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Abstract— Foundation models are a strong trend in deep
learning and computer vision. These models serve as a base for
applications as they require minor or no further fine-tuning by
developers to integrate into their applications. Foundation mod-
els for zero-shot object segmentation such as Segment Anything
(SAM) output segmentation masks from images without any
further object information. When they are followed in a pipeline
by an object identification model, they can perform object
detection without training. Here, we focus on training such
an object identification model. A crucial practical aspect for an
object identification model is to be flexible in input size (number
of input images). As object identification is an image retrieval
problem, a suitable method should handle multi-query multi-
gallery situations without constraining the number of input
images (e.g. by having fixed-size aggregation layers). The key
solution to train such a model is the centroid triplet loss (CTL),
which aggregates image features to their centroids. CTL yields
high accuracy, avoids misleading training signals and keeps the
model input size flexible. In our experiments, we establish a
new state of the art on the ArmBench object identification
task, which shows general applicability of our model. We
furthermore demonstrate an integrated unseen object detection
pipeline on the challenging HOPE dataset, which requires fine-
grained detection. There, our pipeline matches and surpasses
related methods which have been trained on dataset-specific
data. Code and pretrained models are available.5

I. INTRODUCTION

Object perception is a crucial prerequisite for many logis-
tics applications, such as mixed bin picking, which received
attention in the Amazon Robotics Challenge [2], [3]. Product
verification is another application where object identification
is required to eliminate mistakes, e.g., robots mistakenly
picking dummy objects like packaging material. Further use
cases include multi-order picking and handling of returned
goods.

The number of unique objects handled along supply chains
reaches millions, posing a significant challenge to object
perception systems. Mainly due to the limitations of current
object perception methods, many of the above use cases are
still not automated, but performed by human operators.

While deep-learning based methods have potential to en-
able automation of these applications, training data scarcity
has prevented their breakthrough so far. Recent releases of
public large-scale datasets such as ARMBench [4] and Mega-
Pose [5] are potential game changers. In addition, images
and data from warehouses themselves become available to
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Fig. 1. Overview of our method. We train an object identification backbone
on the large-scale ARMBench ID dataset using the centroid triplet loss
(CTL [1]), such that the backbone learns to associate query images of
objects in cluttered containers to matching gallery images. Crucially, the
CTL loss operates on centroids in feature space, allowing the aggregation
of an arbitrary number of input images. The trained backbone can then
be used for identification of unseen objects that were segmented using a
generic object segmentation method such as Segment Anything (SAM),
given corresponding gallery images.

researchers, as many retailers capture and offer images of
all of their products. Some, such as Walmart, even provide
API to retrieve these images for general use. These images
could serve as reference data to identify objects in warehouse
scenes.

Traditional methods for instance segmentation (such as
Mask R-CNN [6] and its derivatives) assume an object set
that is fixed at training time. This is a serious limitation as
any change in the set of objects requires extensive retraining.
Fine-tuning of segmentation models can mitigate this issue
to some extent, but it requires careful attention and is still
expensive. To address object set variability, methods for
zero-shot and few-shot object identification are a suitable
approach, as they do not require any adaptation. Recently,
there have been big advancements in zero-shot object seg-
mentation [7], [8]. Other advancements include category-
agnostic template matching [9] and object identification
based on multimodal large language models [10]. There
are several shortcomings in these methods, though. Recent
template matching methods as [9] handle only a single type
of object; this is due to template images being fed early in
the model layers. To detect multiple different object types,
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the methods need to be run repeatedly. This leads to long
execution times that are unpractical for some applications.
Furthermore, template matching methods are hard to enhance
as the segmentation and object identification/matching are
developed as a single black box. Fine-tuning a model to
eliminate specific drawbacks might not be possible. Methods
for object identification such as RoboLLM [10] tailor their
query-input size to the application. If the number of query
images changes, the model needs to be retrained. This
retraining might not even be possible for applications where
query images are collected automatically, which is a common
practice in many of off-the-shelf-software. RoboLLM can
also handle only one query object at a time.

In this paper, we assume the availability of a generic
zero-shot segmentation method and focus on the object
identification task, i.e. determining which class a segment
belongs to. Our objective is to develop a method for object
identification that is flexible in the number of input images
and scalable in the number of objects. Fig. 1 illustrates our
approach for object identification in the context of robotic
grasping. We train a backbone network that maps object
images to embeddings in an abstract feature space using
a centroid triplet loss (CTL) [1]. In this feature space,
our approach matches pre-captured object images (gallery
images) to query images, which are generated by a zero-shot
segmentation model or by application-specific segmentation
models. Our method allows for processing any number of
gallery and query objects, both described by an arbitrary
number of images.
Our contributions include:

1) an approach for training object identification back-
bones with the centroid triplet loss on large-scale
datasets,

2) evaluation of the backbones on ARMBench, where we
establish a new state of the art,

3) an integrated architecture for unseen object instance
segmentation with said backbone, and

4) evaluation and ablation of the entire pipeline on the
HOPE dataset, where we obtain comparable perfor-
mance to a method trained with object information.

In Section II, we discuss related work in detail. In Sec-
tion III, we provide details on the centroid triplet loss and
the training process for the ARMBench dataset. We report
the evaluation results in Section IV.

II. RELATED WORK

Pipelines working with unseen objects typically include
multiple stages with separate deep neural networks. As
shown in Fig. 2, typically these stages are zero-shot ob-
ject segmentation, object identification or matching, and
6D localization of unseen objects. The first and second
stage combined represent a module by themselves for 2D
segmentation of unseen objects. Large-scale datasets with
high variation are also a pillar for training these DNNs. This
section provides an overview of current research in each
stage and elaborates on its limitations.

2D Segmentation of Unseen Objects
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Segmentation 

Object
Identification 

6D 
Localization 
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Objects

Fig. 2. Typical stages for handling unseen objects. Zero-shot segmentation
and object identification/matching represent by themselves a pipeline for
2D segmentation of unseen objects. Another stage is then optionally added
to perform 6D pose estimation of unseen objects.

The development of deep neural networks for zero-shot
object segmentation went through different stages. The
problem in the context of robotic grasping was known as
category-agnostic and unseen object instance segmentation.
SD-Mask-RCNN [11], UOIS [12], MSMFormer [13], and
INSTR [14] introduced different network architectures for
RGB, depth, or RGB-D modalities. Recently, the Segment
Anything Model (SAM) [7] introduced the promptable seg-
mentation task, where a prompt can be a set of points, a
bounding box, or even text. With a prompt grid covering the
input image, SAM can even be applied in a zero-shot ”seg-
ment everything” mode, returning a full (over-)segmentation
of the scene. In our approach, we use SAM as the segmen-
tation stage.

Classification can be either object-specific of category-
specific. Here we focus on the object identification/matching
which is object-specific. The object identification problem
falls under the image retrieval problem. This area was lacking
datasets that are big enough to achieve practical performance
until the release of the ARMBench dataset [4]. The dataset
contains multiple images both for query and for gallery (set
of object’s pre-captured images). The evaluation is carried
out in two situations: First using a single image of the
object in a bin before picking (pre-pick) and second using
multiple (3) images after grasping the object in isolation
(called post-pick). The post-pick includes the pre-pick image.
RoboLLM [10] achieved great accuracy on the ARMBench
dataset. It uses a variant of the BEiT3 [15] model followed
a Multi-Layer Perceptron (MLP) for feature aggregation.
A drawback of using MLPs is that the network can only
use a fixed number of query-images. RoboLLM trained two
different models to carry out the evaluation for pre-pick
and post-pick situations. In contrast, our approach is flexible
regarding the backbone choice and allows any number of
query or gallery images. It can also match multiple query
objects at once.

Deep template matching is an analogous approach to 2D
segmentation of unseen objects. HU et al. [9] and DTOID
[16] introduced different approaches to detect and segment
objects using only a few gallery images. While architec-
turally pleasing, combining segmentation and identification
in a single model is a hurdle that makes models harder to de-
velop and, most importantly, harder to analyze shortcomings.
In contrast, depending on a separate zero-shot segmentation
module allows us to leverage modern foundation models for
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Fig. 3. Full unseen object detector pipeline. A zero-shot segmentation method removes the background and produces object segments, which may be
over- or undersegmented and can overlap. Features are extracted by the identification backbone on both gallery images and segments. After finding closest
matches in feature space using cosine similarity, badly or un-matched items are rejected by a thresholding operation. Finally, the matches can be used to
construct a full instance segmentation of the scene.

this task and results in easy analysis of segmentation and
classification performance.

DoUnseen [17] and CNOS [18] pipelines focus on the 2D
segmentation of unseen objects. DoUnseen uses a variant of
Mask R-CNN to extract object segments followed by a ViT
model pre-trained on ImageNet for the object identification.
CNOS uses SAM followed by DINOv2 model for the object
identification. SAM-6D [19] follows a similar scheme as
CNOS for the 2D segmentation followed by a stage for 6D
localization trained using the MegaPose [5] dataset. These
three pipelines follow the scheme shown in Figure 2 and
can enhance their performance by replacing their object
identification/matching models with our backbone as we
surpass DINOv2 scores as shown in Section IV.

III. METHOD

In this section, we explain the centroid triplet loss and
training details necessary for applying it efficiently on large-
scale multi-query datasets such as ARMBench.

A. Centroid Triplet Loss for Object Identification

How object images should be fed to a model for training is
different to the related image retrieval and association tasks
(e.g. person re-identification). In person re-identification
datasets any of the gallery images could be used as a
positive sample as humans tend to look similar from different
perspectives. But in case of objects for robotic grasping,
different faces of an object can look very different from
each other. As shown in Figure 4, the front of an object can
be of different color and texture from the back or the side.
Training on single views would discard the relationship to the
other views, which is a valuable training signal. Therefore,
an object should be fed to the model as a whole. A solution
for this is to use the centroid triplet loss (CTL) as inspired

(a) Object X002W83UVZ

(b) Object X0013DYNU7

Fig. 4. Example objects from ARMBench that have gallery images
differing largely in texture. Treating each image on its own as a possible
match loses a valuable training signal—these belong together. Using CTL,
we treat objects as a whole.

by [1]. As shown in Fig. 1, all images of an object (both
query or gallery) are fed to a backbone and the resulting
features are aggregated to their mean. The triplet loss is then
calculated as follows:

Ltriplet = max (∥Ca − Cp∥2︸ ︷︷ ︸
L+

− ∥Ca − Cn∥2︸ ︷︷ ︸
L−

+ α, 0) , (1)

where Ca, Cp and Cn are the centroids of the query
object, the positive gallery object and the negative gallery
object, respectively. Finally, α defines the margin of this loss
function.

Since the number of images per object is not constant for
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Fig. 5. Batch computations during training. Each batch is filled with
triplets until the batch size is reached. Backbone feature vectors are extracted
in batched fashion. The resulting features are then aggregated to their
corresponding centroid using an index-add operation. Finally, the losses
are applied.

both query and galleries, efficient training requires careful
batch management. To keep an optimal batch size B, we
greedily keep adding triplets of the query as well as positive
and negative galleries with their corresponding images to the
batch until B is reached (see Fig. 5). The embeddings are
then extracted in typical batched fashion over all images.
Crucially, recording a corresponding centroid index ic for
each image allows efficient batched summation and division,
so that each object’s centroid can be computed directly.
Finally, the centroid triplet loss can be applied for each
triplet, also in batched fashion. This method of batching
and aggregation ensures optimal GPU utilization and scales
to multi-GPU training by centrally pre-computing the batch
splits for each epoch and then dividing the total number of
batches across GPUs.

During inference, we need a method to match the query
centroid q and the gallery images. For this, we use the cosine
similarity score

s(x, y) = 1− x · y
∥x∥2∥y∥2

(2)

and select the most similar gallery entry g with maximum
s(q, g). We discard matches with s < θ, where θ is a
hyperparameter. This will not only omit bad association,
but will particularly stop matching non-existing objects in
the query or the scene. For evaluation on the ARMBench
object test set this is not necessary, but the thresholding plays
an important role when evaluating the whole unseen object
instance segmentation pipeline.

B. 2D Segmentation of Unseen Objects

Figure 3 shows our full pipeline for the object detection.
For the zero-shot segmentation we use a combination of

Mask R-CNN from [6] and SAM [7]. The Mask R-CNN
is only responsible for background extraction. The Mask R-
CNN is trained on NVIDIA Falling Things dataset [20] with
only one class representing any warehouse object. The image
is then segmented by SAM and any segmentation masks
belonging to the background (according to Mask R-CNN) are
discarded. We note this method as (Mask R-CNN+SAM) in
our upcoming evaluation. As SAM is prompt-based, SAM
is prompted with a grid of points to segment all object
in the image. This can lead to many over- and under-
segmented masks that even overlap. We depend on the

(a) segmentation output (b) after classification

Fig. 6. Filtration of over/under-segmented masks by our object identifica-
tion model. The filtration also handles removing of background segments
and objects in gallery that are not present in the image.

thresholding operation defined above to filter the over- and
under-segmented masks as shown in Section IV.

IV. EXPERIMENTS

In this section, we carry out two evaluations: first on the
test set of the ARMBench object identification dataset [4]
and, second, on the HOPE dataset [21].

A. Object Identification on ARMBench

To train a model for object identification a dataset of
thousands of objects is required. This is what the object
identification section of the ARMBench dataset [4] provides.
It contains 190K gallery objects (Reference images) with
multiple images for each gallery object and contains 235K
query scene (Picks) also with multiple images for each query
object. This large number of objects provides enough data
to train a model that is able to generalize to new objects
at inference. From the 235K query scenes, 50k are used for
test.

We follow the evaluation protocol in [10] and report
the Recall@k metric for k ∈ 1, 2, 3. We also differentiate
between the pre-pick and post-pick situations, where pre-
pick is the captured image of the object inside the bin before
the robot arm grasps it. The post-pick situation includes the
pre-pick image and other images of the object while it is
grasped by the robot.

Our approach is generic to the actual backbone archi-
tecture. In our evaluation, we focus on ResNet [26] and
ViT [27]. Both models were pretrained on ImageNet. For
ResNet we select ResNet-50 and train for 100 epochs (1
week) on one A100 GPU with a learning rate of 1e-3, 1e-4
and 1-e5 for 40, 30 and 30 epochs, respectively. For ViT, we
use a ViT-b-16 instance and train for 100 epochs on eight
A100 GPUs (approximately three days) using SGD with a
learning rate of 0.05. Following Kumar et al. [28], we freeze
the first layer of the ViT model. To improve robustness,
we train an additional 100 epochs with data augmentation
(TrivialAugment [29]).

To prepare the model for single query images, we select
the first query image of ARMBench instead of the query
centroid during training with a random chance of 50%.



TABLE I
EVALUATION ON ARMBENCH OBJECT IDENTIFICATION TEST SET

Recall@1 Recall@2 Recall@3

Method # query images Trained on pre post pre post pre post

ResNet50-RMAC [22] any ImageNet 71.7 72.2 81.9 82.9 87.2 88.2
DINO-ViTS [23] any ImageNet 77.2 79.5 87.3 89.4 91.6 93.5
DINO-V2 [24] any ImageNet 72.3 75.1 84.2 87.5 89.7 92.6

ViT-b-16-CTL-instance (ours) any ArmBench 97.2 99.3 97.8 99.4 98.3 99.6
ViT-b-16-CTL-centroid (ours) any ArmBench 97.2 98.6 99.0 99.5 99.4 99.7
Resnet-50-CTL-instance (ours) any ArmBench 88.4 97.0 90.8 98.0 92.6 98.5
Resnet-50-CTL-centroid (ours) any ArmBench 86.9 94.3 94.5 98.1 96.9 99.0

RoboLLM [10] 1 or 3 ArmBench 97.8 98.0 97.9 98.1 98.0 98.2

We report the Recall@k metric for k ∈ 1, 2, 3 for the pre-pick and post-pick situations. Our ViT model
scores the highest accuracy on the test set for the multi-query (post-pick) situation. Using the closest gallery
object instance (shown as ”-instance”) gives higher accuracy than searching for the closest object centroid
(”-centroid”) and is thus recommended for inference.

TABLE II
EVALUATION ON THE HOPE VALIDATION SET (BOUNDING BOXES)

Method Training on HOPE AP AP50 AP75 APM APL AR1 AR10 AR100 ARM ARL

Mask R-CNN HOPE-Video 0.196 0.377 0.206 0.090 0.200 0.231 0.294 0.294 0.087 0.298
Bonani et al. [25] Meshes + unlabeled HOPE-Video 0.338 0.552 0.364 0.172 0.380 0.387 0.452 0.452 0.220 0.457

SAM + DINOv2 none 0.316 0.431 0.346 0.180 0.317 0.339 0.383 0.383 0.217 0.386
SAM + ViT-CTL (Ours) none 0.349 0.494 0.377 0.105 0.367 0.384 0.438 0.438 0.148 0.447

DINOv2 (GT masks) none 0.581 0.581 0.581 0.277 0.587 0.582 0.671 0.671 0.275 0.679
Ours (GT masks) none 0.740 0.740 0.740 0.277 0.755 0.680 0.776 0.776 0.275 0.791

We report the standard COCO metrics. Note: APS and ARS are not applicable, since the dataset does not contain ”small” segments. Highest
numbers (except for ground truth baselines) are highlighted in bold. The segmentation method (Mask R-CNN+SAM) is simply denoted (SAM)
in this table.

TABLE III
EVALUATION ON THE HOPE VALIDATION SET (SEGMENTATION)

Method Training on HOPE AP AP50 AP75 APM APL AR1 AR10 AR100 ARM ARL

Mask R-CNN HOPE-Video 0.182 0.354 0.188 0.031 0.186 0.212 0.272 0.272 0.030 0.279
Bonani et al. [25] Meshes + unlabeled HOPE-Video 0.333 0.564 0.378 0.202 0.373 0.371 0.434 0.434 0.240 0.441

SAM + DINOv2 none 0.337 0.436 0.371 0.171 0.340 0.359 0.405 0.405 0.217 0.409
SAM + ViT-CTL (Ours) none 0.374 0.520 0.403 0.099 0.395 0.405 0.462 0.462 0.135 0.472

DINOv2 (GT masks) none 0.581 0.581 0.581 0.277 0.587 0.582 0.671 0.671 0.275 0.679
ViT-CTL (GT masks) none 0.740 0.740 0.740 0.277 0.755 0.680 0.776 0.776 0.275 0.791

We report the standard COCO metrics. Note: APS and ARS are not applicable, since the dataset does not contain ”small” segments. Highest
numbers (except for ground truth baselines) are highlighted in bold. The segmentation method (Mask R-CNN+SAM) is simply denoted (SAM)
in this table.

Table I shows the result of our trained ViT and ResNet. We
compare our model to ResNet-50-RMAC [22] and DINO-
ViTS [23] which are trained on ImageNet as evaluated in
the ARMBench dataset paper [4]. Our variant with ViT
scores the highest post-pick results among all methods. It
is also worth noting that the accuracy of the ViT increases
from 97.2 % to 99.3 % when using multiple query images
(post-pick) instead of a single image (pre-pick). This shows
the accuracy can increase with the addition of more query
images, which is useful in applications where more query
images are collected automatically.

B. 2D Segmentation of Unseen Objects

In this section we evaluate the whole pipeline on the
HOPE6 dataset (validation split). The reason we choose the

HOPE dataset is that its objects look very similar, requiring
fine-grained classification, which is challenging for an object
identification model and tests the hard upper limits of the
model. The evaluation is done using the COCO metrics for
bounding box detection and segmentation. Similar to other
datasets in the BOP format, the HOPE dataset offers modal
(visible) and amodal (full) masks of the objects in 2D. Here
we evaluate with modal masks. The gallery images are taken
manually for each object covering all the unique faces of
each objects. The gallery images are then augmented by
rotating each image multiples of 45 degree.

We offer two baselines: First, we train a Mask R-CNN

6Evaluation was conducted using HOPEv1 [21]. A more recent version,
HOPEv2, was subsequently released in May 2024 for the BOP challenge
2024.



(a) using GT masks

(b) using Mask R-CNN+SAM

Fig. 7. Qualitative examples of segmentation and identification on the HOPE dataset. Green color represents objects that have been segmented and
identified correctly. Red color represents segments that are identified as a wrong class.

model in supervised fashion for instance segmentation using
the HOPE-video dataset [30]. We note that this baseline
requires an annotated training set. The second baseline
considers the case where object models and unlabeled real
data is available. For this unlabeled data the HOPE-Video
dataset is used but the labels are disregarded and not used.
For this second baseline, we apply the method of Bonani
et al. [25], which trains a semantic segmentation network
in supervised fashion on synthetic data, and uses SAM to
regularize the network’s output on the unlabeled real data.
We note that this method produces a semantic segmentation,
which is then converted to instance segmentation by finding
connected components. This adaptation is obviously sub-
optimal when objects of the same class overlap.

We evaluate our pipeline for 2D segmentation of unseen
objects once with a pre-trained DINOv2 backbone and once
with our object identification model. Each backbone is again
evaluated twice: Once with the full pipeline, and once with
ground truth segment masks. The evaluation with the ground
truth masks helps estimate the contribution of the zero-
shot segmentation and our object identification model to
performance. For these evaluations we use a cosine similarity
score threshold of θ = 0.6. As described in Section III
(Eq. (2)), if score of the best match is lower than θ we
discard this query segment as it might be an object that is
not present in the gallery or an over-/under-segmentation.

Tables II and III show quantitative results with metrics
calculated on bounding boxes and segmentation masks,
respectively. Interestingly, our method clearly outperforms
Mask R-CNN, which was trained in supervised fashion.
This may indicate that the (comparably small) domain shift
between HOPE and HOPE-Video is difficult for this purely
supervised method to overcome. Furthermore, the method
of Bonani et al. [25] also beats Mask R-CNN, showing
the usefulness of synthetic data generated from the object
models, even in the absence of annotations on real training
data. Our full pipeline matches and even surpasses this
performance in most metrics, which is highly interesting as

this baseline has access to object models and unlabeled real
data. Finally, we can see that our object identification model
surpasses DINOv2 across all COCO metrics. When removing
the effects of segmentation & segment filtering by using
ground truth masks, our model scores an AP of 0.740 against
DINOv2 with an AP of 0.581 making our model score 27.4%
higher than DINOv2. This supports our claim that our model
can enhance pipelines for unseen object detection that are
using DINOv2 such as CNOS [18] or SAM-6D [19].

Another interesting result is the filtration our object identi-
fication model can contribute. Figure 6 (a) shows the output
of the zero-shot segmentation with SAM. Figure 6 (b) shows
how our model filters the over-segmented masks as they score
below the threshold.

Finally, we show exemplary qualitative results in Fig. 7.

V. CONCLUSION

In this work we introduced how to use the centroid
triplet loss for training models for object identification. We
successfully showed that CTL scores the highest accuracy
on the ARMBench test set. In particular, the trained model
is able to process any number of query or gallery images.
It is capable of matching multiple query object to multiple
gallery object at once, shortening inference time. The model
performance surpasses DINOv2 on ARMBench and can
serve as an improved backbone for 2D segmentation and
6D localization of unseen objects. The near-perfect score
on ARMBench indicates that it can be used in real-world
applications.

When combined with a generic zero-shot segmentation
method such as SAM, the result is a complete segmenta-
tion pipeline. While performance on the challenging HOPE
dataset is still limited in absolute terms, our pipeline beats
several related methods that can access object information
during training. Tighter integration with the segmentation
module and intelligent proposal filtering might improve
results further.
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