
PermutoSDF: Fast Multi-View Reconstruction with

Implicit Surfaces using Permutohedral Lattices

Radu Alexandru Rosu Sven Behnke

University of Bonn, Germany

{rosu, behnke}@ais.uni-bonn.de

Abstract

Neural radiance-density field methods have become in-

creasingly popular for the task of novel-view rendering.

Their recent extension to hash-based positional encoding

ensures fast training and inference with visually pleasing

results. However, density-based methods struggle with re-

covering accurate surface geometry. Hybrid methods alle-

viate this issue by optimizing the density based on an un-

derlying SDF. However, current SDF methods are overly

smooth and miss fine geometric details. In this work, we

combine the strengths of these two lines of work in a novel

hash-based implicit surface representation. We propose im-

provements to the two areas by replacing the voxel hash en-

coding with a permutohedral lattice which optimizes faster,

especially for higher dimensions. We additionally propose

a regularization scheme which is crucial for recovering

high-frequency geometric detail. We evaluate our method

on multiple datasets and show that we can recover geo-

metric detail at the level of pores and wrinkles while us-

ing only RGB images for supervision. Furthermore, us-

ing sphere tracing we can render novel views at 30 fps

on an RTX 3090. Code is publicly available at https:

//radualexandru.github.io/permuto_sdf

1. Introduction

Accurate reconstruction geometry and appearance of

scenes is an important component of many computer vision

tasks [16,19,25,31]. Recent Neural Radiance Field (NeRF)-

like models [3, 16, 18, 28] represent the scene as a density

and radiance field and, when supervised with enough input

images, can render photorealistic novel views.

Works like INGP [18] further improve on NeRF by us-

ing a hash-based positional encoding which results in fast

training and visually pleasing results. However, despite the

photorealistic renderings, the reconstructed scene geometry

can deviate severally from the ground-truth. For example,

objects with high specularity or view-dependent effects are
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Figure 1. Given multi-view images, we recover both high quality

geometry as an implicit SDF and appearance which can be ren-

dered in real-time.

often reconstructed as a cloud of low density; untextured

regions can have arbitrary density in the reconstruction.

Another line of recent methods tackles the issue of in-

correct geometry by representing the surfaces of objects

as binary occupancy [22] or Signed Distance Function

(SDF) [30, 33]. This representation can also be optimized

with volumetric rendering techniques that are supervised

with RGB images. However, parametrization of the SDF

as a single fully-connected Multi-Layer Perceptron (MLP)

often leads to overly smooth geometry and color.

In this work, we propose PermutoSDF, a method that

combines the strengths of hash-based encodings and im-

plicit surfaces. We represent the scene as an SDF and a

color field, which we render using unbiased volumetric in-

tegration [30]. A naive combination of these two methods

would fail to reconstruct accurate surfaces however, since it

lacks any inductive bias for the ambiguous cases like specu-

lar or untextured surfaces. Attempting to regularize the SDF

with a total variation loss or a curvature loss will produce a

smoother geometry at the expense of losing smaller details.

In this work, we propose a regularization scheme that en-

sures both smooth geometry where needed and also recon-

struction of fine details like pores and wrinkles. Further-

more, we improve upon the voxel hashing method of INGP
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by proposing permutohedral lattice hashing. The number

of vertices per simplex (triangle, tetrahedron, . . . ) in this

data structure scales linearly with dimensionality instead of

exponentially as in the hyper-cubical voxel case. We show

that the permutohedral lattice performs better than voxels

for 3D reconstruction and 4D background estimation.

In summary our main contributions are:

• a novel framework for optimizing neural implicit sur-

faces based on hash-encoding,

• an extension of hash encoding to a permutohedral lat-

tice which scales linearly with the input dimensions

and allows for faster optimization, and

• a regularization scheme that allows to recover accu-

rate SDF geometry with a level of detail at the scale of

pores and wrinkles.

2. Related Work

2.1. Classical MultiView Reconstruction

Multi-view 3D reconstruction has been studied for

decades. The classical methods can be categorized as either

depth map-based [8,9,25,37] or volume-based [6,19,21,31].

Depth map methods like COLMAP [25] reconstruct a depth

map for each input view by matching photometrically con-

sistent patches. The depth maps are fused to a global 3D

point cloud and a watertight surface is recovered using Pois-

son Reconstruction [12]. While COLMAP can give good

results in most scenarios, it yields suboptimal results on

non-Lambertian surfaces. Volume-based approaches fuse

the depth maps into a volumetric structure (usually a Trun-

cated Signed Distance Function) from which an explicit

surface can be recovered via the marching cubes algo-

rithm [15]. Volumetric methods work well when fusing

multiple noisy depth maps but struggle with reconstructing

thin surfaces and fine details.

2.2. NeRF Models

A recent paradigm shift in 3D scene reconstruction has

been the introduction of NeRF [16]. NeRFs represent the

scene as density and radiance fields, parameterized by a

MLP. Volumetric rendering is used to train them to match

posed RGB images. This yields highly photorealistic ren-

derings with view-dependent effects. However, the long

training time of the original NeRF prompted a series of sub-

sequent works to address this issue.

2.3. Accelerating NeRF

Two main areas were identified as problematic: the large

number of ray samples that traverse empty space and the re-

quirement to query a large MLP for each individual sample.

Neural Sparse Voxel Fields [14] uses an octree to model

only the occupied space and restricts samples to be gen-

erated only inside the occupied voxels. Features from the

voxels are interpolated and a shallow MLP predicts color

and density. This achieves significant speedups but requires

complicated pruning and updating of the octree structure.

DVGO [27] similarly models the scene with local fea-

tures which are stored in a dense grid that is decoded by an

MLP into view-dependent color. Plenoxels [7] completely

removes any MLP and instead stores opacity and spherical

harmonics (SH) coefficients at sparse voxel positions.

Instant Neural Graphics Primitives (INGP) [18] proposes

a hash-based encoding in which ray samples trilinearly in-

terpolate features between eight positions from a hash map.

A shallow MLP implemented as a fully fused CUDA kernel

predicts color and density. Using a hash map for encoding

has the advantage of not requiring complicated mechanisms

for pruning or updating like in the case of octrees.

In our work, we improve upon INGP by proposing a

novel permutohedral lattice-based hash encoding, which is

better suited for interpolating in high-dimensional spaces.

We use our new encoding to reconstruct accurate 3D sur-

faces and model background as a 4D space.

2.4. Implicit Representation

Other works have focused on reconstructing the scene

geometry using implicit surfaces. SDFDiff [11] discretizes

SDF values on a dense grid and by defining a differen-

tiable shading function can optimize the underlying geom-

etry. However, their approach can neither recover arbitrary

color values nor can it scale to higher-resolution geometry.

IDR [34] and DVR [20] represent the scene as SDF and

occupancy map, respectively, and by using differentiable

rendering can recover high-frequency geometry and color.

However, both methods require 2D mask supervision for

training which is not easy to obtain in practice.

In order to remove the requirement of mask supervi-

sion, UNISURF [22] optimizes an binary occupancy func-

tion through volumetric rendering. VolSDF [33] extends

this idea to SDFs. NeuS [30] analyzes the biases caused by

using volumetric rendering for optimizing SDFs and intro-

duces an unbiased and occlusion-aware weighting scheme

which allows to recover more accurate surfaces.

In this work, we reconstruct a scene as SDF and color

field without using any mask supervision. We model the

scene using locally hashed features in order to recover finer

detail than previous works. We also propose several reg-

ularizations which help to recover geometric detail at the

level of pores and wrinkles.

3. Method Overview

Given a series of images with poses {Ik}, our task is to

recover both surface S and appearance of the objects within.
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Figure 2. Overview of our PermutoSDF pipeline. (1) For a batch of pixels from the posed images, we sample rays inside the volume

of interest. (2) For each sample, we slice features from a multi-resolution permutohedral lattice. (3) The features from all lattice levels

are concatenated. For the color network, we also concatenate additional features regarding normal n of the SDF, view direction v, and

learnable features χ from the SDF network. (4) Small MLPs decode the SDF and a view-dependent RGB color. (5) The output is rendered

volumetrically and supervised only with RGB images. We visualize surface color and a 2D slice of the SDF.

We define the surface S as the zero level set of an SDF:

S = {x ∈ R
3|g(x) = 0}. (1)

The SDF is parameterized by a fully connected

neural network g(hg; Φg) that processes an encoding

hg = enc(x; θg) of the input position x. We refer to the

composition g(enc(x; θg); Φg) as the SDF network which

outputs SDF values for a given spatial 3D position x.

Similarly, we define an MLP c(hc,v,n,χ; Φc)
for the color which processes an encoded position

hc = enc(x; θc), a view direction v, the normal vector of

the SDF n, and a learnable geometric feature χ which is

output by the SDF network.

Fig. 2 given an overview of our two-network pipeline.

Rays from the input images are cast into the scenes and

multiple samples are created along each ray. Each sam-

ple x on the ray is encoded using a multi-resolutional hash-

based permutohedral lattice (cf. Sec. 4.2). The lattice fea-

tures from different levels are concatenated and processed

by the color and SDF MLPs. The SDF values are mapped

to density (cf. Sec. 4.1) and the sample colors are rendered

volumetrically to yield the final pixel value.

Note, that using two separate networks is crucial as we

want to regularize each one individually in order to recover

high-quality geometry.

4. Permutohedral Lattice SDF Rendering

We now detail each network, the permutohedral lattice,

and our training methodology.

4.1. Volumetric Rendering

We denote the ray emitted from a pixel by p(t) = o+tv,

where o is the camera origin and v is the view direction.

Colors along the ray are accumulated according to

Ĉ(p) =

∫ +∞

t=0

w(t)c(p(t),v,n,χ; Φc), (2)

where w(t) is a weighting function for the point at p(t).
In NeuS [30], Wang et al. show that in order to learn

an SDF of the scene, it is crucial to derive an appropriate

weighting function based on the SDF.

They propose an unbiased and occlusion-aware weight-

ing function based on an opaque density function ρ(t):

ρ(t) =max

(
−dψs

dt (g(p(t); Φg))

ψs(g(p(t); Φg))
, 0

)
, (3)

where g(p(t)) outputs the SDF for the point at t and ψ is

the sigmoid function defined as ψs(x) = (1+e−ax)−1 with

slope a. This can be used directly in a volumetric rendering

scheme:

w(t) = T (t)ρ(t), where T (t) = exp

(
−

∫ t

0

ρ(u)du

)
(4)

4.2. Hash Encoding with Permutohedral Lattice

In order to facilitate learning of high-frequency details,

INGP [18] proposed a hash-based encoding which maps a

3D spatial coordinate to a higher-dimensional space. The

encoding maps a spatial position x into a cubical grid and

linearly interpolates features from the hashed eight corners
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Figure 3. We use a permutohedral lattice instead of hyper-cubical

voxels since the number of vertices per simplex scales linearly

with the dimensionality instead of exponentially. The permuto-

hedral lattice trains faster and encodes points faster for dim. ≥ 3.

of the containing cube. A fast CUDA implementation inter-

polates over various multi-resolutional grids in parallel. The

hash map is stored as a tensor of L levels, each containing

up to T feature vectors with dimensionality F .

The speed of the encoding function is mostly determined

by the number of accesses to the hash map as the operations

to determine the eight hash indices are fast. Hence, it is of

interest to reduce the memory accesses required to linearly

interpolate features for position x. By using a tetrahedral

lattice instead of a cubical one, memory accesses can be

reduced by a factor of two as each simplex has only four

vertices instead of eight. This advantage grows for higher

dimensions when using a permutohedral lattice [1].

The permutohedral lattice divides the space into uniform

simplices which form triangles and tetrahedra in 2D and 3D,

respectively. The main advantage of this lattice is that given

dimensionality d the number of vertices per simplex is d+1,

which scales linearly instead of the exponential growth 2d

for hyper-cubical voxels. This ensures a low number of

memory accesses to the hashmap and therefore fast opti-

mization.

Given a position x, the containing simplex can be ob-

tained in O(d2). Within the simplex, barycentric coordi-

nates are calculated and d-linear interpolation is performed

similar to INGP. For more details regarding calculating the

containing simplex, we refer to [2].

Similarly to INGP, we slice from lattices at multiple res-

olutions and concatenate the results. The final output is

a high-dimensional encoding h = enc(x; θ) of the input x

given lattice features θ.

4.3. 4D Background Estimation

For modeling the background, we follow the formulation

of NeRF++ [36] which represents foreground volume as a

unit sphere and background volume by an inverted sphere.

Points in the outer volume are represented using 4D posi-

tions (x′, y′, z′, 1/r) where (x′, y′, z′) is a unit-length di-

rectional vector and 1/r is the inverse distance.

We directly use this 4D coordinate to slice from a 4-

dimensional lattice and obtain multi-resolutional features.

A small MLP outputs the radiance and density which are

volumetrically rendered and blended with the foreground.

Please note that in 4D, the permutohedral lattice only needs

to access five vertices for each simplex while a cubical voxel

would need 16. Our linear scaling with dimensionality is of

significant advantage in this use case.

5. PermutoSDF Training and Regularization

Given the permutohedral lattice hash encoding and the

unbiased volumetric rendering scheme, we have all the tools

to train our model. We sample pixels from the input im-

ages and infer SDF and color for positions along their rays.

Through volumetric rendering (Eq. 2) we obtain the pixel

color Ĉ(p). We optimize an L2 loss on the RGB pixels:

Lrgb =
∑

p

∥Ĉ(p)− C(p)∥22 (5)

and an Eikonal loss which prevents the zero-everywhere so-

lution for the SDF:

Leik =
∑

x

(∥∇g(enc(x))∥ − 1)
2
, (6)

where the gradient ∇g(enc(x)) of the SDF is obtained

through automatic differentiation.

A naive combination of hash-based encoding and im-

plicit surfaces can yield undesirable surfaces, though.

While the model is regularized by the Eikonal loss, there are

many surfaces that satisfy the Eikonal constraint. For spec-

ular or untextured areas, the Eikonal regularization doesn’t

provide enough information to properly recover the surface.

To address this issue, we propose several regularizations

that serve to both recover smoother surfaces and more de-

tail.

5.1. SDF Regularization

In order to aid the network in recovering smoother sur-

faces in reflective or untextured areas, we add a curvature

loss on the SDF. Calculating the full 3×3 Hessian matrix

can be expensive; so we approximate curvature as local de-

viation of the normal vector. Recall that we already have

the normal n = ∇g(enc(x)) at each ray sample since it

was required for the Eikonal loss. With this normal, we de-

fine a tangent vector η by cross product with a random unit

vector τ such that η = n × τ . Given this random vector

in the tangent plane, we slightly perturb our sample x to

obtain xϵ = x + ϵη. We obtain the normal at the new per-

turbed point as nϵ = ∇g(enc(xϵ)) and define a curvature

loss based on the dot product between the normals at the

original and perturbed points:

Lcurv =
∑

x

(n · nϵ − 1)2. (7)



5.2. Color Regularization

While the curvature regularization helps in recovering

smooth surfaces, we observe that the network converges to

an undesirable state where the geometry gets increasingly

smoother while the color network learns to model all the

high-frequency detail in order to drive the Lrgb to zero. De-

spite lowering Lcurv during optimization, the SDF doesn’t

regain back the lost detail. We show this behavior in Fig. 8.

Recall that the color network is defined as c(h,v,n,χ; Φc),
with an input encoding of h = enc(x; θc). We observe that

all the high-frequency detail learned by the color network

has to be present in the weights of the MLP Φc or the hash-

map table θc as all the other inputs are smooth.

In order to recover fine geometric detail, we propose to

learn a color mapping network that is itself smooth w.r.t. to

its input such that large changes in color are matched with

large changes in surfaces normal. Function smoothness can

be studied in the context of Lipschitz continuous networks.

A function f is k-Lipschitz continuous if it satisfies:

∥f(d)− f(e)∥︸ ︷︷ ︸
change in the output

≤ k ∥d− e∥︸ ︷︷ ︸
change in the input

. (8)

Intuitively, it sets k as an upper bound for the rate of change

of the function. We are interested in the color network being

a smooth function (small k) such that high-frequency color

is also reflected in high-detailed geometry.

There are several ways to enforce Lipschitz smoothness

on a function [5, 17, 29, 35]. Most of them impose a hard

1-Lipschitz requirement or ignore effects such as network

depth which makes them difficult to tune for our use case.

The recent work of Liu et al. [13] provides a simple

and interpretable framework for softly regularizing the Lip-

schitz constant of a network. Given an MLP layer y =
σ(Wix+bi) and a trainable Lipschitz bound ki for the layer,

they replace the weight matrix Wi with:

y = σ(Ŵix+ bi), Ŵi = m (Wi, softplus (ki)), (9)

where softplus (ki) = ln(1+eki) and the function m(.) nor-

malizes the weight matrix by rescaling each row ofWi such

that the absolute value of the row-sum is less than or equal

to softplus (ki). Since the product of per-layer Lipschitz

constants ki is the Lipschitz bound for the whole network,

we can regularize it using:

LLipschitz =

i=1∏

l

softplus (ki). (10)

In addition to regularizing the color MLP, we also apply

weight decay of 0.01 to the color hashmap θc.

5.3. Training Schedule

Several scheduling considerations must be observed for

our method. In Eq. 3, the sigmoid function ψs(.) is

Init 3 min 8 min 15 min 30 min 1920×1080

38 ms
Training Inference

Figure 4. We train for 30 min using posed images and afterwards

render novel views in real-time using sphere tracing.

parametrized with 1/a which is the standard deviation that

controls the range of influence of the SDF towards the vol-

ume rendering. In NeuS 1/a is considered a learnable pa-

rameter which starts at a high value and decays towards zero

as the network converges.

However, we found out that considering it as a learnable

parameter can lead to the network missing thin object fea-

tures due to the fact that large objects in the scene dominate

the gradient towards a. Instead, we use a scheduled linear

decay 1/a over 30 k iterations which we found to be robust

for all the objects we tested.

In order to recover smooth surfaces, we train the first

100 k iterations using curvature loss:

L = Lrgb + λ1Leik + λ2Lcurv. (11)

For further 100 k iterations, we recover detail by removing

the curvature loss and adding the regularization of the color

network λ3LLipschitz.

In addition, we initialize our network with the SDF of a

sphere at the beginning of the optimization and anneal the

levels L of the hash map in a coarse-to-fine manner over

the course of the initial 10 k iterations. We refer to the sup-

plementary material for more details regarding the hyperpa-

rameters λ1−3.

6. Acceleration

Similar to other volumetric rendering methods, a major

bottleneck for the speed is the number of position samples

considered for each ray. We use several methods to acceler-

ate both training and inference.

6.1. Occupancy Grid

In order to concentrate more samples near the surface of

the SDF and have fewer in empty space, we use an occu-

pancy grid modeled as a dense grid of resolution 1283.

We maintain two versions of the grid, one with full pre-

cision, storing the SDF value at each voxel, and another

containing only a binary occupancy bit. The grids are laid

out in Morton order to ensure fast traversal. Note that differ-

ently from INGP, we store signed distance and not density

in our grid. This allows us to use the SDF volume rendering
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Figure 5. Qualitative comparison of the geometry reconstructed by our method compared to the baselines. Note that our method recovers

significantly higher geometrical detail.

equations to determine if a certain voxel has enough weight

that it would meaningfully contribute to the integral Eq. 2

and therefore should be marked as occupied space.

We refer to the supplementary material for more details

on the update of the occupancy grid.

6.2. Sphere Tracing

Having an SDF opens up a possibility for accelerating

rendering at inference time by using sphere tracing. This

can be significantly faster than volume rendering as most

rays converge in 2-3 iterations towards the surface. We

create a ray sample at the first voxel along the ray that is

marked as occupied. We run sphere tracing for a predefined

number of iterations and march not-yet-converged samples

towards the surface (indicated by their SDF being above a

certain threshold). Once all samples have converged or we

reached a maximum number of sphere traces, we sample

the color network once and render.

We show in Fig. 4 that by using sphere tracing we can

render in real time and can also trade-off rendering speed

against accuracy by varying the number of iterations.

6.3. Implementation Details

We implement the encoding h = enc(x; θ) using permu-

tohedral lattices in a custom CUDA kernel which slices in

parallel from all resolutions. The backward pass for updat-

ing the hashmap ∂h
∂θ

is also implemented in an optimized

CUDA kernel. We use the chain rule to backpropagate the

upstream gradients as: ∂L
∂h

∂h
∂θ

.

Additionally, since we require the normals

n = ∇g(enc(x)) for fitting the SDF, we also imple-

ment a kernel for calculating the partial derivative of

encoding h = enc(x; θg) w.r.t. to spatial position x, i.e.

∂h
∂x

. Again, the chain rule is applied with the autograd

partial derivative of g(.) as: ∂g
∂h

∂h
∂x

to obtain the normal.

Furthermore, since we use this normal as part of our loss

function Leik, we support also double backward operations,

i.e., we also implement CUDA kernels for ∂( ∂L

∂x
)/∂θ and

∂( ∂L

∂x
)/∂( ∂L

∂h
) Hence, we can run our optimization entirely

within PyTorch’s autograd engine, without requiring any fi-

nite differences.

7. Results

We evaluate our method on multiple datasets and report

metrics on the accuracy of both, the 3D reconstruction and

novel-view synthesis (NVS).

7.1. DTU Data Set

We evaluate the quality of 3D reconstruction on the

DTU [10] dataset, which consists of 2D images of ob-

jects and ground-truth 3D point clouds. The objects span a

wide range of materials with different specularities, which

can pose a challenge for classical multi-view reconstruction

methods. Each object is captured with ≈ 50 images and

we use every 8-th image for testing and the rest for train-

ing. We evaluate against NeuS [30] which is our baseline,

INGP [18] which is state-of-the-art in NVS rendering, and

COLMAP [25], a classical multi-view stereo method.

We show qualitative results of the extracted meshes

in Fig. 5, where we train all methods without any mask su-

pervision. Our method surpasses the level-of-detail of the

other methods and is robust to view-dependent and untex-

tured areas.

We report quantitative Chamfer distance results in Tab. 1,

comparing reconstruction with and without mask supervi-
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Figure 6. Given high-resolution synthetically rendered images, our

approach can recover small details like pores and wrinkles. Please

refer to the suppl. material for reconstructions of other methods.

w/ mask w/o mask

INGP NeuS Ours COLMAP INGP NeuS Ours
ScanID [18] [30] [25] [18] [30]

scan24 1.73 0.83 0.53 0.81 1.56 1.00 0.52

scan37 1.79 0.98 0.67 2.05 2.15 1.37 0.75

scan40 1.46 0.56 0.34 0.73 1.45 0.93 0.41

scan55 0.86 0.37 0.37 1.22 0.76 0.43 0.37

scan63 1.70 1.13 0.94 1.79 1.62 1.10 0.90

scan65 1.57 0.59 0.59 1.58 1.33 0.65 0.66

scan69 1.66 0.60 0.57 1.02 1.63 0.57 0.59

scan83 1.56 1.45 1.22 3.05 1.79 1.48 1.37

scan97 1.83 0.95 0.78 1.40 2.16 1.09 1.07

scan105 1.55 0.78 0.66 2.05 1.45 0.83 0.85

scan106 1.23 0.52 0.49 1.00 1.25 0.52 0.46

scan110 1.75 1.43 0.73 1.32 1.91 1.20 0.98

scan114 1.71 0.36 0.35 0.49 1.76 0.35 0.33

scan118 1.44 0.45 0.41 0.78 1.24 0.49 0.39

scan122 1.31 0.49 0.47 1.17 1.47 0.54 0.50

mean 1.54 0.77 0.61 1.36 1.57 0.84 0.68

Table 1. Quantitative Chamfer distance evaluation on the DTU

dataset. COLMAP results are achieved by trim=0.

NeuS NeRF INGP Ours NeuS NeRF INGP Ours
ScanID [30] [16] [18] ScanID [30] [16] [18]

scan24 26.76 27.54 28.77 30.06 scan97 29.30 30.46 29.43 30.45

scan37 25.84 26.54 26.34 27.29 scan105 34.50 35.51 36.20 36.85

scan40 27.25 28.53 28.97 30.43 scan106 34.12 34.86 35.05 36.27

scan55 28.09 30.39 31.20 32.45 scan110 32.46 32.87 32.16 34.52

scan63 34.24 35.25 36.72 36.32 scan114 30.01 30.82 31.04 31.26

scan65 33.83 33.42 34.13 34.00 scan118 36.73 36.87 37.91 38.70

scan69 29.94 30.22 29.63 30.49 scan122 37.89 37.77 38.64 39.74

scan83 39.02 40.12 40.29 40.81 Mean 31.99 32.74 33.10 33.97

Table 2. Quantitative PSNR comparisons on the task of novel view

synthesis without mask supervision.

sion. In both cases, our method significantly outperforms

the competing approaches.

Additionally, we evaluate the quality of novel-view syn-

thesis on the same dataset in Tab. 2. One can observe that

we surpass NeuS, NeRF, and in most cases also INGP. This

is due to the fact that our method reconstructs the underly-

ing geometry more faithfully, making it easier to generalize

the rendering to novel views.

7.2. Multiface Data Set

Reconstructing human figures is especially difficult as

they exhibit multiple view-dependent effects and fine de-

tails that need to be captured. To evaluate this, we use the

Multiface datset [32]. It consists of human subjects that

were captured with a dome of ≈ 40 high-resolution cam-

eras while performing various facial expressions.

Fig. 7 shows a qualitative comparison between our re-

construction and NeuS. Our method is more detailed than

NeuS, but it still struggles with very fine detail like hair

where it usually learns to create hair-like streaks in the ge-

ometry in order to model eyebrows and beards.

7.3. Rendered Head Images

Since the Multiface dataset was captured with real cam-

eras, they exhibit several camera issues like depth-of-field

effects and inaccurate color calibration which can prevent

our method from learning more detail. To evaluate what

can be achieved with perfect camera conditions, we render

realistic images of a head figure [4] using the EasyPBR ren-

derer [24]. Since the virtual cameras are perfectly calibrated

and without defects, this can be seen as an upper bound on

the quality that can be achieved with our method. We show

in Fig. 6 that we are capable of recovering details at the

level of pores and wrinkles which cannot be achieved with

previous learning-based volumetric rendering methods.

7.4. Performance

We evaluate the performance of our proposed permuto-

hedral lattice for inference and training and compare it to

the cubical voxels used in INGP. We encode a batch of 219

random points and set both hash maps to a capacity T =218,

L= 24 levels, and F = 2 features per entry. In Fig. 3 one

can observe that our permutohedral lattice outperforms the

cubical lattice during training and for dim.>2 during infer-

ence; with a larger gap for higher dimensions. This is to be

expected since the number of vertices per simplex scales

linearly with the dimensionality instead of exponentially.

The only exception is in 2D, where a square lattice accesses

four vertices per simplex while we access three—not much

of an improvement and the cost of finding the simplex and

calculating barycentric coordinates dominates.

7.5. Ablation Study

We perform an ablation study of the components that we

propose for PermutoSDF in Fig. 8. While sphere initial-

ization and coarse-to-fine optimization help in recovering a

smoother shape, they don’t fully fix the issue of holes in the

geometry. Adding the curvature loss solves most of the is-

sues but also severely over-smoothes the object and results

in a higher Chamfer distance. Adding RGB regularization

via the Lipschitz loss is crucial to recover high-frequency

details and obtaining the lowest Chamfer distance.



G.T Ours PSNR: 34.92 NeuS PSNR: 33.49 Ours NeuS

Figure 7. Qualitative comparison between our method and NeuS on the Multiface dataset. We can recover finer detail with higher PNSR.

Naive optimization +Sphere init +Coarse-to-fine +Curvature loss +RGB regularization Reference image

0.950 1.032 1.012 1.189 0.929 Chamfer distance

Figure 8. Ablation study of the various components of our method. A naive combination of hash-based encoding and implicit surfaces can

lead to undesirable holes and overly smooth geometry. Adding sphere initialization and coarse-to-fine optimization helps with recovering

smoother surfaces especially for highly specular areas. Adding a curvature loss helps further in remedying the issue of holes but uniformally

smoothes the geometry. Adding RGB regularization forces the network to reconstruct the fine details.

Figure 9. 4D surface. Using our lattice we can efficiently learn

surfaces that evolve in time. Here we visualize the learned geom-

etry of a 4D model while we sweep through the time dimension.

7.6. 4D Spatiotemporal Surface

Since our lattice representation scales better in higher

dimensions, we also include an experiment of encoding

the surface of an object evolving through time as shown

in Fig. 9. We directly fit the geometry of the 4D model by

supervising with batches of orientated point samples from

the surfaces of animated meshes. The loss function is sim-

ilar to the one introduced in SIREN [26] and we refer to

the supplemental for more details. Our method successfully

learned the evolving shape and can generate intermediate

shapes by sweeping through time.

We note that learning 4D directly from images, similar

to D-Nerf [23], is also possible. However, since the exten-

sion of the occupancy grid to 4D is not trivial and additional

losses may also be needed to ensure smoothness in the time

dimensions, we leave this for future work.

8. Conclusion

We proposed a combination of implicit surface repre-

sentations and hash-based encoding methods for the task

of reconstructing accurate geometry and appearance from

unmasked posed color images.

We improved upon the voxel-based hash encoding by us-

ing a permutohedral lattice which is always faster in train-

ing and faster for inference in three and higher dimensions.

Additionally, we proposed a simple regularization scheme

that allows to recover fine geometrical detail at the level of

pores and wrinkles. Our full system can train in ≈ 30min
on an RTX 3090 GPU and render in real-time using sphere

tracing. We believe this work together with the code release

will help the community in a multitude of other tasks that

require modeling signals using fast local features.
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[29] Dávid Terjék. Adversarial Lipschitz regularization. In 8th In-

ternational Conference on Learning Representations (ICLR),

2020. 5

[30] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku

Komura, and Wenping Wang. NeuS: Learning neural im-

plicit surfaces by volume rendering for multi-view recon-

struction. In Advances in Neural Information Processing

Systems 34 (NeurIPS), pages 27171–27183, 2021. 1, 2, 3,

6, 7

[31] Thomas Whelan, Renato F. Salas-Moreno, Ben Glocker, An-

drew J. Davison, and Stefan Leutenegger. ElasticFusion:

Real-time dense SLAM and light source estimation. Inter-

national Journal of Robotics Research (IJRR), 35(14):1697–

1716, 2016. 1, 2

[32] Cheng-hsin Wuu, Ningyuan Zheng, Scott Ardisson, Rohan

Bali, Danielle Belko, Eric Brockmeyer, Lucas Evans, Timo-

thy Godisart, Hyowon Ha, Alexander Hypes, Taylor Koska,

Steven Krenn, Stephen Lombardi, Xiaomin Luo, Kevyn

McPhail, Laura Millerschoen, Michal Perdoch, Mark Pitts,

Alexander Richard, Jason Saragih, Junko Saragih, Takaaki

Shiratori, Tomas Simon, Matt Stewart, Autumn Trimble,

Xinshuo Weng, David Whitewolf, Chenglei Wu, Shoou-I Yu,

and Yaser Sheikh. Multiface: A dataset for neural face ren-

dering. arXiv preprint arXiv:2207.11243, 2022. 7

[33] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-

ume rendering of neural implicit surfaces. In Advances in

Neural Information Processing Systems 34 (NeurIPS), pages

4805–4815, 2021. 1, 2

[34] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan

Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-

ral surface reconstruction by disentangling geometry and ap-

pearance. In Advances in Neural Information Processing

Systems 33 (NeurIPS), pages 2492–2502, 2020. 2

[35] Yuichi Yoshida and Takeru Miyato. Spectral norm regular-

ization for improving the generalizability of deep learning.

arXiv preprint arXiv:1705.10941, 2017. 5

[36] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. NeRF++: Analyzing and improving neural radiance

fields. arXiv preprint arXiv:2010.07492, 2020. 4

[37] Enliang Zheng, Enrique Dunn, Vladimir Jojic, and Jan-

Michael Frahm. PatchMatch based joint view selection and

depthmap estimation. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1510–1517,

2014. 2



PermutoSDF: Fast Multi-View Reconstruction with

Implicit Surfaces using Permutohedral Lattices

Supplementary Material

Radu Alexandru Rosu Sven Behnke

University of Bonn, Germany

{rosu, behnke}@ais.uni-bonn.de

S1. Training Details

For the first 100 k iterations, we train using the following

loss function:

L = Lrgb + λ1Leik + λ2Lcurv, (1)

where λ1 = 0.05, λ2 = 1.5. For the remaining 100 k it-

eration, we remove λ2Lcurv and replace it with λ3LLipschitz,

where λ3 = 1e−5.

For 3D point sampling, we first create 64 uniform sam-

ples along each ray. We restrict the samples to be within the

region that is defined as occupied by the occupancy grid.

Afterwards, we run two iterations of importance sampling,

each creating an additional 16 samples in the regions that

are close to the surface. Concentrating samples close to the

surface is crucial for recovering detail.

S2. Synthetic Data Comparison

We train also NeuS [4] and INGP [2] on the synthetically

rendered head dataset described in Sec 7.3. The recovered

meshes are shown in Fig. 1.

S3. Rendering Strategy

We compare images rendered through volumetric in-

tegration to the ones using sphere tracing. We observe

that sphere tracing has the advantage of being significantly

faster, as most rays converge towards the surface in few iter-

ations. However, grazing surfaces require an arbitrary num-

ber of iterations and since we use a maximum of 20 itera-

tions, these grazing surfaces may exhibit artifacts. A com-

parison between volumetric rendering and sphere tracing is

shown in Fig. 2.

S4. Tetrahedron vs Cube

Apart from the speed improvements of using a permuto-

hedral lattice instead of a hyper-cubical one, we are also in-

terested on maintaining the encoding quality and therefore

Ours NeuS INGP

Figure 1. We train our method, NeuS [4], and INGP [2] on the

synthetically rendered dataset, described in Sec 7.3. We recover

significantly more small detail than the other two methods. Best

viewed zoomed-in.

Sphere trace 42 ms Volume render 2383 ms

Figure 2. Sphere tracing is significantly faster than volumetric ren-

dering, but it suffers from artifacts at surfaces with a grazing angle.

the reconstruction details. We reconstruct the same scene

with both permutohedral encoding and cubical encoding as

described in INGP [2]. We set the hash maps of both ap-

proaches to the same number of parameters, features per

layer, and levels. We also extended the cubical lattice with

the coarse-to-fine optimization in order match the optimiza-

1



Tetrahedron Cube

Chamfer distance: 0.958 Chamfer distance: 0.965

PSNR: 34.69 PSNR: 34.72

Figure 3. We reconstruct the same scene using cube encoding and

permutohedral encoding. We did not observe significant differ-

ences in the reconstruction quality.

tion behavior of the permutohedral lattice. In Fig. 3, we

show both reconstructions and compare their Chamfer dis-

tance and PSNR values for novel-view synthesis. We did

not observe a significant difference in the reconstruction

quality.

S5. Occupancy Grid Update

We initialize an occupancy grid with all the voxels be-

ing occupied and with an initial SDF that is constant zero.

This ensures that we sample everywhere at the beginning of

training.

For updating the occupancy grid, we use the following

steps:

• Every 8th iteration of training, we sample 218 random

points within the bounding box that contains the scene.

• We obtain the SDF value sx for each point x by run-

ning a forward pass through the model.

• We obtain the old SDF value sold stored for the voxel

in which the point falls into.

• We compute a new SDF value for this voxel snew as

the exponential average of the old SDF for the voxel

and the SDF for the point: snew = sold + 0.3(sx −
sold).

• Since we are discretizing the SDF to a grid, and we

don’t want to miss any possible low SDF values that

we would want to sample, we compute the minimum

possible SDF that can be reached within this voxel un-

der the assumption of perfect Eikonal loss. For this,

we use: smin = max(0, |snew| − d), where d is the

length of the voxel diagonal.

• Using the logistic density distribution as described in

NeuS [4], we compute the weight that this sample

would contribute to the volumetric render—assuming

no obstruction from other samples:

w = a · e−a·smin/(1 + e−a·smin)2.

• If the weight w falls bellow a specified threshold, we

set the voxel to unoccupied and therefore don’t create

samples within it anymore.

S6. Color Calibration

We observe that some datasets exhibit images with dif-

ferent exposure times. This discrepancy between images

can influence both the reconstruction and the obtained color

field as the network would try to explain the variability with

view-dependent effects. We circumvent this by learning a

per-camera gain g = (1 +∆g) and bias b so that the recon-

structed color for each camera is c = σ(ĉ · g + b), where ĉ
is the raw color output from the network and σ is a sigmoid

function that restricts the color to the correct range. We set

a selected camera (usually the first one from the dataset) to

have g = 1 and b = 0 and apply weight decay to ∆g and b
to further ensure that the calibration doesn’t alter the colors

unnecessarily.

S7. 4D Spatial-temporal Surface

For fitting a 4D surface, we sample random points from

animated 3D meshes. These 3D points are concatenated

with a time dimension that ranges from 0 to 1, where 0 is the

start time of the animation and 1 is the end. We define these

4D samples at the surface of the mesh as xs. We also com-

pute the normal ns for each on the surface samples. We ad-

ditionally define random 4D samples in a bounded domain

around the animated mesh which we denote with xr After-

wards, we learn a model g(h; Φ) together with an encoding

h = enc(x; θ) that maps from the 4D coordinate to an SDF

value. For this, we follow the approach of SIREN [3] and

use a loss of the form:

Lsdf =
∑

xs∪xr

(∥∇g(enc(x))∥ − 1)
2

+
∑

xs

∥g(enc(x)∥

+
∑

xs

(∇g(enc(x)) · ns − 1)

+
∑

xr

exp(−α · |g(enc(x))|).

(2)
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Figure 4. We experiment with the number of input images for

our method. We observe significant degradation at around 7 input

images and a failure to converge at 3 images.

In this 4D experiment, no explicit smoothness was en-

forced in the temporal domain since we didn’t find it nec-

essary. We sample from an animation of 100 frames so the

temporal resolution is relatively high. At lower temporal

resolution, smoothness might again become a concern.

Nevertheless, this approach shows that our model can

deal with 4D representations onto which further ideas, like

dynamic deformation fields, can be built upon.

S8. Number of Cameras

In order to study the robustness of our method to the

number of input images, we vary the number of images used

for reconstruction as shown in Fig. 4. Due to the curvature

loss, our method can recover smooth but plausible surfaces

even with as low as seven input images. However, for a

smaller number of input images we observe a high likeli-

hood of not converging to the correct surface.

S9. Training schedule

We follow a fixed training schedule over 200k iterations.

This includes a phase where we train with curvature loss in

order to recover the rough shape, and another phase with

RGB regularization to recover detail. In order to study the

robustness of our method to this schedule, we expand and

contract the schedule to be as long as 300k iteration or as

short as 50k iterations and show the results in Fig. 5. By

modifying the schedule, we proportionally expand or con-

tract the time that is spent optimizing the sphere, training

with high curvature, and training with RGB regularization.

We observe that the model is quite robust to different sched-

ules and only for the very short ones it fails to recover some

of the geometry. In general, we found that view-dependent

effects like the highlight on the apple are the parts that take

the longest to converge to good geometry. Most objects

are reconstructed well with shorter schedules but our de-

fault schedule of 200k iteration is a good trade-off between

optimization speed and accuracy.

50k 100k 150k 200k (default) 300k

Figure 5. We follow a fixed training schedule that finishes after

200k iteration. We expand and contract this fixed schedule to be

shorter or longer in order to test robustness. We see that for a

schedule of 50k the method fails to reconstruct the geometry for

the highlight of the apple. Our default of 200k can recover good

geometry in reasonable time. A longer schedule results in better

reconstructions at the cost of more optimization time.

RGB input NeuS Ours

Figure 6. We observe that our model sometimes struggle with

very reflective surface like the metal on the scissors. It tends to

add noisy geometry to these surfaces in order to explain the view-

dependent effects. Object priors or a higher curvature loss for this

kind of objects could alleviate the issue.

S10. Reflective Surfaces

Our model tries to explain large color changes with

changes in geometry. This behavior can be detrimental in

the case of mirror-like surfaces. As we observe in Fig. 6,

NeuS recovers a smooth surface on the metal scissors while

our method exhibits more noise. This can be seen as a gen-

eral limitation of RGB reconstruction methods for which it

is difficult to know if the changes in color are from view-

dependent effects or from high-frequency geometry. A

model that learns object priors might perform better in these

cases.

S11. Thin Structures

An interesting case to test for our SDF-based method is

reconstructing thin structures. For this, we capture 14 im-

ages of a plant with relatively complex geometry with many

leafs and self occlusions. Fig. 7 shows a rendered novel

view and surface normals. Our method reconstructs accu-

rate color and plausible geometry. Despite some errors that

are to be expected given the low image count, it can recover

thin steams and leaves which shows that our method is ro-

bust to this kind of data.



RGB Normal at surface

Figure 7. Plant reconstruction is an especially difficult case since

it features many self-occlusions and thin structures. We observe

that our method can deal well with this kind of data despite using

only 14 images as input.

S12. Qualitative DTU Results

In Fig. 8 – Fig. 10, we show additional qualitative re-

sults from the DTU dataset [1]. We show extracted meshes

and error maps which represent the distance from each

mesh vertex towards the nearest point from the ground-

truth. Please note that the ground-truth can have holes in

areas of high reflectance or self-occlusion and this shows as

a bright yellow color in the error map.
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Figure 8. DTU qualitative comparison of extracted meshes and error maps.
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Figure 9. DTU qualitative comparison of extracted meshes and error maps.
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Figure 10. DTU qualitative comparison of extracted meshes and error maps.




