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Abstract

The task of face reenactment is to transfer the head mo-
tion and facial expressions from a driving video to the ap-
pearance of a source image, which may be of a different per-
son (cross-reenactment). Most existing methods are CNN-
based and estimate optical flow from the source image to the
current driving frame, which is then inpainted and refined to
produce the output animation. We propose a transformer-
based encoder for computing a set-latent representation of
the source image(s). We then predict the output color of
a query pixel using a transformer-based decoder, which
is conditioned with keypoints and a facial expression vec-
tor extracted from the driving frame. Latent representa-
tions of the source person are learned in a self-supervised
manner that factorize their appearance, head pose, and fa-
cial expressions. Thus, they are perfectly suited for cross-
reenactment. In contrast to most related work, our method
naturally extends to multiple source images and can thus
adapt to person-specific facial dynamics. We also propose
data augmentation and regularization schemes that are nec-
essary to prevent overfitting and support generalizability of
the learned representations. We evaluated our approach in
a randomized user study. The results indicate superior per-
formance compared to the state-of-the-art in terms of mo-
tion transfer quality and temporal consistency.1

1. Introduction
Face reenactment is a special case of the motion transfer
task [38, 39]. Its objective is to synthesize a realistic facial
animation combining the appearance given by one or more
images of a source person and the facial expression and
head motion of a driving video, which may be of a different
person. The driving frame is used to transform the source
image to the desired expression and head pose. When the
driving video is of the same person (self-reenactment), ap-
plications include, e.g., low-bandwidth video conferencing.

1Code & Video: https://andrerochow.github.io/fsrt
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Figure 1. Overview of our method (relative motion transfer). The
source image(s) are encoded along with keypoints kS , capturing
head pose, and facial expression vectors eS to a set-latent repre-
sentation of the source person. The decoder attends this represen-
tation for a query pixel, conditioned on keypoints kD and a facial
expression vector eD extracted from the driving frame. ⊕ denotes
pixel-wise concatenation. Images from the VoxCeleb test set [27].

The more interesting and challenging case is when the driv-
ing video is of a different person (cross-reenactment) since,
if successful, only one or few images of the source person
are required to create a realistic facial animation.

Most face reenactment methods are CNN-based [10, 11,
11, 13, 38, 39, 48, 49, 53, 56–58]; and many of these uti-
lize optical flow between the source and driving frames
for morphing the source image, followed by a refinement
stage [11, 38, 39, 49, 57].

Inspired by recent successes in scene reconstruction [35,
36], we apply a transformer-based architecture to face reen-
actment that encodes the face of the source person as a set
of latent vectors (see Fig. 1). This representation is learned
in a self-supervised way. We then sample each target pixel
location with a transformer-based decoder conditioned on
keypoints and an expression vector that are extracted from
the driving frame. The learned set-latent representation of
the source person factorizes their head pose, appearance,
and facial expression, which enables accurate head motion

https://andrerochow.github.io/fsrt
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and facial expression transfer, also for cross-reenactment.
While our method yields state-of-the-art results in ab-

solute motion transfer (i.e., when the driving keypoints are
used unmodified), it especially increases robustness in the
case of relative motion transfer [38], a mode which reduces
unwanted leaking of face shape from the driving frame.
Relative motion transfer is initialized by finding a source
and driving frame with well-matched head poses and ex-
pressions and then operates by applying motions to the
source frame in relative fashion.

Many methods encode facial expression by keypoints,
which are augmented with local spatial transformations [11,
38, 57]. Here, relative motion is encoded as relative trans-
forms from the initial driving frame and is applied in the
source frame. Of course, this is highly sensitive to the ini-
tialization. By decoupling head pose from expression and
describing expression in an absolute manner, our approach
reduces the influence of initialization on expression transfer.

Finally, we note that our approach makes few assump-
tions since there is no explicit model of motion or cor-
respondence. Instead, the set-latent representation of the
source person is learned in a self-supervised way using con-
ditioning with keypoints and a facial expression vector from
the source on the encoder and from the driving frame on the
decoder, respectively.
In summary, our contributions include:
1. A novel transformer-based architecture for face reenact-

ment which learns a global set-latent representation of
source images and allows rendering conditioned on key-
points and expression vectors,

2. a latent expression description invariant to appearance,
head shape, and head pose, greatly improving cross-
reenactment,

3. augmentation and regularization methods for training
that support the separation of facial expression informa-
tion (expression vector), appearance (set-latent represen-
tation), and head pose (keypoints) without overfitting,

4. application of adversarial and perceptual losses to scene
representation transformers, which greatly improves re-
alism and sharpness,

5. a detailed evaluation, where we outperform state-of-the-
art in motion transfer quality and temporal consistency,
including a user study which also shows superiority in
subjective preference trials.

2. Related Work
Face Image Synthesis. Face image synthesis deals with
the generation of new non-existing faces [12] even from
text input [14, 22], completion of missing facial regions of
known faces [21, 61], or manipulation of expression and ap-
pearance of known faces in manual [14, 16, 19] or automatic
manner [4, 6, 30, 37].

In contrast to these methods, our approach combines the

continuously changing head pose and expression from the
driving video with the appearance of the source, so that a
natural and temporally consistent video stream is produced.

Talking Head Synthesis and Face Reenactment. Talk-
ing Head Synthesis aims to make head poses, emotions,
and especially speech controllable. Here, lip movement is
mainly reconstructed from audio [25, 32, 44–47, 53, 55,
59, 60]. Closely related, face reenactment [41], which is
a motion transfer task, aims to apply the motion given by a
driving frame to the appearance defined by a source image.
An even more challenging problem is VR facial animation,
where the driving face is additionally occluded by a head-
mounted display (HMD) [24, 31, 33, 34, 42, 52]. Here, es-
pecially the alignment problem between facial images and
mouth camera images makes it difficult to generate training
data.

Generally, there are different types of driving informa-
tion being used. Where some methods only utilize facial
keypoints [13, 39, 48, 56, 58], other methods additionally
use image features from a driving frame [10, 11, 38, 40, 49,
57]. Also, audio can be used if available [1].

Some methods [13, 58] utilize external 3D keypoints ex-
traction [3] for face reenactment. Hsu et al. [13] use a sep-
arate generator to predict more accurate driving keypoints,
given initial keypoints and a source image. Siarohin et al.
[39] learn keypoints self-supervised and use them to pre-
dict a deformation grid of the source image into the driv-
ing keypoints. To resolve keypoint ambiguities, Siarohin
et al. [38] estimate local affine transformations into a canon-
ical space for each keypoint area. This allows far more fa-
cial expressions to be represented. Based on [38], Hong
et al. [11] learn depth maps, which they use to predict more
accurate keypoints and dense depth-aware attention maps,
which can attend to important semantic facial areas. Zhao
and Zhang [57] use a motion estimation based on thin-plate
spline transformations to produce a more flexible optical
flow. They use multi-resolution depth maps and occlusion
masks to inpaint missing regions more realistically.

However, driving motion does not necessarily has to be
described by keypoints [29, 40, 41, 53]. Wiles et al. [53]
directly predict the sampling coordinates to a canonical em-
bedding of a face. A separate driving network then predicts
the mapping from the embedded face to the driving frame.
Siarohin et al. [40] bypass the keypoint estimation step from
predicted heatmaps and consider them as regions. They es-
timate the principal components of the region to predict an
in-plane rotation and scaling, which is used to estimate a
more accurate pixel-wise optical flow. Pang et al. [29] learn
a disentanglement of pose and expression, so that different
driving sources can be used. Very recently, Li et al. [20]
learned to embed a source image into a canonical volume
and predict the deformation of individual sampled rays to
estimate the optical flow.



Wang et al. [50] and Gong et al. [8] replace the motion
network proposed by Siarohin et al. [39] with custom mod-
ules (Linear Motion Decomposition and a transformer mod-
ule enabling domain switching, respectively), but remain
fundamentally based on CNNs (in encoder and decoder)
and a warp-and-refine architecture.

Unlike related methods, we use a transformer-style ar-
chitecture to predict a latent scene representation of the
source images and learn expression vectors which are de-
coupled from appearance and head pose information. In-
stead of modeling optical flow and motion explicitly, we
learn to attend the latent scene representation, with key-
points and latent expression vectors extracted from a driving
frame. This allows us to generate results of higher accuracy,
while significantly improving the temporal consistency.

Scene Representation Transformers. While transform-
ers [43] were originally developed for natural language pro-
cessing, vision transformers have also been highly success-
ful [7, 23]. Recently, Sajjadi et al. [35] proposed Scene Rep-
resentation Transformers (SRT) to learn an internal scene
representation encoded in a set of latents vectors. Given
these latent vectors and a camera pose, SRT allow novel-
view rendering without explicitly modeling the scene ge-
ometry. Based on this, Sajjadi et al. [36] propose a slot
attention module to instead predict an object-centric slot
scene representation, in which different objects are sepa-
rated without any supervision.

In this work, we reformulate SRT [35] for the face reen-
actment task and demonstrate how to efficiently model and
query dynamics in the learned face representation. Unlike
[35], we aim to reconstruct photorealistic faces. To this end,
we propose training with perceptual [17] and adversarial
losses [9], which significantly improves the output quality.

3. Method

The SRT architecture [35] encodes one or more posed im-
ages to an internal representation and reconstructs views
from arbitrary viewpoints. We adapt the architecture and the
input representation in such a way that we learn an internal
representation from one or more unposed facial images. Re-
construction then allows free choice of head pose and facial
expression. Given a set-latent representation of an encoded
face, head pose and facial expression can be controlled by
ten keypoints and a latent expression vector. Abstractly, the
internal representation can also be understood as an embed-
ding that separates the appearance of a person from the head
pose and expression.

Given an input representation {RSi} (see Sec. 3.1), the
transformer encoder E (Fig. 2 and Sec. 3.1) produces a set-
latent scene representation

{zz ∈ Rd} = E(CNN({RSi
})), (1)

where CNN (Sec. 3.1) is a convolutional feature extractor
backbone (shared in case of multiple input images), as pro-
posed by [35]. Given this set-latent representation and the
query QID (q) (see Sec. 3.1), the transformer decoder D pre-
dicts the pixel color

C(q) = D(QID (q) | {zz}). (2)

Our full architecture is visualized in Fig. 2.

3.1. Input and Query Representation

Given are one more facial source images ISi
. We encode

each image through ten keypoints kSi
, computed by a key-

point detector, and a latent expression vector eSi
which we

learn in self-supervised manner. The keypoints are normal-
ized to (−1, 1) and positionally encoded [26]

f(p, sO, O) =

sO+O−1⊕
m=sO

sin(2mπp)⊕ cos(2mπp) (3)

to obtain

γkey(kSi) =

nK⊕
j=0

f
(
k
(j)
Si

, sOkey , Okey

)
(4)

where nK is the number of keypoints, Okey is the number of
octaves per keypoint, sOkey is the keypoint start octave, and
⊕ is the vector concatenation.

During face reenactment, keypoints might move out of
the image boundaries (−1, 1). Due to this, we set sOkey =
−1 to add an additional negative octave, which extends the
interval of uniquely encodable values to (−2, 2). We gen-
erate training samples with keypoints outside the image by
estimating them before cropping.

Similar to the keypoints, each image pixel with normal-
ized coordinate p = (x, y) receives a 2D positional encod-
ing [26]

γpix(p,Opix, sOpix) = f
(
p, sOpix , Opix

)
. (5)

The input representation of the source images ISi
at pixel

p = (x, y) is then given by

RSi
(p) = [cp, γpix(p), γkey(kSi

), eSi
], (6)

where cp is the RGB color at pixel p and eSi
is the latent ex-

pression vector extracted from ISi (see Sec. 3.1). Note that
each pixel is conditioned with the full keypoint encoding
and the full latent expression vector, which quickly leads to
a large input representation.

The decoder is queried for every output pixel q =
(x′, y′). Instead of the camera pose, as in [35], each
positionally-encoded query pixel is additionally condi-
tioned with the desired target keypoints kD (i.e. the driv-
ing keypoints) and the latent expression vector eD of the
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Figure 2. Architecture details. Given the driving frame and source images, we extract facial keypoints and latent expression vectors.
Extracted source information are used to generate the input representation of the Patch CNN. The encoder infers the set-latent source face
representation from the patch embeddings as in SRT [35]. The decoder is applied for each query pixel individually and is conditioned with
the driving keypoints and the latent driving expression vector. For further implementation details we refer to the Supplementary Material.

desired expression (i.e. the latent expression vector of the
driving frame).

Hence, the pixel-wise query representation is

QID (q) = [γpix(q), γkey(kD), eD]. (7)

Intuitively, the decoder attends to the most important fea-
tures of the representation {zz} to render the source image
appearance with the desired motion given by kD and eD.

Note that our method does not require camera extrinsics
or intrinsics, since we operate directly in pixel space.

Keypoint Detector. The keypoint detector K is a fully
convolutional hourglass network [28], as proposed by
Siarohin et al. [38, 39]. For each input image I , it predicts
heatmaps H(i)

I ∈ [0, 1]H×W , i = 1, . . . , nK, which define
the pixelwise presence confidence of keypoint ki. For all
experiments, we fix the number of keypoints to nK = 10.

Expression Network. We assume that the last feature
maps FI,K predicted by the keypoint detector capture lo-
cal image properties. Given this assumption we build an
expression network X that recycles FI,K and the predicted
keypoint heatmaps HI for an image I (see Fig. 2). We filter
FI,K by a learned 7 × 7 convolution XC , producing FI,X
with shape [nf , nK, h

′, w′]. To focus on facial features, we
utilize HI to aggregate the features spatially for each key-

point ki:

f⃗
(i)

I,X =

64⊕
c=1

 h′∑
y=0

w′∑
x=0

H
(i)
I (x, y)F

(c)
I,X (i, x, y)

 ∈ Rnf

(8)
to obtain

fI,X =

nK⊕
i=1

[
f⃗

(i)
I,X

]
∈ RnK·nf , (9)

where c is the channel index, i is the keypoint index, and⊕
is the concatenation operation. Using a 4-layer MLP XM ,
we compute the latent expression vector

eI = XM ( fI,X ) . (10)

The expressional information of all important keypoints ar-
eas are thus spread throughout eI . Additionally, keypoint
regions that do not contain important expression informa-
tion can be filtered out by combining the local information.

Patch CNN. As in [35], the shared CNN is designed
to reduce the spatial dimension of the input data and
fuse patch information. In each block, the height and
width are reduced by factor two and the number of fea-
ture maps is doubled. For all experiments, we use three
CNN blocks followed by a final convolution with kernel
size one, which generates the number of feature maps nfm

E



needed for the transformer encoder. The features with shape
[bs, nfm

E , H/8,W/8] are then reshaped to [bs, H+W
8 , nfm

E ]
which is the patch embedding input to the encoder.

Encoder. Following [35], the standard transformer alter-
nates global self-attention (between all tokens) and small
MLP networks (see Fig. 2). Following [36], we drop source
ID embeddings and reduce the number of attention blocks
to five. Through self-attention across all patch embeddings,
the encoder learns a set-latent scene representation {zz} in
which each vector zz captures global scene and dynamics
information. Note that the cardinality of the set-latent repre-
sentation scales linearly with the number of source images.

Decoder. The transformer decoder does not use self-
attention, but instead attends the set-latent scene representa-
tion with the query QID . This is repeated for two times, fol-
lowed by a render MLP that predicts the final output color at
a certain pixel location. For better performance, the query
is first fed through a small 2-layer MLP that spreads the in-
formation in all dimensions, as proposed by [36]. Further-
more, we also use a final 5-layer render MLP that predicts
the output color given the output of the attention module.
Intuitively, the decoder learns to attend to the most impor-
tant features of {zz} to infer the pixel information of the en-
coded facial image with the requested head pose and facial
expression. Note that unlike SRT, we do not only request a
novel view of a static scene but also certain dynamics within
the scene, such as mouth movement. It is therefore neces-
sary for the encoder to output a highly flexible scene repre-
sentation (see experiments with small decoder in Sec. 4.2).

Due to the transformer design, the decoder can handle
{zz} of any cardinality. Thus, a trained encoder and de-
coder can operate on a flexible number of source images.

For a given source face, we only need to predict the set-
latent scene representation once and each query pixel is es-
timated independently of the others. This is an advantage
over CNN-based approaches [11, 38, 39, 49, 57], because it
allows the model throughput to be scaled linearly with the
number of available GPUs. Only one copy of the decoder
needs to reside on each GPU.

3.2. Augmentation and Regularization

Ideally, the network should learn to decouple appearance,
pose, and expression information into set-latents zz , key-
points kI , and expression vector eI , respectively. This sep-
aration of concerns enables cross-reenactment. In practice,
the method is prone to overfitting, since we can only train
in the self-reenactment regime, where ground truth is avail-
able. This results in latents that jointly encode appearance,
pose and expression, which is visible when cross-reenacting
to a different person. Artifacts appear in the background
area around the face and the model also deforms the source
person to be closer to the face shape of the driving frame

(see Fig. 3). Hence, we do not reach the intended separation
level. To combat this, we implement several data augmen-
tation and regularization measures.

Color Augmentation. To prevent colors leaking from the
driving frame to the output image, we apply color jitter aug-
mentation on the source images. Specifically, we create two
color-jittered versions IA1

S , IA2
S of the input image IS . The

expression network X is run to extract expression vectors
eIA1

S
, eIA2

S
. An additional regularization term is added to

enforce invariance to color jitter:

Laug =
1

|e|

∥∥∥eIA1
S

− eIA2
S

∥∥∥2
2
. (11)

While the encoder E is always trained with RGB colors
from IA1

S , it receives the expression vector eIA2
S

. This fur-
ther improves color invariance.

Cropping. To reduce background information in the out-
put of X , we further randomly crop the driving frame (just
for X ). Here, we define Ω(·), which selects a random crop
with awareness of facial keypoints as proposed by [3]. This
crop is then scaled back to the original size, which can
change the aspect ratio. We add a loss term

Laug,D =
1

|e|

∥∥∥eIA
D
− eΩ(IA3

D )

∥∥∥2
2

(12)

on the expression vectors of color-jittered versions IAD, IA3
D ,

in which A is either A1 or A2. Adding Ω(·) to the loss term
encourages that X extracts scale-invariant expression infor-
mation only from the face region. Primarily, the expression
vector of Ω

(
IA3
D

)
is also utilized for decoding. However,

in 25% of cases, eIA
D

is selected, which employs the same
color-jittering (A1 or A2) applied to the source images.

Statistical Regularization. Data augmentation alone is
not enough to completely prevent head pose, expression,
and appearance information from being jointly encoded (see
Fig. 3). We take inspiration from VICReg [2], a method for
regularization of unsupervised feature learning based on in-
variance, variance, and covariance, but adapt it to encour-
age the focus on expression information. Invariance against
augmentations is already covered by Eqs. (11) and (12).

The covariance part aims to decorrelate along the feature
dimension. Intuitively, decorrelation encourages separation
of expression from head pose, shape, and appearance and
enables the network to drop non-expressional information
(which is already encoded in keypoints and scene represen-
tation {zz}). Given a batch of source and driving images
concatenated in the batch dimension

E = [e
(1)
S1

, . . . , e
(1)
S(nsrc)

, e
(1)
D ,

... (13)

e
(bs)
S1

, . . . , e
(bs)
S(nsrc)

, e
(bs)
D ]



with shape [(nsrc + 1)bs, c], we estimate the covariance of
the individual dimensions Cov(E). The covariance loss is

LE
Cov =

1

c
(
∑
i̸=j

[Cov(E)]2i,j︸ ︷︷ ︸
off diagonal

+
∑
k

[Cov(E)]2k,k︸ ︷︷ ︸
diagonal (variance)

). (14)

In contrast to VICReg, we minimize the diagonal variance
terms as well, which represents an additional information
bottleneck. In experiments, this regularization was helpful.

Since we train with supervision, there is no risk of end-
ing up in a mode collapse, so the batch-variance criterion of
VICReg is not required. Conversely, we found that encour-
aging variance along the feature dimension of each vector
with a hinge loss (penalizing vanishing features)

LE
Var =

1

|E|
∑
e∈E

max
(
0, 1−

√
Var(e) + ϵ

)
, (15)

leads to better results and a more stable training. Finally,
we define LCov=LE1

Cov+LE2

Cov and LVar=LE1

Var+LE2

Var, where
E1 and E2 are the differently augmented variants of E.

3.3. Training

We use the VoxCeleb dataset [27] and prepare it as sug-
gested by Siarohin et al. [38]. It consists of ∼3000 videos
from 419 different identities divided into a total of ∼17.000
utterances with a resolution of 256×256. During training,
we sample nsrc source frames and one driving frame from
the same video. Keypoints are extracted using the detector
network of [38], which is not trained further.

We train the rest of our method in three distinct phases.
In all phases, we apply the regularization loss

Lreg =
λaug

2

(
Laug + Laug,D

)
+ λCovLCov + λVarLVar, (16)

where Laug and Laug,D are the mean values of Laug and
Laug,D calculated over the entire batch. We start in Phase I
with warm-up training, optimizing the MSE loss [35]

LMSE = Eq∼ID∥D(q)− ID(q)∥22, (17)

where we approximate Eq∼ID with 4096 sampled pixels.
Using only pixel-wise losses leads to blurry images (see

Fig. 3). To address this issue, we propose to add the percep-
tual loss LP [17] in Phase II to generate more details. Dur-
ing our experiments, we found that the batch size must be
large enough to avoid local minima and poor performance.
Since training on the full frames already exceeds 80GB with
a batch size of four, we compute gradients only sub-sampled
to 1282 pixels and compute the remaining pixels without
gradient information. We apply a random pixel offset to en-
sure that all positions are covered during training. This trick
allows us to estimate image-based losses without requiring
costly gradient estimation for the entire image.

Finally, in Phase III, we then add adversarial losses LA,
which guide the model to predict realistic images. Follow-
ing Siarohin et al. [38], we utilize a CNN-based keypoint-
aware discriminator A with 4 blocks and also add a feature
matching loss LF

A between the discriminator maps predicted
from the generated image and the ground truth image.

The final loss in phase three is thus:

L = Lreg + λMSELMSE + λPLP + λALA + λF
ALF

A. (18)

In our experiments, we train with a batch size of 24
on three NVIDIA A100 GPUs (80GB), for 200k iterations
in Phase I, 300k iterations in Phase II, and approximately
500k iterations in Phase III, depending on the validation
performance (see Suppl. Material). We set λMSE = 1,
λP = 0.01, λA = 0.001, λF

A = 0.01, λaug = λCov = 1, and
λVar = 0.2. Especially Phase I is very important to avoid
overfitting. When skipped, we experience extremely slow
training progress and easily end up in a bad local minimum.

3.4. Inference

For self-reenactment, the inference follows the training
pipeline. In contrast, for cross-reenactment, the driving
frame comes from a different person. This means that key-
points kD can be taken as-is (absolute motion transfer) or
adapted (relative motion transfer). This adaption is cali-
brated from a selected driving frame that best matches the
head pose and expression (measured through the normal-
ized keypoints of Bulat and Tzimiropoulos [3]). Following
Siarohin et al. [38], the scale is estimated by comparing the
volume of the convex hull of head keypoints. Driving key-
point movement is then scaled correctly and added to the
keypoints of the source image.

In both cases, the facial expression vector does not de-
pend on pose, shape, or appearance and is applied as-is,
which is a particular advantage of our method.

4. Experiments
In this section, we carry out various experiments on the of-
ficial VoxCeleb test dataset [27] with image size 2562. Ad-
ditional results are reported in the Supplementary Material.

4.1. Self-reenactment

In self-reenactment, the source image is selected as the first
frame in the driving video. In the case of two source im-
ages, we also select the last frame. We then reconstruct
every tenth frame within the video, ensuring that each driv-
ing frame is at least ten frames apart from the closest source
image. We compare the animations to ground truth using
the Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
larity (SSIM) [51], mean L1 error, and Average Keypoint
Distance (AKD). To compute the AKD, we utilize external
facial keypoints provided by Bulat and Tzimiropoulos [3].



Method #KP SSIM↑ PSNR↑ L1↓ AKD↓

DPE [29] 0 .7180 22.94 .0484 3.07
FOMM [38] 10 .7310 22.90 .0470 2.26
DaGAN [11] 15 .7563 23.51 .0450 2.10
DaGAN/dv2 [11]1 15 .7346 22.81 .0493 2.50
OSFS [49]2 15 .7327 22.97 .0471 2.33
TSMM [57] 50 .7660 23.76 .0433 2.00

Ours/2-Src 10 .7891 25.00 .0360 2.04
Ours 10 .7576 23.67 .0421 2.13
|e| = 128 10 .7558 23.56 .0428 2.16
|e| = 64 10 .7535 23.61 .0430 2.18
smallD 10 .7548 23.60 .0430 2.17
nK = 0 0 .7445 23.56 .0436 2.64

Table 1. Self-reenactment results (including ablations) on the offi-
cial VoxCeleb test set [27]. Underlined values are the second best.

1 Uses depth network trained on VoxCeleb2 [5] for inference
2 Third-party implementation

In Tab. 1, we compare with related methods. Our multi-
source ablation outperforms related methods in terms of ac-
curacy. For single source images, we achieve state-of-the-
art performance. While TSMM [57] slightly outperforms
our method in SSIM, AKD, and PSNR, we note that they in-
paint only disoccluded regions of the detected background.
This produces nearly perfect reconstructions in static back-
ground areas that are also visible in the source image. Fur-
thermore, our method generalizes much better for cross-
reenactment and produces more temporally consistent an-
imations, as highlighted with our user study (see Tab. 2).

While a low AKD and high SSIM value are good for self-
reenactment, they often indicate that face shapes predicted
by a model are highly dependent on the driving face struc-
ture. This, however, is detrimental for cross-reenactment,
where the source appearance may be distorted by poorly
matching driving keypoints (see shape deformations of re-
lated methods in Fig. 4). Also, for relative motion, the align-
ment assumption (explained in Sec. 3.4) is often not per-
fectly satisfied, leading to poorly matching keypoints. Our
method is more robust to this (see Fig. 5), because we do not
use the structure of the driving frame to estimate the optical
flow and we encode appearance information invariant to the
driving keypoints in the set-latent scene representation.

4.2. Ablation Study

We run an ablation study to compare quantitative results
(see Tab. 1). A qualitative comparison and implementation
details are reported in the Supplementary Material.

Do we need keypoints? We report an ablation without
keypoint encoding (Ours/nK = 0), i.e. all pose information
is carried implicitly in the latent vector e, removing factor-
ization of pose and expression, which makes relative motion
transfer impossible. As can be seen in Tab. 1, this change
results in worse self-reenactment performance. See Suppl.
Material for qualitative cross-reenactment comparisons.

Source Driving Ours w/o Stat. Reg.Source Driving Ours w/o Stat. Reg.Source Driving Ours w/o Stat. Reg.Source Driving Ours w/o Stat. Reg.

Source Driving Ours w/o Reg.

Figure 3. Regularization benefit in Phase I training (relative mo-
tion transfer). If trained without statistical regularization (w/o
Stat. Reg.), artifacts originating from the driving frame are vis-
ible in the background around the face boundary. When dropping
regularization entirely (w/o Reg.), color distortions, background
artifacts, and shape deformations are clearly visible. The lower
sequence uses a source image from the CelebA-HQ dataset [18].

What size should latent vectors have? Our reference
model is trained with one source image and a latent expres-
sion vector of size |e|=256. As mentioned in Sec. 3.2 and
visualized in Fig. 3, training without our proposed regular-
ization leads to overfitting, resulting in shape deformation,
color distortion, and background artifacts. With |e|=128 and
|e|=64 latent expression dimensions, the self-reenactment
performance decreases only slightly, showing that we can
significantly reduce the amount of driving information be-
ing transmitted (e.g. for low-bandwidth videoconferencing)
without losing much accuracy. In cross-reenactment, we
also noticed a slight degradation in the transmission of fa-
cial expressions. However, the results are still good.

How efficient is the set-latent representation for decod-
ing? We train a model (Ours/smallD) with a significantly
smaller decoder (see Supplementary Material). Interest-
ingly, we achieve a self-reenactment performance close to
the reference model. This indicates that the set-latent repre-
sentation is very efficient to decode and already models fa-
cial dynamics. However, the sharpness of fine details, such
as hair, is slightly degraded. Reducing the decoder capacity
increases throughput from 11 fps to 23 fps, enabling real-
time application on a single NVIDIA RTX 4090 GPU. As
mentioned in Sec. 3.1, we can scale throughput linearly with
the number of GPUs without introducing additional latency.

Can we improve results with multiple source images?
Unlike state-of-the-art methods [11, 29, 38, 49, 57], our ar-
chitecture allows the use of an arbitrary and flexible number
of source images when available (e.g., when extracted from
a video). Multiple source images can help the model un-
derstand person-specific face dynamics. In this experiment,
we train a model ablation (Ours/2-Src) with two source
images. As Tab. 1 shows, the results are significantly im-



Source Driving Ours TSMM [57] DaGAN [11] OSFS [49]

Figure 4. Cross-reenactment comparison with absolute motion
transfer on the VoxCeleb test set [27]. We generate more accurate
expressions with less shape deformations (higher ID preservation).

FOMM[38] DaGAN[11] [11]/dv2 TSMM[57] OSFS[49] DPE[29]

Rel. 97% (20) 98% (20) 95% (19) 97% (20) 87% (19)
Abs. 94% (20) 99% (20) 96% (20) 92% (19) 94% (19) 95% (20)

Table 2. Cross-reenactment user study. Pairwise preferences be-
tween SOTA and our method. Higher values show higher prefer-
ence for our videos. DPE [29] has no relative mode. (·) shows the
amount out of 20 scenes for which we got the majority of votes.

proved. Interestingly, the model generalizes to more than
two source images even without explicit training.

4.3. Cross-reenactment

Our main motivation is to perform cross-reenactment. We
sample 20 source images and driving videos from the offi-
cial VoxCeleb [27] test set and compare our videos to state-
of-the-art animations in a pairwise user study in Tab. 2. To
be fair, we only use a single source image. We also present
qualitative results in Figs. 4 and 5 and report additional user
study information in the Supplementary Material. In gen-
eral, our method is better at cross-ID motion transfer, while
producing more consistent and natural results. For addi-
tional qualitative results on CelebV [54], CelebA-HQ [18],
and VoxCeleb2 [5] see our Supplementary Material.

Absolute Motion. When the driving keypoints are sim-
ply copied, users mainly prefer the animations generated by
our method (see Tab. 2). Since our method is more robust
to poorly matching keypoints, we produce fewer shape de-
formations than other keypoint-based methods (see Fig. 4).
Furthermore, we consistently animate larger pose offsets.

Relative Motion. More interesting and challenging is an-
imating with relative motion. Here, best performance can
be achieved when the facial expression representation is de-

Source Driving Ours TSMM [57] DaGAN [11] OSFS [49]

Figure 5. Comparison with SOTA in cross-reenactment with rela-
tive motion transfer. Our method is more robust to the alignment
assumption for relative motion transfer, generates more accurate
expressions, and handles larger pose offsets. All images are from
the VoxCeleb test set [27], except the lower block, which shows
generalization to source images from the CelebA-HQ dataset [18].

coupled from head pose and shape. As Tab. 2 illustrates,
we significantly outperform state-of-the-art methods. When
analyzing the results, we noticed that related methods show
poor performance when there is no good match for the
source expression and head pose in the driving video.

5. Limitations
Our method struggles to generate out-of-distribution ex-
pressions such as sticking out the tongue or looking back.
While we produce sharper mouth and eye regions, details
in the background and hair are sometimes slightly reduced,
compared to CNN-based methods. We believe that the
model allocates most of its capacity to the face. Com-
pared to CNN approaches that simply learn to forward back-
ground pixels from the input, our model must encode the
background in the set-latents and reconstruct it by attending
the correct features. Increasing model capacity or optimiz-
ing the query representation might lead to improvements.

6. Conclusion
We have proposed a state-of-the-art method for face reen-
actment. To our knowledge, this is the first transformer-
based architecture for this purpose. We learn latent ex-
pression features that are free of appearance, shape or
pose information, making them perfectly suited for cross-
reenactment. Our method achieves fast inference speed,
which allows real-time application. We proposed a regu-
larization and training scheme which are necessary to guide
the network to represent the scene as desired. Future work
could investigate further improving the animation quality of
fine details (e.g. in the hair) and utilizing volume rendering
techniques to reconstruct geometry.
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FSRT: Facial Scene Representation Transformer for Face Reenactment
from Factorized Appearance, Head-pose, and Facial Expression Features

Supplementary Material

7. Implementation Details
We present important training and architecture details, in-
cluding the parameter values that were used.

7.1. Architecture Details

Keypoint Detector. The keypoint detector is used as-is
from [38] and not trained further. It consists of a 5-block
Hourglass network [28] with a block expansion of 32 and
a maximum feature map size of 1024. For keypoint extrac-
tion, the images are resized to 64×64. After decoding, the
heatmaps are predicted by a final 7×7 convolution. Key-
point locations are given by the centroids of the correspond-
ing heatmap.

Latent Expression Extractor. The latent expression ex-
tractor X has a single 7×7 convolutional layer that predicts
nf = 32 individual feature maps for each keypoint. For
each keypoint, the individual feature maps computed by the
keypoint detector are aggregated in x and y direction with
the weights of the corresponding heatmap. After aggregat-
ing the features of each keypoint individually, the informa-
tion is concatenated and fused to predict a global expres-
sion vector. The fusion is performed by a 4-layer MLP with
(640− 1280− 640) hidden units and |e| output neurons.

Input and Query Representation. For both, the posi-
tional encoding in the input and query representation, we
set the number of octaves to Opix = 16 and Okey = 4 with
start octaves sOpix = −1 and sOkey

= −1. Together with
a latent expression dimension of |e| = 256, this results in
a query representation of size |QID | = 416 and an input
representation RSi

with 419 input channels, since we also
encode the RGB pixel color of the source image.

Patch CNN. In all experiments, we set the output feature
dimension of the Patch CNN to nfm

E = 768. Since we are
processing a very large number of input channels (419 when
|e| = 256), we use a bottleneck of 96 feature maps in the
first convolutional layer.

Encoder. The transformer encoder also has a feature di-
mension of 768. Each multi-head attention layer uses 12
heads with an attention dimension of 64. The encoder pro-
cesses the patch embedding of each source image individ-
ually, so that the cardinality of the set-latent scene repre-
sentation scales linearly with the number of source images.
This allows a flexible number of source images to be used.
In total, the encoder and Patch CNN (with |e| = 256) have
29,774,112 parameters.

Decoder. The decoder has a feature dimension equal to
the size of the query representation |QID |. The input MLP
(see decoder in Fig. 2) has two layers with 720 hidden
units and |QID | output neurons. In the attention blocks,
we also use 12 heads with an attention dimension of 64.
The MLP inside the attention block, which fuses the in-
formation from the individual heads, has two layers and
2|QID | hidden units. The final 5-layer render MLP has
(1536 − 1536 − 1536 − 768) hidden units and three out-
put neurons for the RGB color.

For our small decoder ablation Ours/smallD, we reduce
the number of heads from 12 to 6 and also halve the num-
ber of hidden units of the MLP inside the attention block.
Finally, we replace the render MLP with a smaller 3-layer
version with (1536 − 768) hidden units. Compared to our
standard decoder, the number of parameters is reduced from
15,310,131 to 6,012,723.

Discriminator. For the keypoint-aware discriminator A,
we use the implementation of Siarohin et al. [38] which is
based on [15]. The input is an RGB image concatenated
with ten heatmaps representing the driving keypoints. In
total, we use four blocks, resulting in 512 output features
with a downsampling factor of 16. For further implementa-
tion and loss details, we refer to Siarohin et al. [38].

7.2. Training Details

We train on three NVIDIA A100 (80GB) GPUs for about
23 days. We found that warming up (i.e. Phase I training,
explained in Sec. 3.3) is essential to avoid ending up in lo-
cal minima. Also, the batch size should be large enough. In
our experiments we found out that 24 is sufficient. With
a batch size of eight, training progressed slowly and ap-
peared to be very unstable. Furthermore, we ended up in
a local minimum with poor inference performance. When
adding adversarial losses in training Phase III, we allow the
discriminator to warm up for 500 iterations without com-
puting gradients for the model. This is essential since oth-
erwise the untrained discriminator will influence the current
training progress with gradients of large magnitude.

Stopping Criterion. We extract a validation dataset,
which we use to validate the self- and cross-reenactment
performance. The self-reenactment performance is mea-
sured as in Tab. 1. For cross-reenactment, we randomly
sample source images and driving videos. Model perfor-
mance is judged visually by us. We found that it is not nec-
essary to choose between good self- and cross-reenactment



performance, as both are typically correlated. We thus use
self-reenactment scores as a way to find promising models
and then verify cross-reenactment performance.

Visualizing Out-of-frame Motion. As explained in
Sec. 3.1, we use a negative octave in the positional encod-
ing of pixels and keypoints to uniquely encode values in
(−2, 2). However, the VoxCeleb dataset [27] (prepared as
suggested by Siarohin et al. [38]) itself has no out-of-frame
motion. Instead, we create out-of-frame motion by crop-
ping the image with respect to the source image keypoints.
We use external pre-estimated face keypoints [3] and select
a random crop of all selected images (source and driving)
such that all source keypoints are inside. Finally, the images
are resized back to 256×256, which may change the aspect
ratio and induces additional regularization. In some cases,
the driving face will now be partially outside the image—
generating corresponding training samples.

Since cropping will reduce the image resolution to less
than 2562, we download the dataset at the highest resolution
possible so that the crop (before resizing) is ideally larger
than 2562 and no image detail is lost.

The keypoint detector can only predict keypoints within
the image. Therefore, we detect keypoints of the uncropped
images and use the cropping information to transform them
into the cropped images.

Unlike the source keypoints, the latent expression vec-
tors are extracted directly from the cropped source images.
When extracting expression vectors from the driving frame,
the differently augmented driving frame version (as ex-
plained in Sec. 3.2), ensures that the driving face is inside
the image. In Fig. 6, we show that not addressing out-of-
frame motion leads to poor results when keypoints are out-
side the image or close to the image boundaries.

7.3. User Study Details

We selected 30 different people to participate in the user
study (see Tab. 2). Since we compared the methods in
pairs, each participant was only allowed to judge one re-
lated method. Furthermore, each participant judged both
relative motion transfer and absolute motion transfer. The
face reenactment task was initially explained, and partici-
pants were instructed to base their decision on the following
two criteria:
1. Does the motion transfer work well (including ID preser-

vation)?
2. Does the animation look like a natural and consistent

video?
Each participant was simultaneously shown the source im-
age, the driving video, our result and the animation of the
comparison method. In each of the 20 sequences, we ran-
domized whether our method was shown on the left or on
the right. Participants could only decide once the video had
run through. However, the video automatically restarted, so

Source Driving Ours w/o Neg. Octave

Figure 6. Out-of-frame motion with (Ours) and without explicit
addressing keypoints outside the image (w/o Neg. Octave). Out-
of-frame motion only occurs when relative motion transfer is used
(see Sec. 3.4). The predicted images are visualized with the driv-
ing keypoints that were used in the decoder. Images from the Vox-
Celeb test set [27].

Method SSIM↑ PSNR↑ L1↓ AKD↓

Ours .7576 23.67 .0421 2.13
Ours/ 1 → 2-Src .7181 23.06 .0453 2.42

Ours/ 2-Src .7891 25.00 .0360 2.04
Ours/ 2 → 3-Src .8092 25.80 .0325 2.00
Ours/ 2 → 1-Src .7610 23.85 .0418 2.13

Ours/t → i-Src means that the model trained with t source images is
evaluated with i source images during inference.

Table 3. Self-reenactment results on the official VoxCeleb test
set [27] when generalizing to a different number of source im-
ages without explicit training. Training with two source images in-
creases self-reenactment performance, even when only one source
image is used for inference.

that there was no overall time limit. A decision was made
by clicking on the preferred video.

8. Additional Experiments & Results
We report auxiliary experiments and more qualitative re-
sults here.

8.1. Flexibility in the Number of Source Images

We investigate the generalization behavior with respect to
changing the number of source images during inference.



Here, our reference model was trained with a single source
image and with two source images. As reported in Tab. 3,
the model trained with two source images generalizes in
both directions, with fewer and with more source images
used for inference. Interestingly, when reducing the number
of source images to one (line Ours/2 → 1-Src in Tab. 3) it
even produces slightly better self-reenactment results than
our model explicitly trained with only one source image
(line Ours in Tab. 3). With three source images available for
inference (line Ours/2 → 3-Src in Tab. 3), the performance
increases further, indicating that additional source images
can be added at inference as available.

The model trained with only one source image shows a
significant drop in performance when the number of source
images is increased during evaluation (line Ours/1 → 2-Src
in Tab. 3). Therefore, if a flexible number of source images
is desired, we recommend training with at least two source
images. Alternatively, the number of source images can be
chosen flexibly during training. To ensure that the data can
still be batched, we recommend always selecting the maxi-
mum number of source images, but masking the set-latents
of unnecessary source images in the attention module of the
decoder.

8.2. Ablation Study

In Figs. 9 and 10 we present qualitative results of our ab-
lations (see Sec. 4.2) in the cross- and self-reenactment sit-
uation, respectively. In terms of motion transfer accuracy,
our reference model with |e|=256 produces slightly better
results than models using |e|=64 or |e|=128.

By using two source images, information from both
source images can be extracted and fused to produce more
accurate animations. Especially if the second source image
reveals occluded background or different head regions, less
information has to be guessed by the model. As shown in
Figs. 9 and 10, using multiple source images (Ours/2-Src)
can help to produce animations with more detail in face,
hair, and background.

Our ablation with a small decoder (Ours/smallD) has
a motion transfer capability similar to our reference model
(Ours), but with a slightly reduced sharpness in the anima-
tions.

8.3. Comparison with State-of-the-Art Methods

In Fig. 11 and Fig. 12 we present additional cross-
reenactment results on the VoxCeleb test set [27] with rel-
ative and absolute motion transfer compared to all state-of-
the-art methods from our user study (see Tab. 2). While
TSMM [57], DaGAN [11], OSFS [49], and FOMM [38]
are also keypoint based, DPE [29] uses a latent head pose
description. This, however, eliminates the ability to per-
form relative motion transfer. As the visualizations show,
our method produces significantly more natural results with

Source Driving Ours

Figure 7. Out-of-distribution results with relative motion transfer
generated by our method. The source images are extracted from
popular paintings and the driving frames are from the VoxCeleb2
test set [5].

higher ID preservation and more accurate and plausible mo-
tion transfers. Especially when there is a large pose offset,
related methods often fail to produce satisfactory results.
For animated results, see our project page.2

8.4. Out-of-Distribution Animation

As shown in Fig. 7, our model trained on VoxCeleb [27]
generalizes to out-of-distribution source images extracted
from popular paintings.

2https://andrerochow.github.io/fsrt

https://andrerochow.github.io/fsrt


8.5. Generalizing to other Datasets

We report generalization examples of our models trained on
VoxCeleb to other datasets at inference time. Specifically,
we show the following source → driving combinations:
• CelebA-HQ [18] → VoxCeleb2 [5] in Fig. 13,
• VoxCeleb2 [5] → VoxCeleb2 [5] in Fig. 14, and
• CelebV [54] → CelebV [54] in Fig. 15.

We note that VoxCeleb2 covers a significantly larger num-
ber of identities in the test set compared to VoxCeleb. As
the results show, our model generalizes to all of these com-
binations, while still producing more accurate animations
compared to related methods.

8.6. Omitting Keypoints

We present qualitative results of our model ablation
Ours/nK = 0 without keypoints in Fig. 15. Compared to
our reference model (Ours), we found that the accuracy of
the motion transfer is slightly reduced. In particular, the an-
imated gaze direction seems to be less accurate (see third
row in Fig. 15). Omitting the keypoints makes it impossible
to perform relative motion transfer, since all pose informa-
tion is implicitly encoded in the expression vector e.

In this variant, images input to the expression network
are not augmented through cropping, since this makes re-
covery of the head pose impossible without keypoints.
However, we discovered that performing a random cen-
ter crop with variable aspect ratio on the driving frame
(while requiring the network to reconstruct the full driving
frame) reduces shape deformations, since the network be-
comes invariant against aspect ratio changes and scale (see
Ours/nK = 0 + Crop Aug. in Fig. 8). While this might
be useful in cross-reenactment applications where relative
motion transfer is not required, it reduces self-reenactment
scores (see Tab. 4)—where this invariance is not helpful but
actually harmful. A particular reason for this might be that
this variant cannot transfer zooming or dolly shots due to
scale invariance.

8.7. Statistical Regularization

In Fig. 16, we visualize the effect of training without our
proposed statistical regularization. As the results show,
training without LCov and LVar leads to significant artifacts
around the animated face region, indicating that ID infor-
mation leaks from the driving frame through the expres-
sion vector eD. Our proposed factorization is therefore not
achieved.

Method #KP SSIM↑ PSNR↑ L1↓ AKD↓

Ours 10 .7576 23.67 .0421 2.13
nK = 0 0 .7445 23.56 .0436 2.64
+Crop Aug. 0 .7240 22.98 .0469 2.99

Table 4. Self-reenactment results on the official VoxCeleb test
set [27]. We compare our model ablation without keypoints
(Ours/nK = 0) with an ablation that is additionally trained with
random center cropping (Ours/nK = 0 + Crop Aug.). The scores
of our reference model (Ours) are shown in the first row.
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Source Driving Ours/nK = 0 + Crop Aug.

Figure 8. Ablations without keypoints. This comparison is using
absolute motion transfer. When combining a keypoint-less model
with random center cropping during training (right column), shape
deformations and scale changes are prevented. The images are
from the VoxCeleb test set [27], the VoxCeleb2 test set [5], and
the CelebA-HQ dataset [18] (as indicated by the source → driving
notation).



Source Driving Ours Ours|e|=128Ours|e|=64Ours/smallD Ours/2-Src Source 2

Figure 9. Ablation study in cross-reenactment on the VoxCeleb test set [27] with absolute motion transfer (upper block) and relative motion
transfer (lower block). Our ablation Ours/2-Src consistently fuses the information of both source images. It produces more detail in the
face, hair, and background, especially when the second source image reveals information missing in the first source image.



Source Driving Ours Ours|e|=128Ours|e|=64Ours/smallD Ours/2-Src Source 2

Figure 10. Ablation study in self-reenactment on the VoxCeleb test set [27]. The accuracy of motion transfer (especially mouth and eye
motion) decreases slightly when reducing the size of the latent expression vector e. In the first and fourth animation, Ours|e|=64 produces
inaccurate mouth expressions. Ours/2-Src generates more detail by integrating the information from both source images.



Source Driving Ours TSMM [57] DaGAN [11] OSFS [49] FOMM [38]

Figure 11. Comparison with SOTA on the VoxCeleb test set [27] in cross-reenactment (relative motion transfer). Our model generates more
accurate expressions, is less sensitive to the alignment assumption (Sec. 3.4), and learns to realistically fill missing face parts (third row).
Others often produce mismatched expressions and fail for large pose offsets. The last row shows a source image from CelebA-HQ [18].



Source Driving Ours TSMM [57] DaGAN [11] OSFS [49] FOMM [38] DPE [29]

Figure 12. Comparison with SOTA on the VoxCeleb test set [27] in cross-reenactment with absolute motion transfer. We generate more
accurate facial expressions with better ID preservation. Related methods often produce strong shape deformations, artifacts and blurry
results (especially in the mouth region). The sixth animation shows that our method even animates the sunlight on the side of the face.



Source Driving Ours TSMM [57] DaGAN [11] OSFS [49] FOMM [38]

Figure 13. Cross-reenactment generalization to driving videos from the VoxCeleb2 test set [5] and source images from the CelebA-HQ
dataset [18] with relative motion transfer.



Source Driving Ours TSMM [57] DaGAN [11] OSFS [49] FOMM [38]

Figure 14. Cross-reenactment generalization to driving videos and source images both from the VoxCeleb2 test set [5] with relative motion
transfer.



Source Driving Ours Ours/nK = 0 TSMM [57] DaGAN [11] OSFS [49] DPE [29]
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Figure 15. Comparison of our model with and without keypoints and state-of-the-art methods in cross-reenactment with absolute motion
transfer. The top block shows generalization to source and driving frames extracted from the CelebV dataset [54]. The bottom block shows
generalization to driving frames extracted from the VoxCeleb2 test set [5] and source images from the CelebA-HQ dataset [18].
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Figure 16. Benefit of statistical regularization (relative motion transfer). Training without LCov and LVar leads to visible artifacts around
the animated face (see red arrows), indicating that the identity of the driving person is leaking into the expression vector eD . The images
are from the VoxCeleb test set [27] (indicated with *) and the VoxCeleb2 test set [5] (remaining).
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