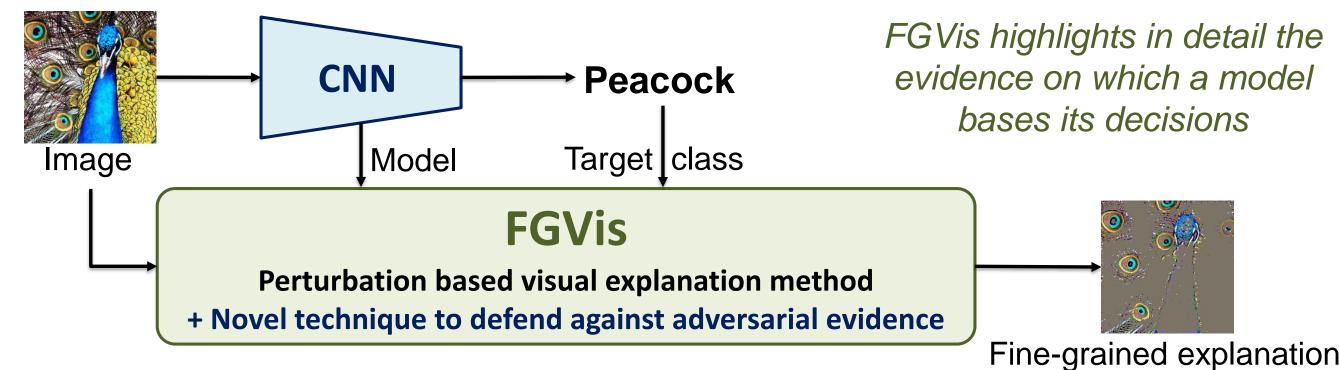
Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks

Jörg Wagner^{1,2}, Jan Mathias Köhler¹, Tobias Gindele¹, Leon Hetzel¹, Jakob Thaddäus Wiedemer¹, Sven Behnke² ¹Bosch Center for Artificial Intelligence ²University of Bonn

Overview

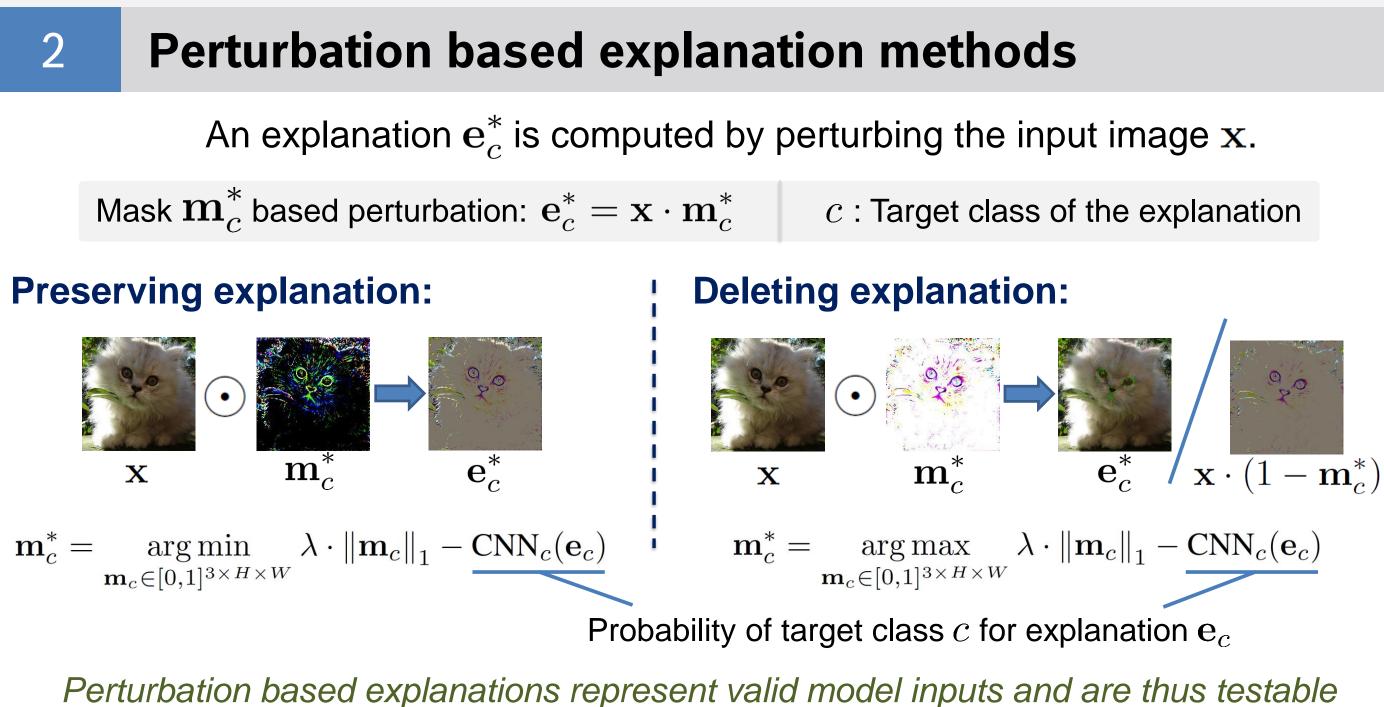
Motivation: A better understanding of the decision-making process of a CNN is required to provide hints for improving it. This allows to uncover and understand failure cases, limitations of the model, and shortcomings of the training data.

Fine-grained visual explanation method (FGVis):



Contributions:

- A method (**FGVis**) to generate **fine-grained explanations** in the image space.
- A novel technique for defending against adversarial evidence, which does not depend on human-tuned parameters.
- **Interpretable** and **class discriminative** explanations, visualizing **detailed** evidence.



Bosch Center for Artificial Intelligence (BCAI)

Fine-grained explanation

Defending against adversarial evidence 3

Drawback of perturbation based methods: Adversarial evidence, i.e. faulty evidence due to artefacts introduced in the optimization of the explanation.

	True class	Adversarial class					
			Model	VGG16	AlexNet	ResNet50	GoogleNet
	9 	and the second	Accuracy	100.0%	100.0%	100.0%	100.0%
p(agama) = 1.000 Image	p(agama) = 1.000 Expl./True class	p(limousine) = 1.000 Expl./Adversarial class Mask/Adversarial class	Accuracy o	f adversa	rial expl. o	on 1000 rai	ndom images

Without defense the optimization introduces adversarial evidence

Novel adversarial defense:

- **Idea:** The features in an explanation should be a subset of the image features.
- **Corresponding optimization constraint:**

$\int 0 \le h_i^l(\mathbf{e}_c) \le h_i^l(\mathbf{x}),$	if $h_i^l(\mathbf{x}) \ge 0, $	•
$\Big\{ 0 \ge h_i^l(\mathbf{e}_c) \ge h_i^l(\mathbf{x}), \Big\}$	otherwise,	•

Implemented via gradient clipping:

 $\gamma_i^l = \bar{\gamma}_i^l \cdot \mathbb{1}[h_i^l(\mathbf{e}_c) \le \max(0, h_i^l(\mathbf{x}))] \cdot \mathbb{1}[h_i^l(\mathbf{e}_c) \ge \min(0, h_i^l(\mathbf{x}))]$ Updated error-signal back-propagated through the *l*-th layer

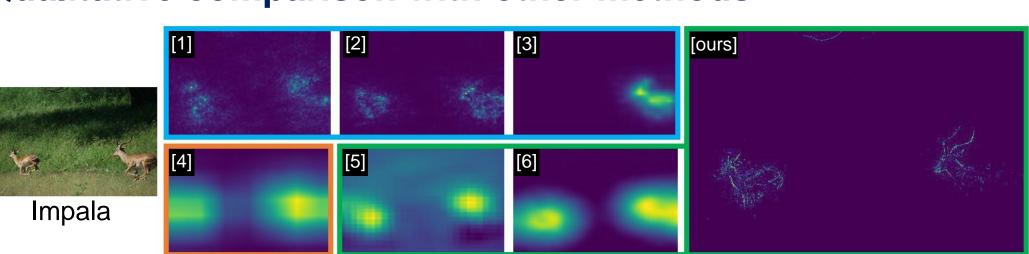
	True class	Adversarial class					
			Model	VGG16	AlexNet	ResNet50	GoogleNet
	p(agama) = 0.996	$\mathbf{p}(\mathbf{limousine}) = 0.000$	Accuracy	0.2%	0.0%	0.0%	0.0%
$\mathbf{p}(\mathbf{agama}) = 1.000$			Accuracy of	adversar	ial expl. c	on 1000 rai	ndom images
Image	Expl./True class	Expl./Adversarial class Mask/Adversarial class					

Our defense prevents the hallucination of adversarial evidence

Our defense does not depend on human-tuned parameters and enables an explanation which is both fine-grained and preserves the characteristics of the image

Experiments

Qualitative comparison with other methods



FGVis generates the most fine-grained explanation mask

bosch-ai.com

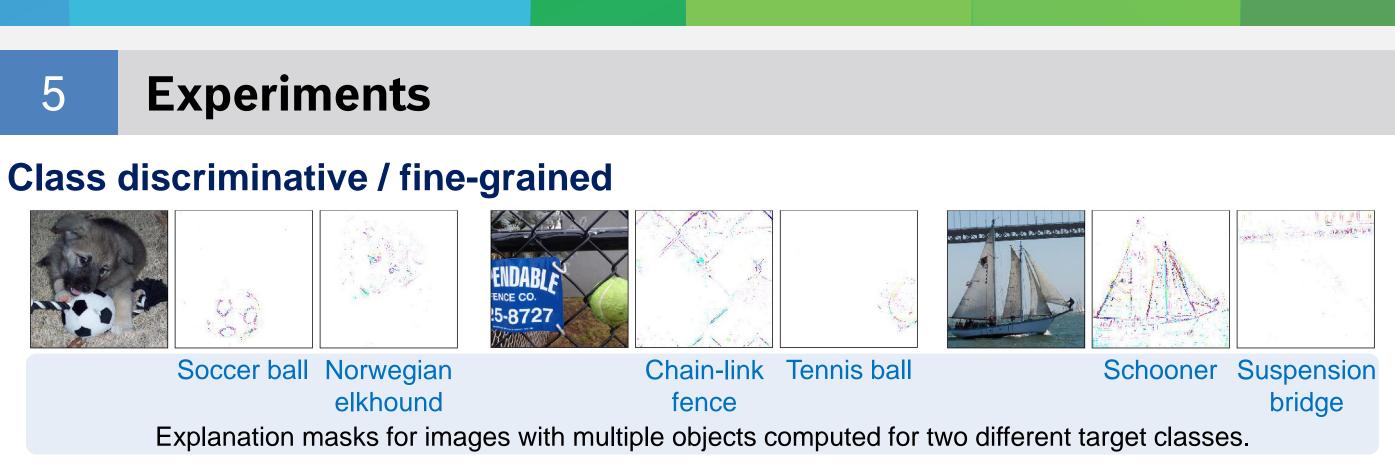
 $h_i^l(\cdot)$: Activation of the *i*-th neuron in the *l*-th layer. The constraint is applied after each nonlinearitylayer (e.g.: ReLU-Layer).

Indicator function

Backpropagation based methods [1,2,3]

Activation based method [4]

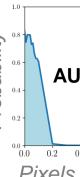
Perturbation based methods [5, 6, ours]



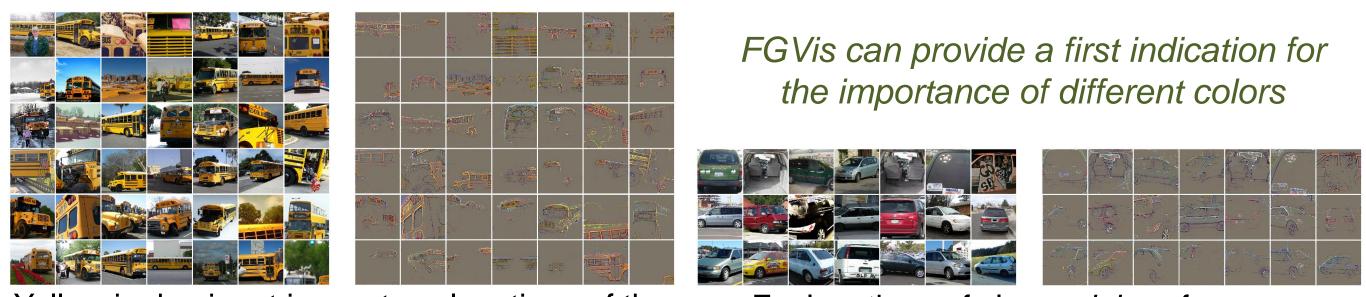
FGVis produces class discriminative explanations even when objects partially overlap

true evidence on which a model bases its decision?

Use explanation to gradually remove important pixels and monitor prediction



Color bias of VGG16 trained on ImageNet:



Yellow is dominant in most explanations of the class school bus

Quantitative verification: Ratio of maintained true classifications after swapping the color channels

6

References

[1] Karen Simonyan *et al*. (ICLR, 2014). Deep inside convol networks: Visualising image classification models and salier [2] Jost T. Springenberg et al. (ICLR, 2015). Striving for simple all convolutional net.

[3] Jianming Zhang et al. (ECCV, 2016). Top-down neural at excitation backprop.

[4] Ramprasaath R. Selvaraju (ICCV, 2017). Grad-CAM: Vis explanations from deep networks via gradient-based localization

Faithfulness of explanations: How accurate does an explanation represent the

ImageNet val. data RISE [7] 0.1076 0.098	Avg. AUC over Sliding Window [5] 0.1421 0.1158 LIME [8] 0.1217 0.1014		ImageNet val. data	E		0.0980
	.104 Avg. AUC over LIME [8] 0.1217 0.1014	0.4 0.6 0.8 1.0 s removed		FGVis [ours]	0.0644	0.0636
Grad-Cam [4] 0.1232 0.108				Method	ResNet50	VGG16

Explanations of class *minivan* focus on edges, not consistently preserving the color

Class	BGR	RBG	GRB	Avg. RBG, GRB
school bus	100%	9.5%	7.1%	8.3%
minivan	100%	71.4%	95.2%	83.3%

olutional ency maps.	[5] Matthew D. Zeiler and Rob Fergus (ECCV, 2014). Visualizing and understanding convolutional networks.
nplicity: The	[6] Ruth C. Fong and Andrea Vedaldi (ICCV, 2017). Interpretable explanations of black boxes by meaningful perturbation.
attention by	[7] Vitali Petsiuk <i>et al.</i> (BMVC, 2018). Rise: Randomized input sampling for explanation of black-box models.
isual zation.	[8] Marco T. Ribeiro <i>et al.</i> (SIGKDD, 2016). Why should I trust you?: Explaining the predictions of any classifier.

