeds only to integrate 4MP. A reference implementation is
available under http://moritzheep.github.io/
anisotropic-screen-meshing.

2. Related Work
Normal Integration The core of recent normal integra-
tion methods is a functional [7] quantifying the difference
between the gradients of the actual depth-map and observed
gradients, e.g. from photometric stereo. Normal integration
is then achieved by finding the depth map that minimizes
this functional. If the L2 norm is used to measure the dif-
ference, the optimal depth map can be found by solving
a Poisson equation in the form of a sparse linear system.
This linear system is either found by discretising the func-
tional itself [9] or using functional analysis and discretis-
ing the resulting Poisson equation [16]. An overview of
the topic is given by Quéau et al. [25]. More recently, au-
thors have raised concerns about various artefacts [2, 36]
occurring in the functional setting. Although these artefacts
can be avoided by using additional variables [2] or larger
stencil sizes for the partial derivatives [35], replacing the
functional over gradients by a functional over normals rep-
resents a more straightforward solution [3, 13]. Our method
is derived from the same normal-based functional [14] and
remains unaffected by the aforementioned artefacts.

Mesh-Based Integration Early mesh-based methods in-
terpreted the pixel-grid as a grid of quadrilateral facets [30,
31]. These methods iterate between aligning the quads
with the normal directions and gluing adjacent quads into
a continuous or even discontinuous [32] surface. How-
ever, this approach maintains a one-to-one relation between
pixels and quads. More recently, a variational approach
to normal integration was introduced for arbitrary triangle
meshes [14] together with an isotropic screen space mesh-
ing algorithm. By calculating curvatures from the normal
maps, the triangle density is adjusted locally, facilitating
much sparser representations and reducing runtimes with-
out sacrificing quality. Unlike this approach, we abandon

isotropy in favour of an alignment of vertices and edges to
ridges and furrows of the underlying geometry. The result
is a much more faithful representation.

Remeshing and Decimation Modification or simplifica-
tion of an existing triangle mesh has been extensively stud-
ied in the field of geometry processing [17]: Decimation
aims to preserve the shape with a reduced number of ver-
tices. Remeshing aims to improve mesh regularity and
might increase or decrease the vertex number. A wide
range of remeshing algorithms build either on Centroidal
Voronoi Tessellations (CVT) [6] or Optimal Delaunay Tri-
angulations (ODT) [4]. Both approaches create uniform or
isotropic meshes, i.e. meshes with equilateral triangles of
constant or varying size by iteratively moving vertices to the
centroid of a local neighbourhood. Curvature-based densi-
ties [1, 5] are a common choice, as they ensure an accu-
rate representation of the geometry [8]. Extending CVT
or ODT to create anisotropic meshes is more elaborate.
One option is to ’lift’ vertex positions and normals into
a six-dimensional space [19, 23, 34]. The resulting CVT
is isotropic in this space but anisotropic in 3D. Since the
change in normals is proportional to curvature, these trian-
gulations still implicitly adapt to curvature.

Mesh simplification typically reduces the vertex count
of an existing triangle mesh by collapsing edges that are in-
consequential for the overall shape. Different metrics have
been proposed to determine these collapse candidates, such
as volume preservation [21] or an estimate of the distance to
the original mesh [11]. Especially the algorithm by Garland
and Heckbert [11] is part of most mesh-processing libraries.
Both approaches use quadratic functions – quadrics – to de-
termine how much a collapse would distort the original ge-
ometry. More recently, probabilistic versions of both algo-
rithms have been proposed to handle noisy input data [28].
Although devised in the context of mesh simplification,
quadrics have also found application in remeshing: Xu et
al. [33] combine quadrics and CVT in an isotropic mesh-
ing approach. In contrast, our method uses anisotropy to
achieve a more faithful representation. Our method is partly
inspired by the aforementioned methods, but differs signifi-
cantly in one aspect: To overcome the runtime limitation of
pixel-based integration, we have to introduce the triangula-
tion before normal integration. Hence, our method cannot
rely on 3D geometry but can only use normal maps as input.

3. Screen Space Mesh Decimation

Transforming a regular pixel grid into an irregular 2D tri-
angle mesh allows local adaptation to surface details. This
can reduce runtime [14] while maintaining reconstruction
quality. However, the creation of the triangulation requires
careful consideration: First, the placement of vertices v ∈ V

2

but also the choice of edges e ∈ E to connect them is of ut-
most importance for an accurate yet sparse representation.
Second, the vertex and edge placement must occur without
knowing the 3D surface in advance.

In this work, we advance the idea of triangulating sur-
faces based on normal maps by introducing an algorithm
that decimates near-redundant vertices to achieve high com-
pression ratios. To maintain high-accuracy, the remaining
vertices and edges are aligned to the underlying geometry.
Our algorithm is guided by the objective function:

E = EGeo + λ · EODT . (1)

For an existing surface, the two energy terms can be written
as surface integrals over x⃗ ∈ R3. The first term estimates
the deviation between the mesh and the underlying surface
by relying on quadrics [11, 33]:

EGeo(x⃗1, ..., x⃗|V|) =
∑

v∈V

∫

Sv

⟨n⃗(x⃗), x⃗v − x⃗⟩2 d2 x, (2)

where x⃗v for v ∈ V are the unknown 3D vertex positions
and ⟨·, ·⟩ is the standard scalar product. The star Sv of v is
the surface patch formed by all triangles touching v. The
second term

EODT(x⃗1, ..., x⃗|V|) =
∑

v∈V

∫

Sv

∥x⃗v − x⃗∥2 d2 x (3)

guarantees a well-defined behaviour and an even vertex dis-
tribution in flat areas. We will see in Sec. 3.2 that EODT is
closely connected to Delaunay triangulations [4]. This fun-
damental insight is crucial to align edges to features and to
facilitate anisotropic meshing.

While it is easy to compute the energy terms for an ex-
isting surface in 3D, the depth coordinate of each x⃗ is un-
known in our case. A coarse 2D triangle mesh must be com-
puted before the normal integration to gain any speed-up. In
the following, we will show how both energy functions can
be evaluated in screen space and derive a novel quadric for-
mulation with normal maps as input. In Sec. 4, we focus on
the practical aspects and implementation details. We break
down the mathematical concepts into simple mesh opera-
tions, i.e. vertex relocation, edge flip and edge collapse.

3.1. Calculating the Objective Function On Screen

Image-based reconstruction can be understood as finding a
projection

ϕ : Ω→ R3 (4)

from the image foreground Ω ⊂ R2 into 3D space. While
existing approaches parametrise the projection through a
pixel-wise depth map, we choose a 2D triangle mesh in-
stead. The projection ϕ is then determined by one depth
value zv per vertex and bilinear interpolation everywhere

else. In Sec. 3.3, we derive these depth values from normal
maps by solving the normal integration problem for a 2D
triangle mesh, c.f. [14].

A unified treatment of EGeo and EODT is obtained by in-
troducing the norm

∥x⃗∥2M := ⟨x⃗,Mx⃗⟩ (5)

with a constant M = 1 for EODT and a locally varying
M(x⃗) = n⃗(x⃗) · n⃗t(x⃗) for EGeo. With this shorthand nota-
tion, both energy functions become a sum over

Qv :=
∑

f∈F

∫

f

∥x⃗v − x⃗∥2M(x⃗) d
2 x (6)

for each vertex and with the respective choice for M .
Such quadratic functions Qv are commonly referred to as
quadrics [11]. With a known projection ϕ, this integral
could be evaluated in coordinates by substituting x⃗v − x⃗→
ϕ(u⃗v) − ϕ(u⃗) where u⃗ and u⃗p are the respective 2D coor-
dinates on screen. However, runtime advantages are only
achieved by decimating before the integration, i.e. before ϕ
is known. Instead, we replace x⃗p − x⃗ = Jf · (u⃗p − u⃗) us-
ing a Taylor expansion where the face Jacobian Jf of ϕ is
constant due to linear interpolation.

Unlike ϕ - which is only available after an expensive in-
tegration - the Jacobian Jf can be obtained directly from
normals: The Jacobian J = (∂uϕ, ∂vϕ) consists of two sur-
face tangents as columns. Both tangents are orthogonal to
the surface normals and hence

∂uϕ = e⃗x −
nx

nz
· e⃗z ∂vϕ = e⃗y −

ny

nz
· e⃗z (7)

in the orthographic case and

∂iϕ =

(
∂ir⃗ −

⟨n⃗, ∂ir⃗⟩
⟨n⃗, r⃗⟩ · r⃗

)
· z for i ∈ {u, v} (8)

in the perspective case where r⃗ is the camera ray given by
the intrinsics matrix, cf . e.g. [14]. In the latter case, we
adopt the weak perspective projection and assume a con-
stant camera-to-object distance. These two equations allow
calculating tangent vectors from normals maps and we will
require both equations throughout Sec. 4 to calculate nor-
mals for vertices, edges and faces.

To determine the influence of a vertex on the mesh sur-
face and to facilitate finding optimal positions (Sec. 4.2), we
need to know the change in Qv if vertex v is moved by δx⃗v:

Qv(δx⃗v) :=
∑

f∈Fv

∫

f

∥Jf (u⃗v − u⃗) + δx⃗v∥2M(x⃗) dΩ, (9)

where dΩ = |J t
fJf |

1
2 d2 u compensates for the distorted

area on the screen due to foreshortening. This ensures that
all faces contribute as if the integral was evaluated over the
3D surface.

3

3.2. Generalized Delaunay Triangulations

To achieve accurate mesh representations despite reduc-
ing the number of vertices, we must align edges and ver-
tices to ridges and furrows of the underlying surface. No-
tably, EODT in Eq. (3) is closely linked to Delaunay tri-
angulations: For a point set in 2D, the associated Delau-
nay triangulation minimizes EODT. As we have seen in
Sec. 3.1, both EGeo and EODT can be written in terms of
a norm ∥x⃗∥2M = ⟨x⃗,Mx⃗⟩ with the respective choices for
M . We can combine EGeo and EODT into a single norm
with M = n⃗ · n⃗t + λ ·1. In this way, our objective function
is an extension of EODT with a more general norm. Replac-
ing ∥ · ∥ → ∥ · ∥M to generalize Delaunay triangulations in
2D was previously suggested [4]. However, the presented
algorithm is based on convex hulls and does not extend to
surfaces in 3D or locally varying M ∈ R3×3. In Sec. 4.3,
we will present a local version of this algorithm that ex-
tends the original idea to surfaces in 3D and with varying
M ∈ R3×3. Furthermore, we show how this local version
can be computed in screen space.

3.3. Normal Integration

A unified description of the orthographic and perspective in-
tegration problem is achieved by minimising the functional

EInt =

∫

Ω

∥∥∥∥⟨n⃗, r⃗⟩ ·
(
∂uz
∂vz

)
+D ·

(
nx

ny

)∥∥∥∥
2

d2 u . (10)

over the depth map z : Ω→ R [3, 25]. For the orthographic
projection, r⃗ = e⃗z is the unit vector in the z-direction and
D = 1. For the perspective projection, r⃗ is the camera ray
given by the intrinsics matrix and D is the inverse of the
focal length. Furthermore, we need to take the exponential
of z to obtain the final depth map in the perspective case.

Only recently, a discretisation of Eq. (10) for triangle
meshes has been proposed [14]. This mesh version of the
normal integration problem resembles the seminal Cotan-
Laplacian [24] in geometry processing. As for pixel-wise
integration, it leads to a sparse linear system but replaces
pixel neighbourhoods with adjacent vertices. Please refer
to the supplementary material for further discussion of the
nuances of mesh-based integration.

4. Algorithm

Our algorithm decimates an existing triangle mesh, Fig. 2,
by iteratively repeating the following three steps: We col-
lapse edges (Sec. 4.4) to remove redundant triangles in
smooth, featureless regions, we update vertex positions
(Sec. 4.2) and flip edges (Sec. 4.3) to align better with ridges
and furrows of the surface. The triangle mesh is initialized
by converting each foreground pixel into two triangles.

Iterative Refinement

Output

Initialization

Decimation

Edge Alignment

Vertex Alignment

Figure 2. Schematic representation of our iterative screen space
decimation: Decimation drastically reduces the number of vertices
but may introduce misaligned edges and vertices which are fixed
by our edge and vertex alignment procedures.

4.1. Quadrics from Normal Maps

Calculating the screen space quadrics is a two-step proce-
dure. First, we calculate face normals for each triangle by

n⃗f := normalize
(∑

p∈Pf
n⃗p

)
(11)

where Pf contains all pixels covered by triangle f and n⃗p

are the input pixel normals. From the face normals n⃗f , we
calculate the face Jacobians Jf using Eqs. (7) and (8) de-
pending on the projection.

Secondly, we calculate the quadrics

Qv(δx⃗) =
∑

f∈Fv

A
(3)
f

|Pf |
∑

p∈Pf

∥Jfδu⃗vp + δx⃗∥2Mp
, (12)

where δu⃗vp = u⃗v− u⃗p is the vector on screen pointing from
the pixel to the vertex. The norm ∥ · ∥Mp

at pixel p is given
through the matrix

Mp := n⃗p · n⃗t
p + λ · 1, (13)

where n⃗p the normal at pixel p. This matrix combines the
contributions from EGeo and EODT. The unforeshortened
area A

(3)
f = |J t

fJf |
1
2 ·A(2)

f of f can be calculated from the

triangle area A
(2)
f on screen by using the Jacobian.

4.2. Vertex Alignment

The key idea behind our vertex alignment algorithm is to
place vertices along ridges and furrows of the surface to

4

lifted tetrahedron

adjacent triangles

tangent plane

Figure 3. Schematic representation of our edge flip criterion: Each
triangle patch is projected into its tangent plane. We then use
∥ · ∥Me to lift the flattened patch. Among the two diagonals of
the patch, the aligned edge is the lower edge in the resulting tetra-
hedron.

achieve a close representation even at low mesh resolutions.
To translate a vertex displacement δu⃗v on screen into a ver-
tex displacement δx⃗v in 3D space, we assume that the ver-
tex is moving along the surface, i.e. in the tangent space.
We define vertex normals

n⃗v := normalize
(∑

f∈Fv
A

(3)
f · n⃗f

)
, (14)

as the area-weighted average of the adjacent face normals
and use Eqs. (7) and (8) to calculate the Jacobian Jv that
characterizes the tangent space. Then, moving the vertex
by δu⃗v on screen causes a displacement δx⃗v = Jvδu⃗v in
3D space. To move the vertex to its optimal position, we
minimise

Q̃v(δu⃗v) := Qv(Jvδu⃗v) . (15)

Since quadrics are quadratic functions, the minimizer is
found by solving a linear system. Finally, we apply the dis-
placement

u⃗v ← u⃗v + α · δu⃗v for v ∈ V (16)

scaled by a step width α = 0.5.

4.3. Edge Alignment

Aside from placing vertices along ridges and furrows of the
surface, it is equally important to align the triangle edges
with these. We identify and flip non-aligned edges using
the theory of generalized Delaunay triangulations in 2D, see
Sec. 3.2. For each non-boundary edge e, we consider the
patch made of its two adjacent triangles f, f ′. As for the
vertices, we assign a normal

n⃗e := normalize
(
A

(3)
f · n⃗f +A

(3)
f ′ · n⃗f ′

)
(17)

to the edge. Similarly, we approximate the quadric in the
patch through

Me =
A

(3)
f

|Pf |
∑

p∈Pf

Mp +
A

(3)
f ′

|Pf ′ |
∑

p∈Pf′

Mp . (18)

By projecting the four vertices forming the patch into the
tangent plane, we obtain a flattened approximation of the
patch. Similarly to the 2D generalized Delaunay triangula-
tion, we use ∥ · ∥Me

to lift the vertices out of the plane to
form a tetrahedron, see Fig. 3. Different to the 2D version,
our localized version is free of any expensive convex hull
calculations. Instead, the current edge is geometry-aligned
if it is lower in the tetrahedron than the other diagonal of the
two adjacent triangles. If this is not the case, we perform an
edge flip.

4.4. Decimation

We remove vertices that least influence the object’s overall
surface through edge collapses [11]. During a collapse the
edge (v, w) between the vertices v and w is contracted into
a single vertex. We judge the influence of a collapse on the
overall shape by calculating a cost

Cvw := min
u⃗vw

Q̃v(u⃗− u⃗v) + Q̃w(u⃗− u⃗w) , (19)

i.e. the joint value of the screen-quadrics Eq. (15) of the
edge endpoints when contracted into an optimally posi-
tioned vertex at u⃗vw. We restrict u⃗vw to the edge itself,
i.e. the solution is found by solving a 1D linear system.

All collapsible edges are placed in a priority queue with
non-decreasing Cvw. During a collapse, we contract the
edge into the optimal position u⃗vw. After the collapse, the
quadric for this newly positioned vertex needs to be calcu-
lated and the optimal collapses for adjacent edges need to
be updated. In line with previous work [11], the quadric at
the new vertex is approximated as the sum of the two just
removed vertex quadrics, instead of evaluating the compu-
tationally more involved Eq. (12).

4.5. Implementation Details

Our decimation algorithm is written in C++ and relies on
SURFACEMESH [26] to represent triangle meshes. We em-
ploy the NVDIFFRAST renderer [18] to translate between
triangles and the pixel grid. All linear systems are solved
using EIGEN [12]. We present two ways to control the
mesh resolution: Either by setting the vertex target or by
providing a threshold on edge collapses, cf . Eq. (19). In
both cases, we perform five iterations of decimation each
followed by edge- and vertex-alignment. If an error thresh-
old is provided, each decimation step will perform all edge
collapses with a cost below this threshold. If a vertex tar-
get is provided, we exponentially decrease the vertex count
over five iterations starting at ten times the vertex target. We
use λ = 10−5 and α = 0.5 in all our experiments. Code
is available at https://moritzheep.github.io/
anisotropic-screen-meshing.

5

RGBN [27] (uint8) LUCES [22] (uint16) PS [10] (float)

98.2% 98.5% 98.06% 97.5% 96.8% 97.8% 95.9% / 96.9% 96.8%

Figure 4. Results from testing different datasets and normal map discretisations. Even with compression rates beyond 95%, fine details
are well preserved and visible. The compression ratios refer to the number of depth variables and do not reflect file size. Any holes within
objects are subject to the provided masks of the dataset.

5. Evaluation

We test our algorithm, quantitively and qualitatively on four
publicly available datasets [10, 20, 22, 27] and additional
synthetical data. The DiLiGenT-MV [20] dataset contains 5
objects from 20 different views and LUCES [22] consists of
14 objects. We observe that the these datasets are either low
resolution [20, 22] or lack ground-truth geometry [10, 27].
We mitigate this issue by complementing these published
datasets with rendered normal maps. Figure 4 illustrates
some results on a range of datasets at varying discretisation
accuracy: floating points [10, 20], 16-bit [22] or 8-bit un-
signed integers [27]. Despite over 95% fewer vertices that
pixels in the input normal map, fine surface details remain
clearly visible. Further results can be found in the supple-
mentary material.

Isotropic

5.94mm Density

Ours

5.24mm Density

low

high

Figure 5. Absolute error and vertex density for isotropic remesh-
ing (left) and our decimation (right). The isotropic algorithm
places more vertices around ridges and furrows. Our algorithm
places fewer vertices in these regions but still obtains a lower error
due to the careful vertex and edge alignment.

5.1. Benchmark Comparisons

As a first step, we compare our results to the only previous
mesh-based integration method [14] we are aware of. For an
even comparison, we set our vertex target to match the num-
bers for the low-, mid- and high-resolution settings reported
in [14]. Tab. 1 lists a summary of the root mean square er-
ror (RMSE) over all 20 views for DiLiGenT-MV. For refer-
ence, we also list the results of the pixel-based method in [2]
which performed best in our tests. The RMSE is always
measured after a non-rigid alignment to absolve the inherent
scale ambiguity in normal integration. Our method reliably
outperforms the isotropic meshing and even gets within sub-
millimetres of the pixel-based approach for the ’high’ set-
ting, where the number of vertices is typically still 10 times
smaller than the number of pixels. Figure 6 displays the
visual results at ’mid’ resolution together with the RMSE
and mean angular error (MAE), which confirm the advan-
tages of our method. Comparing the vertex density images
of both methods in Fig. 5, we identify that our method con-
centrates vertices directly at ridges and furrows, while the
isotropic method [14] creates a much more smoothly vary-
ing vertex density. The isotropic approach trades isotropy

[2] Isotropic [14] Ours

Dataset Ref low mid high low mid high

BEAR 2.97 3.95 3.65 3.37 3.84 3.38 3.04
BUDDHA 6.74 7.74 7.54 7.33 6.86 6.68 6.61
COW 2.45 3.42 3.12 2.96 3.07 2.85 2.74
POT2 5.15 5.89 5.77 5.65 5.63 5.47 5.29
READING 6.34 7.08 6.93 6.83 6.82 6.67 6.50

Table 1. Average RMSE over all 20 views of the DiLiGenT-MV
dataset in mm using orthographic projection.

6

BEAR BUDDHA COW POT2 READING
IS

O
T

R
O

P
IC

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

An
gu

la
r E

rro
r [

°]

1.89mm / 5.27◦ 5.19mm / 15.81◦ 1.65mm / 6.26◦ 1.61mm / 8.99◦ 9.46mm / 11.10◦

O
U

R
S

1.90mm / 3.95◦ 5.00mm / 11.85◦ 1.76mm / 5.45◦ 1.41mm / 6.99◦ 9.05mm / 9.43◦

1118 Vertices 3758 Vertices 782 Vertices 1565 Vertices 1118 Vertices

Figure 6. Comparison between isotropic [14] (top) and our anisotropic meshes (bottom), both in screen space for the DiLiGenT-MV
dataset. We show wireframes (as vector graphics), angular error maps and report RMSE and MAE as error metrics. With the same number
of vertices, we outperform both locally (MAE) and globally (RMSE) and preserves details better, e.g. the bear’s nose or the Buddha’s face.

for accuracy.

5.2. Controllability

For a second evaluation, we use the 14 objects in the
LUCES dataset and control the mesh resolution by provid-
ing three decimation thresholds, cf . Eq. (19). The results
are listed in Tab. 2. LUCES is a challenging dataset as ob-
jects are placed very close to the camera. Nonetheless, a
lower decimation threshold correlates with a lower recon-
struction error. As for DiLiGenT-MV, the highest mesh res-
olution is within the submillimetre range of the pixel-based
baseline [13]. Additional results are in the supplementary
material.

5.3. Ablation Studies

For an ablation study, we consider the three operations of
our algorithm, see Fig. 7: Decimation alone, decimation
with either vertex alignment or edge alignment as well as
the full algorithm. Decimation alone preserves the rough
shape but struggles with high-frequency details. Adding ei-
ther vertex- or edge-alignment improves RMSE and MAE
respectively but only the full algorithm leads to the best re-
sults both qualitatively and quantitatively.

5.4. Runtime

To evaluate the runtime at higher resolutions, we created
synthetic normals maps from high-resolution 3D scans with

Dataset Ref Threshold

[13] 2 26 211

BELL 0.30 0.33 0.49 0.72
BUDDHA 3.46 3.58 3.51 3.32
BUNNY 3.38 3.67 3.83 4.15
DIE 1.62 1.65 2.11 3.09
HIPPO 2.73 2.85 2.91 3.09
JAR 0.50 0.45 0.45 0.46
OWL 4.89 5.41 5.63 5.94
QUEEN 3.74 4.02 4.41 4.98
SQUIRREL 1.91 2.07 2.37 3.00
TOOL 0.91 0.98 0.98 1.04

Table 2. RMSE in mm for some of the objects in LUCES [22]
with increasing decimation threshold, see Eq. (19). The chosen
thresholds should lead to a constant reduction rate of the RMSE.

7

Decimation Only

1.64 / 6.18◦

Dec + Vertex Alignment

1.59 / 6.03◦

Dec + Edge Alignment

1.72 / 5.90◦

Ours

1.55 / 5.74◦

Figure 7. Ablation study of the three components of our method:
Results for a vertex resolution of 1k using only decimation, dec-
imation and vertex alignment, decimation and edge alignment as
well as our full algorithm.

resolutions ranging from 5122 to 81922 and applied the
method in [14] and our method with a constant quality set-
ting. Compared to the simpler isotropic remeshing [14],
the improved accuracy of our anisotropic approach has the
downside of slightly higher runtimes. Nevertheless, our
method is still considerably faster than pixel-wise integra-
tion, especially for increasing resolutions. According to
Fig. 8, the overhead of converting pixels to meshes before
the integration already pays off at resolutions as low as 1MP.
At resolutions beyond 10MP, mesh-based methods are up to
100 times faster than traditional pixel-based integration.

5.5. Robustness

Given that noise might be present in experimentally ob-
tained normal maps, we tested the robustness of our method
towards imperfect inputs by distorting the ground-truth nor-
mal maps with Gaussian noise of various amplitudes, see
Fig. 9. As expected, the quality of the input is reflected
in the quality of the output. However, our vertex and edge
alignment to ridges and furrows remains consistent even at
high levels of noise.

6. Conclusion and Limitations

We proposed a screen space decimation approach for mesh-
based integration. Our results show that careful alignment
of vertices and edges to ridges and furrows of the under-
lying surface is key to surpassing the quality of previous
methods and maintaining high geometric faithfulness even
at high compression ratios. Conversely, we achieve compa-

105 106 107

Pixels

100

101

102

103

104

Ru
nt

im
e

[s
]

Method
Ours
Isotropic
Pixel-Based
Dataset
Dragon
Female
Male

Figure 8. Total runtime (meshing and surface integration) as a
function of the number of foreground pixels. For the pixel-based
method it is only integration time. Please note the log-log scale.

σ = 0◦

1.41mm / 6.56◦

σ = 3◦

1.57mm / 7.06◦

σ = 10◦

2.28mm / 9.04◦

Figure 9. Robustness against increasing levels of normally dis-
tributed noise: Numbers are RMSE and MAE respectively. All
meshes have a 2k vertices and are vector graphics to allow close
examination in the digital version.

rable results to pixel-based methods at moderate compres-
sion ratios. Unlike previous approaches, our method offers
greater control over the output. This can be achieved by ei-
ther setting an error threshold to reach a desired quality or
by defining a fixed number of vertices to stay within limi-
tations like GPU memory. All things considered, we pre-
sented a versatile approach that allows balancing runtime
and quality and can be adjusted to the needs of almost any
photometric stereo pipeline.

As with all single-view reconstruction approaches, nor-
mal integration suffers from an inherent scale ambiguity for
the final geometry. Combining our approach with multi-
view reconstruction could overcome this limitation and is an
interesting direction for future research. Furthermore, our
method is currently designed for continuous surfaces. The
major challenge in introducing discontinuities into mesh-
based integration so far has been aligning edges with dis-
continuities. It seems that our alignment strategies to geo-
metric details are a stepping stone in this direction.

Acknowledgements The ”David Head” by 1d inc and the
”Football Medal2 - PhotoCatch” by Moshe Caine were li-
censed under CC BY 4.0. This work has been funded by
the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy,
EXC-2070 – 390732324 (PhenoRob).

8

References
[1] Pierre Alliez, Éric Colin de Verdière, Olivier Devillers, and

Martin Isenburg. Centroidal Voronoi diagrams for isotropic
surface remeshing. Graphical Models, 67(3):204–231, 2005.
2

[2] Xu Cao, Boxin Shi, Okura Fumio, and Yasuyuki Matsushita.
Normal Integration via Inverse Plane Fitting With Minimum
Point-to-Plane Distance. In Proc. of the IEEE/CVF Conf.
on Computer Vision and Pattern Recognition (CVPR), pages
2382–2391, 2021. 2, 6

[3] Xu Cao, Hiroaki Santo, Boxin Shi, Fumio Okura, and Ya-
suyuki Matsushita. Bilateral Normal Integration. In Euro-
pean Conference on Computer Vision, (ECCV), pages 552–
567. Springer Nature Switzerland, Cham, 2022. 2, 4

[4] Long Chen. Mesh Smoothing Schemes Based on Optimal
Delaunay Triangulations. In Proc. of International Meshing
Roundtable (IMR), pages 109–120. Citeseer, 2004. 2, 3, 4

[5] Zhonggui Chen, Juan Cao, and Wenping Wang. Isotropic
Surface Remeshing Using Constrained Centroidal Delaunay
Mesh. Computer Graphics Forum, 31(7):2077–2085, 2012.
2

[6] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal
Voronoi Tessellations: Applications and Algorithms. SIAM
Review, 41(4):637–676, 1999. 2

[7] Zhouyu Du, Antonio Robles-Kelly, and Fangfang Lu. Ro-
bust Surface Reconstruction from Gradient Field Using the
L1 Norm. In Conf. on Digital Image Computing Techniques
and Applications (DICTA 2007), pages 203–209, 2007. 1, 2

[8] Marion Dunyach, David Vanderhaeghe, Loı̈c Barthe, and
Mario Botsch. Adaptive remeshing for real-time mesh de-
formation. In Eurographics 2013 - Short Papers. The Euro-
graphics Association, 2013. 2

[9] Jean-Denis Durou and Frédéric Courteille. Integration of
a Normal Field without Boundary Condition. In Proc. of
the Workshop on Photometric Analysis For Computer Vision-
PACV 2007, pages 8–p. INRIA, 2007. 2

[10] Robert T. Frankot and Rama Chellappa. A method for en-
forcing integrability in shape from shading algorithms. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 10(4):
439–451, 1988. 6

[11] Michael Garland and Paul S. Heckbert. Surface simplifi-
cation using quadric error metrics. In 24th Annual Con-
ference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 209–216. ACM Press, 1997. 1, 2, 3, 5

[12] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3, 2010. 5
[13] Moritz Heep and Eduard Zell. ShadowPatch: Shadow Based

Segmentation for Reliable Depth Discontinuities in Photo-
metric Stereo. Computer Graphics Forum, 41(7):635–646,
2022. 2, 7

[14] Moritz Heep and Eduard Zell. An Adaptive Screen-Space
Meshing Approach for Normal Integration. In European
Conference on Computer Vision, (ECCV), pages 445–461,
Milan, Italy, 2025. Springer. 1, 2, 3, 4, 6, 7, 8

[15] Berthold Klaus Paul Horn. Shape from Shading: A Method
for Obtaining the Shape of a Smooth Opaque Object from
One View. PhD thesis, Massachusetts Institute of Technol-
ogy, Cambridge, 1970. 1

[16] Berthold Klaus Paul Horn and Michael J. Brooks. The vari-
ational approach to shape from shading. Computer Vision,
Graphics, and Image Processing, 33(2):174–208, 1986. 2

[17] Dawar Khan, Alexander Plopski, Yuichiro Fujimoto,
Masayuki Kanbara, Gul Jabeen, Yongjie Jessica Zhang, Xi-
aopeng Zhang, and Hirokazu Kato. Surface remeshing: A
systematic literature review of methods and research direc-
tions. IEEE Trans. on Visualization and Computer Graphics,
28(3):1680–1713, 2020. 2

[18] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Trans. on
Graphics, 39(6):1–14, 2020. 5

[19] Bruno Lévy and Nicolas Bonneel. Variational Anisotropic
Surface Meshing with Voronoi Parallel Linear Enumeration.
In Proc. of the International Meshing Roundtable (IMR),
pages 349–366. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013. 2

[20] Min Li, Zhenglong Zhou, Zhe Wu, Boxin Shi, Changyu
Diao, and Ping Tan. Multi-view photometric stereo: A ro-
bust solution and benchmark dataset for spatially varying
isotropic materials. IEEE Trans. on Image Processing, 29:
4159–4173, 2020. 6

[21] Peter Lindstrom and Greg Turk. Fast and memory efficient
polygonal simplification. In 9th IEEE Visualization Confer-
ence (VIZ), pages 279–286, 1998. 2

[22] Roberto Mecca, Fotios Logothetis, Ignas Budvytis, and
Roberto Cipolla. LUCES: A Dataset for Near-Field Point
Light Source Photometric Stereo. In 32nd British Machine
Vision Conference (BMVC), 2021. 6, 7

[23] Vincent Nivoliers, Bruno Lévy, and Christophe Geuzaine.
Anisotropic and feature sensitive triangular remeshing using
normal lifting. Journal of Computational and Applied Math-
ematics, 289:225–240, 2015. 2

[24] Ulrich Pinkall and Konrad Polthier. Computing discrete min-
imal surfaces and their conjugates. Experimental Mathemat-
ics, 2(1):15–36, 1993. 4

[25] Yvain Quéau, Jean-Denis Durou, and Jean-François Aujol.
Normal Integration: A Survey. Journal of Mathematical
Imaging and Vision, 60(4):576–593, 2018. 2, 4

[26] Daniel Sieger and Mario Botsch. The Polygon Mesh Pro-
cessing Library, 2023. https://github.com/pmp-library/pmp-
library. 5

[27] Corey Toler-Franklin, Adam Finkelstein, and Szymon
Rusinkiewicz. Illustration of complex real-world objects us-
ing images with normals. In Proc. of Int. Symposium on
Non-photorealistic Animation and Rendering NPAR, pages
111–119, San Diego California, 2007. ACM. 6

[28] P. Trettner and L. Kobbelt. Fast and Robust QEF Minimiza-
tion using Probabilistic Quadrics. Computer Graphics Fo-
rum, 39(2):325–334, 2020. 2

[29] Robert J. Woodham. Photometric method for determining
surface orientation from multiple images. Optical Engineer-
ing, 19(1):191139, 1980. 1

[30] Wuyuan Xie, Yunbo Zhang, Charlie CL Wang, and Ronald
C.-K. Chung. Surface-from-gradients: An approach based
on discrete geometry processing. In Proc. of the IEEE

9

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2195–2202, 2014. 2

[31] Wuyuan Xie, Chengkai Dai, and Charlie CL Wang. Photo-
metric stereo with near point lighting: A solution by mesh
deformation. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4585–4593,
2015. 2

[32] Wuyuan Xie, Miaohui Wang, Mingqiang Wei, Jianmin Jiang,
and Jing Qin. Surface Reconstruction from Normals: A Ro-
bust DGP-based Discontinuity Preservation Approach. In
Proc. of the IEEE/CVF Conf. on Computer Vision and Pat-
tern Recognition (CVPR), pages 5328–5336, 2019. 2

[33] Rui Xu, Longdu Liu, Ningna Wang, Shuangmin Chen,
Shiqing Xin, Xiaohu Guo, Zichun Zhong, Taku Komura,
Wenping Wang, and Changhe Tu. CWF: Consolidating
Weak Features in High-quality Mesh Simplification. ACM
Trans. on Graphics, 43(4):80:1–80:14, 2024. 2, 3

[34] Zichun Zhong, Xiaohu Guo, Wenping Wang, Bruno Lévy,
Feng Sun, Yang Liu, and Weihua Mao. Particle-based
anisotropic surface meshing. ACM Trans. on Graphics, 32
(4):99–1, 2013. 2

[35] Mingyuan Zhou, Yuqi Ding, Yu Ji, S. Susan Young, Jingyi
Yu, and Jinwei Ye. Shape and Reflectance Reconstruction
using Concentric Multi-Spectral Light Field. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 42(7):1594–
1605, 2020. 2

[36] Dizhong Zhu and William A. P. Smith. Least Squares Sur-
face Reconstruction on Arbitrary Domains. In European
Conference on Computer Vision, (ECCV), pages 530–545.
Springer International Publishing, Cham, 2020. 2

10

Feature-Preserving Mesh Decimation for Normal Integration
– Supplementary Material –

Moritz Heep
PhenoRob

University of Bonn
mheep@uni-bonn.de

Sven Behnke
Autonomous Intelligent Systems

University of Bonn
behnke@ais.uni-bonn.de

Eduard Zell

Independent Researcher

ezell@hotmail.de

Overview

This supplementary material, provides additional technical
details on the normal integration, the final algorithm and ad-
ditional evaluation results that have been removed from the
main document due to page constraints. For easier naviga-
tion and cross-referencing, we follow the section titles of
the submitted paper. For a quick overview, we briefly list
the content of the Appendix:

• Appendix A provides additional details on the integra-
tion, improving further the surface reconstruction accu-
racy compared to previous work[5].

• Appendix B describes additional details on the computa-
tion of quadrics and the linear system to solve.

• Appendix C provides additional comparisons to previous
work, quantitative analysis on the reconstruction accuracy
and qualitative examples.

• Appendix D is a list of all the datasets we used together
with the urls to find them.

Finally, we included samples of the reconstructed sur-
faces using our method (ours.obj) and using [5]
(adaptive.obj) for

• Michelangelo’s David (Fig. 1 of the manuscript) and
• all five objects in the DiLiGenT-MV [6] dataset (recon-

structed from the first view each).

These samples can be found in the respectives subdirecto-
ries of meshes/ of this supplementary material.

A reference implementation of our method is avail-
able under https://moritzheep.github.io/
anisotropic-screen-meshing.

A. Screen Space Mesh Decimation

In the following, we will provide more detail on our mesh-
based integration and the underlying sparse linear system,
that slightly differs from [5] but improves the reconstruction
accuracy even further.

A.1. Details on Mesh-Based Normal Integration

The unified functional for normal integration is

EInt =

∫

Ω

∥∥∥∥⟨n⃗, r⃗⟩ ·
(
∂uz
∂vz

)
+D ·

(
nx

ny

)∥∥∥∥
2

d2 u . (1)

with the respective choices for r⃗ and D depending on the
projection type – orthographic or perspective. In the case
of pixel-based integration, the partial derivatives are discre-
tised by using each pixel and its immediate neighbourhood.
In the case of mesh-based integration, the pixel neighbour-
hood is replaced by adjacent vertices.

Previous work [5] showed that the minimiser of EInt is
found by solving the sparse linear system

∑

w∈Vv

∑

f∈F(v,w)

ωf,vw · (mf · δzvw + ⟨⃗bf , δu⃗vw⟩) = 0 (2)

for each vertex v ∈ V . All vertices w that are connected
by an edge with vertex v have an impact on depth zv . We
denote these vertices by Vv . The faces adjacent to the edge
(v, w), denoted as Fu,v , define the strength of the influence
of w. The edge weights ωf,vw := cot(αf,vw) are given by
the cotangent of the angle in f that is opposite to (v, w).
The weights are identical to those of the Cotan-Laplacian
[8]. Together with the two parameters [5]

mf =

∫

f

⟨r⃗, n⃗⟩2 dΩ (3)

b⃗f = D ·
∫

f

⟨r⃗, n⃗⟩ ·
(
nx

ny

)
dΩ (4)

they ensure that the integration yields the same results for
different triangulations. Previously, these parameters have
been calculated by assuming a constant face normal n⃗f . In
contrast, we found that

mf =
1

|Pf |
∑

p∈Pf

⟨r⃗p, n⃗p⟩2 (5)

b⃗f =
D

|Pf |
⟨r⃗p, n⃗p⟩ ·

(
nx

ny

)

p

(6)

1

Our Decimation,
[1] Isotropic [5] [5]’s Integration Ours

Dataset Ref low mid high low mid high low mid high

O
rt

ho
gr

ap
hi

c Bear 2.97 3.95 3.65 3.37 3.67 3.33 3.19 3.84 3.38 3.04
Buddha 6.74 7.74 7.54 7.33 7.30 7.10 7.08 6.86 6.68 6.61
Cow 2.45 3.42 3.12 2.96 3.23 3.00 2.86 3.07 2.85 2.74
Pot2 5.15 5.89 5.77 5.65 5.72 5.59 5.48 5.63 5.47 5.29
Reading 6.34 7.08 6.93 6.83 6.88 6.76 6.64 6.82 6.67 6.50

Pe
rs

pe
ct

iv
e Bear 2.91 3.94 3.72 3.47 3.64 3.48 3.33 3.69 3.22 2.90

Buddha 6.75 7.74 7.53 7.40 7.31 7.13 7.09 6.83 6.68 6.62
Cow 2.35 3.49 3.24 3.07 3.29 3.09 2.99 2.97 2.77 2.63
Pot2 4.99 6.04 5.86 5.76 5.81 5.69 5.61 5.48 5.32 5.16
Reading 6.28 7.19 6.94 6.85 6.91 6.77 6.69 6.74 6.52 6.45

Table 1. Comparison of the average RMSE over all 20 views of DiLiGenT-MV: Isotropic remeshing and integration from [5], our deci-
mation combined with the integrator of [5] and our decimation with our integrator. Our finer approximation of the integration parameters
yields to a tighter approximation of the underlying surface.

is a tighter approximation that considers variations of the
normals within the faces and yields more accurate surface
integrations, see Tab. 1.

B. Algorithm
In this section, we want to express the quadrics in a more
familiar form of a quadratic function and derive the linear
system to solve during vertex alignment.

B.1. Explicit Form of the Quadrics

In Eq. (9) of the main paper, we defined the quadric for the
continuous case as follows:

Qv(δx⃗v) :=
∑

f∈Fv

∫

f

∥Jf (u⃗v − u⃗) + δx⃗v∥2M(x⃗) dΩ , (7)

where both energy terms can be unified into one term by the
norm induced by

M(x⃗) = n⃗(x⃗) · n⃗(x⃗)t + λ · 1 , (8)

cf . Eq. (13) of the main work. To obtain the known form of
a quadratic problem,

Qv(δx⃗v) = ⟨δx⃗v, Avδx⃗v⟩ − 2⟨⃗bv, δx⃗v⟩+ cv (9)

we have to apply the binomial formula to the integrand and
rearrange the addends. In the end, we get

Av =
∑

f∈Fv

∫

f

M(x⃗) dΩ (10)

for the quadratic part,

b⃗v =
∑

f∈Fv

∫

f

M(x⃗) · Jf (u⃗v − u⃗) dΩ

for the linear part and

cv =
∑

f∈Fv

∫

f

∥Jf (u⃗v − u⃗)∥M(x⃗) dΩ (11)

for the constant part.
In the discretised version (Eq. 12 of the main document),

we replace the integral by a sum:

Qv(δx⃗) =
∑

f∈Fv

A
(3)
f

|Pf |
∑

p∈Pf

∥Jfδu⃗vp + δx⃗∥2Mp
. (12)

Similarly, the integral is replaced by a sum in the coeffi-
cients of the linear system:

Av =
∑

f∈Fv

A
(3)
f

|Pf |
Mp , (13)

b⃗f =
∑

f∈Fv

A
(3)
f

|Pf |
·Mp · Jf (u⃗v − u⃗) , (14)

cf =
∑

f∈Fv

A
(3)
f

|Pf |
∥Jf (u⃗v − u⃗)∥Mp

, (15)

where Mp = n⃗p · n⃗t
p+λ1 from the pixel normals n⃗p. How-

ever, when solving for the optimal vertex positions, we con-
sider the following quadric:

Q̃v(δu⃗v) := Qv(Jf · δx⃗v) (16)

which is now in R2 since Jf : R2 → R3. Hence, we must
replace δx⃗ 7→ Jf ·δx⃗v in Eq. (9). As a result, the coefficients

2

of this quadratic function are:

Ãv = J t
fAvJf , (17)

˜⃗
bf = J t

f b⃗v , (18)

c̃v = cv . (19)

To find the final displacement δu⃗v that moves vertex v into
its optimal position, we solve

Ãvδu⃗ =
˜⃗
bv . (20)

By doing so, we neglect the influence of a vertex displace-
ment on the adjacent vertices and their quadrics, which is a
common approximation in mesh-processing [2, 10].

C. Evaluation
In this section, we provide additional benchmark results and
insights on how the compression ratio and reconstruction
error depend on the user-set decimation threshold. Further
error maps are found in Appendix C.3. We also discuss two
interesting outliers: One, where our anisotropic decimation
method is more accurate than the pixel-based reference and
one, where a higher decimation threshold, i.e. lower res-
olution mesh, surpasses higher resolutions. At the end of
this section, we depict reconstructions of all objects of the
LUCES [7], RGBN [9] and PS [3] dataset for various val-
ues of the decimation threshold and report vertex count and
compression ratios.

C.1. Benchmark Comparison

To evaluate our method against previous work on mesh-
based integration [5], we listed only the orthographic pro-
jection for the DiLiGenT-MV dataset [6] in the main doc-
ument. We complement this comparison with the results
of the perspective projection in Tab. 1. Furthermore, we
perform the same evaluation on the LUCES dataset [7], but
only for the perspective projection. Since this dataset is ded-
icated to near-field photometric stereo, i.e. objects are very
close to the camera, the orthographic projection is an un-
suitable approximation. As in previous tests, we match the
vertex count to the low, mid and high settings of previous
work [5]. Results are listed in Tab. 2. Again, our method
generates tighter approximations of the underlying surface.

C.1.1 Inspecting the Buddha Results in DiLiGenT-MV

We noticed that our decimation-based method at the ’high’
accuracy setting outperforms the pixel-based baseline in the
case of the BUDDHA figurine in the DiLiGenT-MV dataset.
This is surprising as our method uses fewer vertices than
the pixel-based method. To investigate the origin of this re-
sult, we examined the differences in each view. Figure 1

Pixel-Based

5.17mm

Ours

4.72mm

0

2

4

6

8

10

Er
ro

r [
m

m
]

0 25 50 75 100 125
x [px]

1530

1540

1550

1560

De
pt

h
[m

m
] Pixel-Based

Ours
GT

Figure 1. Top: Error map and RMSE for pixel-based [1] (left) and
our (right) integration. Bottom: Slice of the aligned depth maps
(along the red line indicated above).

illustrates the error map for the tenth view. While our deci-
mation is generally lossy – except for perfectly flat regions –
discontinuities and highly slanted (near-discontinuous) sur-
faces are problematic and error prone regions for normal in-
tegration. For the Buddha statue, such surfaces are present
around the base and the lower part of the garment. It seems
that our method performs slightly better in these situations.
We believe this is due to differences between our integrator
and the integrator in [1]. In [1] all normals are weighted
equally while our method compensates for foreshortening
assigning a higher weight to normals in slanted regions, as
their real surface is bigger than it appears in screen space.

C.1.2 Inspecting the Buddha Results in LUCES

The BUDDHA figurine in the LUCES dataset shows an atyp-
ical behaviour: Lower mesh resolutions yield a better sur-
face approximation. This inverted connection between res-
olution and reconstruction quality is also present for the pre-
vious isotropic normal integration [5], cf . Tab. 2. A visual
inspection revealed that the normal integration places the
Buddha’s face too far in the front compared to the figurine’s
base, see Fig. 2. This is true for both pixel- and mesh-based
integration. At lower mesh resolutions, there are more pix-

3

[1] Isotropic [5] Ours

Dataset Ref low mid high low mid high

BALL 0.40 0.56 0.48 0.47 0.54 0.51 0.49
BELL 0.30 0.82 0.62 0.54 0.54 0.51 0.47
BOWL 0.08 0.35 0.22 0.15 0.15 0.14 0.12
BUDDHA 3.46 3.59 3.68 3.73 3.46 3.55 3.56
BUNNY 3.38 4.03 3.93 3.83 3.90 3.80 3.74
CUP 0.01 0.36 0.20 0.08 0.06 0.03 0.02
DIE 1.62 2.98 2.67 2.46 2.83 2.57 2.63
HIPPO 2.73 3.13 2.96 2.91 3.04 2.88 2.86
HOUSE 11.08 11.08 11.30 11.35 11.38 11.49 11.32
JAR 0.50 0.55 0.46 0.43 0.43 0.43 0.43
OWL 4.89 6.22 5.86 5.69 6.00 5.47 5.34
QUEEN 3.74 5.17 4.43 4.30 5.05 4.08 3.98
SQUIRREL 1.91 2.87 2.47 2.34 2.62 2.15 2.03
TOOL 0.91 1.04 0.96 0.93 0.91 0.90 0.90

Table 2. RMSE in mm for all objects of the LUCES dataset using the perspective projection. The vertex count is given by the respective
low, mid and high settings of [5] and matched by our decimation pipeline.

Figure 2. Side profiles of the BUDDHA figurine in LUCES [7].
Left: Our decimation with thresholds 2048 (green), 64 (yellow)
and 2 (blue). Right: Pixel-based integration [4] with ground-truth
normals (red) and smoothed normals (purple). All examples were
aligned to the ground-truth surface (grey) at the base of the fig-
urine.

els per triangle which implicitly smoothens the surface nor-
mals and flattens the integrated surface. This flattening co-
incidentally reduces the constant offset to the ground-truth
surface. This hypothesis is supported by the fact that we can
recreate this behaviour in pixel-based integration by apply-
ing a Gaussian kernel to the normal map, see Fig. 2.

C.2. Controllability

In the main paper, we studied the controllability using the
LUCES [7] dataset. For completeness, we list all results in
Tab. 3. For a more extensive study of the influence of the
decimation threshold on the final mesh quality, we tested all
normal maps of the DiLiGenT-MV dataset [6] for thresh-
old values ranging from 0.25 to 512 and evaluated both
root mean square error (RMSE) and mean absolute devi-
ation (MADE) – both after the appropriate rigid-alignment
to absolve the scale ambiguity – as well as mean angular
error (MAE) and vertex count. The results are depicted in
Fig. 3. As expected, there is virtually no difference between
the results for orthographic and perspective projection. All
objects are far away from the camera, i.e. the orthographic
projection is a good approximation of the true perspective
projection. The compression ratios reflect how our algo-
rithm adapts to the complexity of the datasets: The BEAR
and COW mostly consist of smooth featureless surfaces and
achieve higher compression ratios than the more complex
BUDDHA dataset, especially for lower thresholds.

4

85

90

95

100
C
o
m

p
re

ss
io

n
 [

%
]

Projection
Orthographic
Perspective

Dataset
Bear
Buddha
Cow
Pot2
Reading

3

4

5

6

7

8

R
M

S
E
 [

m
m

]

2

3

4

5

6

M
A
D

E
 [

m
m

]
100 101 102

Decimation Threshold

5

10

15

20

M
A
E
 [

°]
100 101 102

Decimation Threshold

Figure 3. Influence of the decimation threshold on compression ratio, RMSE, MADE and MAE. All numbers are averages over the 20
views for each object. We investigate both orthographic and perspective projection. Please note the logarithmic x-axis.

Dataset Ref Threshold

[4] 2 26 211

BALL 0.40 0.48 0.54 0.60
BELL 0.30 0.33 0.49 0.72
BOWL 0.08 0.10 0.13 0.17
BUDDHA 3.46 3.58 3.51 3.32
BUNNY 3.38 3.67 3.83 4.15
CUP 0.01 0.01 0.04 0.14
DIE 1.62 1.65 2.11 3.09
HIPPO 2.73 2.85 2.91 3.09
HOUSE 11.08 11.30 11.56 11.39
JAR 0.50 0.45 0.45 0.46
OWL 4.89 5.41 5.63 5.94
QUEEN 3.74 4.02 4.41 4.98
SQUIRREL 1.91 2.07 2.37 3.00
TOOL 0.91 0.98 0.98 1.04

Table 3. RMSE in mm for all of the objects in LUCES [7] with
increasing decimation threshold. The chosen thresholds should
lead to a constant reduction rate of the RMSE.

5

C.3. Error Maps for the Benchmark Comparisons

LUCES Dataset (1 of 3)
BALL

0.56mm

low

Iso
tro

pi
c

0.48mm

mid

0.47mm

high

0.54mm

Ou
rs

0.51mm 0.49mm

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r [
m

m
]

BELL

0.82mm

low

Iso
tro

pi
c

0.62mm

mid

0.54mm

high

0.54mm

Ou
rs

0.51mm 0.47mm

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r [
m

m
]

BOWL

0.35mm

low

Iso
tro

pi
c

0.22mm

mid

0.15mm

high

0.15mm

Ou
rs

0.14mm 0.12mm
0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r [
m

m
]

BUDDHA

3.59mm

low
Iso

tro
pi

c

3.68mm

mid

3.73mm

high

3.46mm

Ou
rs

3.55mm 3.56mm

0

1

2

3

4

5

6

7

Er
ro

r [
m

m
]

Figure 4. Error maps of the LUCES dataset after rigid alignment. We show results for all three quality settings in [5] and match the
respective vertex number for our method. Pictured are the results of the perspective projection.

6

LUCES Dataset (2 of 3)

BUNNY

4.03mm

low

Iso
tro

pi
c

3.93mm

mid

3.83mm

high

3.90mm

Ou
rs

3.80mm 3.74mm

0

1

2

3

4

5

6

7

8

Er
ro

r [
m

m
]

CUP

0.36mm

low

Iso
tro

pi
c

0.20mm

mid

0.08mm

high

0.06mm

Ou
rs

0.03mm 0.02mm

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r [
m

m
]

DIE

2.98mm

low

Iso
tro

pi
c

2.67mm

mid

2.46mm

high

2.83mm

Ou
rs

2.57mm 2.63mm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Er
ro

r [
m

m
]

HIPPO

3.13mm

low

Iso
tro

pi
c

2.96mm

mid

2.91mm

high

3.04mm

Ou
rs

2.88mm 2.86mm
0

1

2

3

4

5

Er
ro

r [
m

m
]

HOUSE

11.08mm

low

Iso
tro

pi
c

11.30mm

mid

11.35mm

high

11.38mm

Ou
rs

11.49mm 11.32mm

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r [
m

m
]

JAR

0.55mm

low

Iso
tro

pi
c

0.46mm

mid

0.43mm

high

0.43mm

Ou
rs

0.43mm 0.43mm

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r [
m

m
]

Figure 5. Error maps of the LUCES dataset after rigid alignment. We show results for all three quality settings in [5] and match the
respective vertex number for our method. Pictured are the results of the perspective projection.

7

LUCES Dataset (3 of 3)

OWL

6.22mm

low

Iso
tro

pi
c

5.86mm

mid

5.69mm

high

6.00mm

Ou
rs

5.47mm 5.34mm
0

2

4

6

8

10

Er
ro

r [
m

m
]

QUEEN

5.17mm

low

Iso
tro

pi
c

4.43mm

mid

4.30mm

high

5.05mm

Ou
rs

4.08mm 3.98mm

0

2

4

6

8

10

Er
ro

r [
m

m
]

SQUIRREL

2.87mm

low

Iso
tro

pi
c

2.47mm

mid

2.34mm

high

2.62mm

Ou
rs

2.15mm 2.03mm

0

1

2

3

4

5

Er
ro

r [
m

m
]

TOOL

1.04mm

low

Iso
tro

pi
c

0.96mm

mid

0.93mm

high

0.91mm

Ou
rs

0.90mm 0.90mm

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r [
m

m
]

Figure 6. Error maps of the LUCES dataset after rigid alignment. We show results for all three quality settings in [5] and match the
respective vertex number for our method. Pictured are the results of the perspective projection.

8

DiLiGenT-MV Dataset
BEAR

2.29mm

low

Iso
tro

pi
c

1.89mm

mid

1.49mm

high

2.49mm

Ou
rs

1.90mm 1.03mm

0

1

2

3

4

5

Er
ro

r [
m

m
]

BUDDHA

5.30mm

low

Iso
tro

pi
c

5.19mm

mid

5.01mm

high

5.39mm

Ou
rs

5.00mm 4.84mm

0

2

4

6

8

10

Er
ro

r [
m

m
]

COW

2.36mm

low

Iso
tro

pi
c

1.65mm

mid

1.46mm

high

2.04mm

Ou
rs

1.76mm 1.52mm

0

1

2

3

4

5

Er
ro

r [
m

m
]

POT2

1.68mm

low

Iso
tro

pi
c

1.61mm

mid

1.54mm

high

1.79mm

Ou
rs

1.41mm 1.20mm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Er
ro

r [
m

m
]

READING

9.89mm

low

Iso
tro

pi
c

9.46mm

mid

9.27mm

high

9.48mm

Ou
rs

9.05mm 8.40mm

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r [
m

m
]

Figure 7. Error map for the first view in the DiLiGenT-MV dataset after rigid alignment. We show results for all three quality settings in
[5] and match the respective vertex number for our method. Pictured are the results of the orthographic projection.

9

C.4. Additional Datasets

Finally, we show reconstructions from all the datasets we used. Except for LUCES [7], these datasets come without ground-
truth geometry. The RMSEs for all objects in LUCES were reported in Tab. 3 which complements Tab. 2 from the submitted
manuscript. For visual inspection, all objects can be found in Fig. 8 to Fig. 14. We also indicate the vertex count and
compression ratio to put the results into perspective.

LUCES Dataset (1 of 3)
BALL BELL BOWL BUDDHA BUNNY

H
IG

H
-R

E
S

29693 (96.8%) 21856 (98.3%) 17710 (98.3%) 29142 (96.7%) 16308 (97.8%)

5849 (99.4%) 4089 (99.7%) 3248 (99.7%) 5881 (99.3%) 3206 (99.6%)

L
O

W
-R

E
S

1199 (99.9%) 799 (99.9%) 634 (99.9%) 1175 (99.9%) 664 (99.9%)

Figure 8. Reconstruction results for the LUCES dataset [7] for decimation thresholds of 2, 64 and 2048. These reconstructions correspond
to the numbers reported in Tab. 2 of the manuscript. Any holes in the mesh surface are part of the provided foreground mask.

10

LUCES Dataset (2 of 3)
CUP DIE HIPPO HOUSE JAR

H
IG

H
-R

E
S

7268 (98.8%) 19391 (97.8%) 15951 (97.9%) 68216 (95.0%) 28761 (97.9%)

1426 (99.8%) 3472 (99.6%) 3110 (99.6%) 13520 (99.0%) 5180 (99.6%)

L
O

W
-R

E
S

343 (99.9%) 692 (99.9%) 631 (99.9%) 3043 (99.8%) 957 (99.9%)

Figure 9. Reconstruction results for the LUCES dataset [7] for decimation thresholds of 2, 64 and 2048. These reconstructions correspond
to the numbers reported in Tab. 2 of the main paper. Any holes in the mesh surface are part of the provided foreground mask.

11

LUCES Dataset (3 of 3)

OWL QUEEN SQUIRREL TOOL
H

IG
H

-R
E

S

25233 (96.3%) 24315 (96.7%) 25777 (97.3%) 7391 (97.9%)

5019 (99.3%) 4954 (99.3%) 4941 (99.5%) 1559 (99.6%)

L
O

W
-R

E
S

1071 (99.8%) 1081 (99.9%) 997 (99.9%) 344 (99.9%)

Figure 10. Reconstruction results for the LUCES dataset [7] for decimation thresholds of 2, 64 and 2048. These reconstructions correspond
to the numbers reported in Tab. 2 of the main paper. Any holes in the mesh surface are part of the provided foreground mask.

12

RGBN Dataset (1 of 2)
High-Res Low-Res

CHARD

28812 (98.4%) 20816 (98.9%) 15088 (99.2%) 10906 (99.4%)

CHARD2

59857 (98.2%) 43442 (98.7%) 31312 (99.1%) 22710 (99.3%)

FOOD

35258 (99.2%) 25215 (99.4%) 18070 (99.6%) 12965 (99.7%)

LEAVES

29163 (98.3%) 21159 (98.8%) 15387 (99.1%) 11076 (99.4%)

SHELL

21961 (99.1%) 15796 (99.3%) 11296 (99.5%) 8083 (99.7%)

Figure 11. Reconstruction results for the RGBN dataset [9] for decimation thresholds of 8, 16, 32 and 64.

13

RGBN Dataset (2 of 2)
High-Res Low-Res

PINECONE3

39834 (98.1%) 28919 (98.6%) 20951 (99.0%) 15176 (99.3%)

SOLDIER

49992 (98.5%) 36122 (98.9%) 26075 (99.2%) 18788 (99.4%)

Figure 12. Reconstruction results for the RGBN dataset [9] for decimation thresholds of 8, 16, 32 and 64. Objects were rotated to the
upright position.

14

PS Dataset (1 of 2)
High-Res Low-Res

CAT

14518 (91.5%) 5445 (96.8%) 1983 (98.8%) 754 (99.6%)

FROG

16492 (92.2%) 6155 (97.1%) 2275 (98.9%) 844 (99.6%)

HIPPO

15497 (91.7%) 5651 (97.0%) 2086 (98.9%) 757 (99.6%)

Figure 13. Reconstruction results for the PS dataset [3] with decimation thresholds of 0.125, 1, 8 and 64. The decimation threshold
increases from left to right, i.e. mesh resolution decreases from left to right.

15

PS Dataset (2 of 2)
High-Res Low-Res

LIZARD

14655 (92.0%) 5476 (97.0%) 1987 (98.9%) 742 (99.6%)

PIG

15934 (93.0%) 5994 (97.4%) 2188 (99.0%) 827 (99.6%)

SCHOLAR

64685 (89.3%) 24678 (95.9%) 9204 (98.5%) 3425 (99.4%)

TURTLE

16850 (91.7%) 6236 (96.9%) 2286 (98.9%) 865 (99.6%)

Figure 14. Reconstruction results for the PS dataset [3] with decimation thresholds of 0.125, 1, 8 and 64. The decimation threshold
increases from left to right, i.e. mesh resolution decreases from left to right.

16

D. Overview of all Datasets
In this work, we used the following photometric stereo datasets:
• DiLiGenT-MV [6]: https://sites.google.com/site/photometricstereodata/mv
• LUCES [7]: http://www.robertomecca.com/luces.html
• RGBN [9]: https://gfx.cs.princeton.edu/gfx/proj/rgbn/
• PS Dataset [3]: https://vision.seas.harvard.edu/qsfs/Data.html
Furthermore, we generated synthetic datasets using the following 3D models:
• David Head [1d inc]: https://sketchfab.com/models/39a4d01bef37495cac8d8f0009728871/
• Football Medal 2 [Cain]: https://sketchfab.com/models/54d54534f11d4d23aecb945fd7eb1df4/
• Female Head: https://www.3dscanstore.com/3d-head-models/raw-expression-bundles/
female-02-x36-expression-bundle

• Male Head: https://www.3dscanstore.com/3d-head-models/raw-expression-bundles/male-
01-36x-expression-scan-bundle

17

References
[1] Xu Cao, Boxin Shi, Okura Fumio, and Yasuyuki Matsushita.

Normal Integration via Inverse Plane Fitting With Minimum
Point-to-Plane Distance. In Proc. of the IEEE/CVF Conf.
on Computer Vision and Pattern Recognition (CVPR), pages
2382–2391, 2021.

[2] Long Chen. Mesh Smoothing Schemes Based on Optimal
Delaunay Triangulations. In Proc. of International Meshing
Roundtable (IMR), pages 109–120. Citeseer, 2004.

[3] Robert T. Frankot and Rama Chellappa. A method for en-
forcing integrability in shape from shading algorithms. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 10(4):
439–451, 1988.

[4] Moritz Heep and Eduard Zell. ShadowPatch: Shadow Based
Segmentation for Reliable Depth Discontinuities in Photo-
metric Stereo. Computer Graphics Forum, 41(7):635–646,
2022.

[5] Moritz Heep and Eduard Zell. An Adaptive Screen-Space
Meshing Approach for Normal Integration. In European
Conference on Computer Vision, (ECCV), pages 445–461,
Milan, Italy, 2025. Springer.

[6] Min Li, Zhenglong Zhou, Zhe Wu, Boxin Shi, Changyu
Diao, and Ping Tan. Multi-view photometric stereo: A ro-
bust solution and benchmark dataset for spatially varying
isotropic materials. IEEE Trans. on Image Processing, 29:
4159–4173, 2020.

[7] Roberto Mecca, Fotios Logothetis, Ignas Budvytis, and
Roberto Cipolla. LUCES: A Dataset for Near-Field Point
Light Source Photometric Stereo. In 32nd British Machine
Vision Conference (BMVC), 2021.

[8] Ulrich Pinkall and Konrad Polthier. Computing discrete min-
imal surfaces and their conjugates. Experimental Mathemat-
ics, 2(1):15–36, 1993.

[9] Corey Toler-Franklin, Adam Finkelstein, and Szymon
Rusinkiewicz. Illustration of complex real-world objects us-
ing images with normals. In Proc. of Int. Symposium on
Non-photorealistic Animation and Rendering NPAR, pages
111–119, San Diego California, 2007. ACM.

[10] Rui Xu, Longdu Liu, Ningna Wang, Shuangmin Chen,
Shiqing Xin, Xiaohu Guo, Zichun Zhong, Taku Komura,
Wenping Wang, and Changhe Tu. CWF: Consolidating
Weak Features in High-quality Mesh Simplification. ACM
Trans. on Graphics, 43(4):80:1–80:14, 2024.

18

