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Abstract— Many objects such as tools and household items
can be used only if grasped in a very specific way—grasped
functionally. Often, a direct functional grasp is not possible,
though. We propose a method for learning a dexterous pre-
grasp manipulation policy to achieve human-like functional
grasps using deep reinforcement learning. We introduce a
dense multi-component reward function that enables learning
a single policy, capable of dexterous pre-grasp manipulation
of novel instances of several known object categories with an
anthropomorphic hand. The policy is learned purely by means
of reinforcement learning from scratch, without any expert
demonstrations, and implicitly learns to reposition and reorient
objects of complex shapes to achieve given functional grasps.
Learning is done on a single GPU in less than three hours.

I. INTRODUCTION

Grasping is a fundamental skill that manipulation robots

need for interacting with their environment. Many objects are

made for human hands and require a specific grasp for use.

For example, a drill requires a power grasp with the index

finger on the trigger. We refer to such grasps as functional.

Often, a functional grasp cannot be achieved directly because

the object is in the wrong pose. This can be addressed

with pre-grasp manipulation: repositioning and reorienting

the object until the desired functional grasp is achieved.

However, robustly performing interactive functional grasping

with a dexterous multi-finger hand is challenging. Solving

this problem will allow robots to use tools and functional

objects designed for humans.

Inspired by our previous work on functional re-

grasping [1], in this paper we propose a methodology

that replaces several complex classical components with a

single data-driven approach. Deep Reinforcement Learning

(DRL) has been applied to several complex dynamic robotic

domains [2], [3], [4], [5]. In this work, we use a highly

efficient GPU-based simulation [6] together with DRL to

learn a policy for dexterous pre-grasp manipulation. Many

approaches focus on learning the policies directly from

low-level sensory inputs, such as camera images and point

clouds [7], [8]. However, we argue that most of the data

points in these inputs, such as background pixels in an image,

are irrelevant to the manipulation policy most of the time.

Therefore, we assume that perception is performed by an

external method, and our approach is provided with high-

level semantic information about the scene. This speeds up
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Fig. 1: Top: Learning human-like functional grasping in

multiple parallel environments. Bottom: The learned policy

performs pre-grasp manipulation of a novel object instance

of a known category.

the learning process, since the policy can be represented by

a model with fewer parameters, and the simulation does not

need to perform expensive image rendering. By considering

multiple object instances within the same category, we fur-

ther reduce the inputs to the policy, as category-specific fea-

tures of object geometry and dynamics are implicitly learned.

Finally, we eliminate the need for expert demonstrations by

introducing a dense multi-component reward function. This

reward function naturally encourages the use of a dexterous

anthropomorphic hand for object manipulation.

To evaluate the proposed method, we learn a single policy

in simulation on three conceptually distinct rigid object

categories: drills, spray bottles and mugs. Using dense multi-

component reward, the policy learns to perform dexterous

pre-grasp manipulation on previously unseen object instances

of known categories (Fig. 1) with a high success rate. The

learning is performed in simulation in less than three hours

on a single GPU. The main contributions of this work are:

• a multi-component dense reward formulation that

quickly yields policies capable of dexterous pre-grasp

manipulation of novel objects using a multi-finger hand,

• a high-level state formulation and generic two-stage cur-

riculum that facilitates implicit category-specific object

geometry learning, and

• a functional grasping 3D mesh dataset with three object

categories.

II. RELATED WORK

Dexterous pre-grasp manipulation has been an active area

of research for decades. Multiple classical model-based
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approaches have been proposed [9], [10], [11], [12], [13].

They work for known objects with exact models, but require

carefully hand-crafted task-dependent algorithms and suffer

from uncertainty inherent in dexterous and highly dynamic

manipulation.

Specifically, in our previous work [1], we address func-

tional grasping of novel object instances of known categories

by means of re-grasping with a dual-arm robot. Although

showing good results, the approach consists of several highly

complex components and lacks an ability to swiftly react to

unforeseen changes of the object pose.

To alleviate these drawbacks, data-driven approaches have

been proposed. In particular, Deep Reinforcement Learning

(DRL) and Imitation Learning (IL) using Artificial Neural

Networks (ANN) to represent policies for dexterous manipu-

lation have gained much popularity in recent years [14], [15],

[16]. By learning purely from observed experiences and/or

provided demonstrations, these methods yield highly reactive

policies capable of dexterous multi-finger manipulation.

Zhou et al. [17] address pre-grasp manipulation of objects

in ungraspable configurations through extrinsic dexterity.

Their method uses model-free RL to learn pushing objects

against a wall in order to achieve a graspable pose. The

method uses minimalistic object representation, similar to

our approach. However, it has difficulties generalizing to

objects with complex non-convex shapes. In our approach

this issue is resolved by learned implicit category-specific

geometry knowledge. Similarly, Sun et al. [18] use model-

free RL to obtain a policy for a dual-arm robot which pushes

an object next to a wall and turns it in order to grasp it with

the other hand. Both works use parallel grippers, which make

the manipulation less dexterous.

Yuzhe et al. [8] train a dexterous manipulation policy for

an Allegro hand to grasp novel objects of a known category.

Their approach uses point clouds as input to provide informa-

tion about object geometry. The difference to our work is that

we specifically address functional grasping, while in their

work the grasps are arbitrary. Mandikal et al. [7] propose to

learn a policy with object-centric affordances to dexterously

grasp objects. Notably, the policy is learned with a prior

derived from observing manipulation videos, which requires

tedious annotation of human grasp regions in the observed

images.

A wide range of works are based on real-world expert

demonstrations [19], [20], [21]. These approaches have to

deal with challenges of mapping human motion to the

kinematics of the robot arm and hand. Hence, the direct

applicability to different robotic setups is not straightforward.

Chen et al. [22] address this issue by bootstrapping a

small dataset of human demonstrations with a larger dataset

including novel objects and grasps. The objects are deformed

and dynamically consistent grasps are generated. The policy

is then trained in a supervised manner in simulation, followed

by a direct transfer to the real world. This method struggles

with objects of complex shapes. In contrast, in our work

we avoid using explicit demonstrations and instead rely on

a general and dense reward function to guide the policy

towards dexterous manipulation.

A completely different approach was proposed by Dasari

et al. [23]: a combination of trajectory-centric formulation

with a pre-grasp based exploration primitive. The pre-grasp

based approaches were also introduced in [24], [25], [26]

and our approach shares the high-level idea with them. The

policy learns to perform a wide variety of tasks in simu-

lation without any per-task engineering. The key difference

to our work is that learned behaviors directly depend on

supplied exemplar trajectories. In addition, the manipulation

is performed by a freely floating hand, which relaxes multiple

constraints introduced by the kinematics of the robotic arm in

combination with object poses on the edge of the workspace.

To the best of our knowledge, there are no recent works

which address the problem of categorical pre-grasp manipu-

lation of novel objects in a context of functional grasping.

III. METHOD

The objective of this work is to learn a policy π which

achieves the desired behavior: pre-grasp manipulation of

novel object instances with aim of reaching a functional

grasp. The policy πθ is represented by a deep neural network

and is parameterized by weights θ, learned with DRL. The

problem is modeled as a Markov Decision Process (MDP):

{S,A, P, r} with state space S ∈ R
n, action space A ∈

R
m, state transition function P : S × A 7→ S, and reward

function r : S × A 7→ R. Since the problem has continuous

state and action space, the policy πθ(a|s) represents an

action probability distribution when observing a state s(t)
at timestep t.

The objective of DRL is to maximize the expected reward:

J(πθ) =

T
∑

t=0

E[γtr(s(t),a(t))], (1)

where γ ∈ [0, 1] is the discounting factor.

The policy is provided with a target functional pre-grasp to

reach, defined as a 6D hand pose in object frame plus hand

joint positions. This pre-grasp is very close to the desired

functional grasp, so that closing the hand will guarantee a

successful grasp. The advantage of a pre-grasp is that it

can be reached more freely and slight inaccuracies in its

definition are negligible, as discussed by Dasari et al. [23].

We assume that there is a single object in front of the robot

hand on a flat surface.

A. Action Space

The policy produces actions a(t) with a frequency of

30 Hz. An action represents a relative displacement in 3D

hand position, hand rotation changes, and hand joint position

increments. With this action definition, hand joint targets are

straightforward to obtain. The arm joint targets are calculated

via Inverse Kinematics (IK). Finally, the joints are controlled

with PD controllers. In this work we apply the proposed

method to a 6 DoF UR5e robotic arm with an attached

11 DoF Schunk SIH hand. The joints of the hand are coupled,

leaving five controllable DoF. Thus, in this work an action

is a 11-element vector: three elements define a displacement



Fig. 2: Composition of the state representation and the reward function. The state consists of information about the hand,

the object, and the target functional grasp. ”O” denotes object frame of reference. The reward function consists of a term

encouraging reaching the target grasp, a term encouraging pre-grasp manipulation, and a low manipulability score penalty.

of hand position, three elements define a displacement of

hand rotation as Euler angles and five elements define a

displacement of hand joint positions. We further assume a

five-fingered hand with five controllable DoF, however it

is straightforward to apply our approach to a hand with

arbitrary number of fingers and DoF.

B. State Space

The left part of Fig. 2 illustrates the vector s(t) repre-

senting the state, which consists of three distinctive parts:

information about the hand h, information about the object

o, and information about the target functional grasp g:

s = [h,o, g]. (2)

Information about the hand is a column vector:

h = [hp,hr,hj ,h
O
p ,h

O
r ], (3)

where hp is a 3D hand position vector, hr is a 4-element

hand rotation vector represented by a quaternion, and hj is

a 5-element hand joint position vector; hO
p and hO

r are hand

position and rotation in object frame of reference O. Thus,

information about the hand h is a 19-element vector.

Information about the object is a column vector:

o = [op,or,obb,os,oc], (4)

where op is 3D object position, or is a 4-element object

rotation vector represented by a quaternion, obb is a 6-

element vector representing object bounding box by two 3D

positions of diagonally opposing bounding box corners, os

is a 10-element vector of signed distances between fingertips

and middles of the fingers to the object surface, oc is a

C-element one-hot vector representing object category. Dis-

tances from fingers to object surface are efficiently calculated

from a precomputed object Signed Distance Field (SDF). We

adopted this approach from [27]. Thus, information about

the object is a (23+C)-element vector. The representation

is compact; however, the general geometric features of the

object categories are learned implicitly from the experience.

The desired functional grasp is provided as column vector:

g = [gO
p , gO

r , gj ], (5)

where gO
p is 3D hand position in object frame of reference,

gO
r is a 4-element hand rotation vector represented by a

quaternion, and gj is a 5-element hand joint position vector.

The target functional grasp is represented by a 12-element

vector. In practice, the functional grasps can be provided by

methods such as [28], [29].

Overall, for C = 3 the state is a 57-element vector. It

resembles a high-level semantic representation of the scene.

This compact state can be computed fast on a GPU and

thus facilitates quick learning. Moreover, compared to DRL

models which learn directly from raw visual inputs, smaller

models with fewer parameters can be used.

C. Reward Function

The right part of Fig. 2 illustrates the composition of the

reward function r(t) that is defined as:

r(t) = rgrasp(t) + rman(t) + rMP(t) + rT(t), (6)

where rgrasp encourages movement towards target grasp g,

rman encourages pre-grasp manipulation of an object, rMP

penalizes being in configurations with low manipulability,

and rT rewards reaching the target functional grasp g. Each

reward component is defined to be in [−1, 1] and described

in detail below. For brevity, we omit specifying dependency

on time t, unless necessary.

First, we define the distance function φ between two

quaternions q and q′ as the rotation between them:

φ(q, q′) = 2 arccos((q · q′−1)4). (7)

The grasp reward rgrasp is defined as:

rgrasp = rhp
+ rhr

+ λrhj
, (8)

where rhp
encourages moving the hand position towards

the target 3D grasp position, rhr
encourages moving the

hand rotation towards the target grasp rotation, and rhj

encourages moving hand joints positions towards target grasp

joint positions. λ ∈ [0, 1] is the grasp joint reward importance

factor. Overall, the rgrasp reward encourages to align hand

pose and joint positions with the target grasp pose and joint

positions. The hand position reward rhp
is defined as:

rhp
(t) =

∆hp(t− 1)−∆hp(t)

∆hmax
p

, ∆hp = ||hO
p − gO

p ||, (9)

where ∆hp is the Euclidean distance from the hand position

hO
p to the target grasp hand position gO

p . ∆hmax
p is a maximal

hand position change during the step duration ∆t: ∆hmax
p =

vmax
hp

∆t with vmax
hp

being the maximal linear velocity of the

hand. In case of the UR5e hand in this work vmax
hp

= 1m/s

and ∆t = 0.0333 s.



The hand rotation reward is defined as:

rhr
(t) =

∆hr(t− 1)−∆hr(t)

∆hmax
r

, ∆hr = φ(hO
r , g

O
r ), (10)

where ∆hr is a distance from the hand rotation hO
r to the

target grasp hand rotation gO
r , calculated according to Eq. 7.

∆hmax
r is a maximal hand rotation change during time ∆t.

It is defined analogously to ∆hmax
p . We use vmax

hr
= π rad/s.

Finally, the hand joint reward is defined as:

rhj
(t)=

∆hj(t−1)−∆hj(t)

∆hmax
j

,∆hj=
1

N

N
∑

i=0

|hji−gji |, (11)

where N is the number of controllable hand joints, ∆hj is an

average per-joint distance to the target grasp joint positions,

and ∆hmax
j is a maximal joint position displacement during

time ∆t. It is defined similarly to the maximal position and

rotation displacements, through maximal joint velocity. We

use vmax
hj

= π rad/s.

The hand joint importance factor λ is defined as:

λ=
(

1−
min(hprox

p ,∆hp)

h
prox
p

)(

1−
min(hprox

r ,∆hr)

h
prox
r

)

, (12)

where h
prox
p is a predefined constant, representing a proximity

distance between the hand position and the target grasp

position, from which the hand joint position reward becomes

active. We set it to the length of the hand. Similarly, h
prox
r is

a rotation proximity distance; we use h
prox
r = 1 rad. Overall,

λ leads to ignoring the hand joint reward when the hand

is far from the target grasp pose, and to use of fingers for

manipulation rather than pursuing yet distant target positions.

The manipulation reward rman is defined as:

rman = rreach + rhold + rorient, (13)

where rreach encourages moving the hand towards the object,

rhold encourages holding the object in the hand, and rorient

encourages orienting the object towards a nominal rotation,

where the target grasp is more likely to be reachable. Thus,

the manipulation reward term encourages a canonical reach

→ hold → orient behavior for pre-grasp object manipulation.

In this reward, all terms are only positive.

The hand reach reward is defined as:

rreach(t) =

∑K

k=1

(

d(Hpk
(t− 1))− d(Hpk

(t))
)

∆hmax
p

, (14)

where d is a function, taking a set of 3D points and returning

signed distances from the points to the object surface,

utilizing the precomputed object SDF. ∆hmax
p is a maximal

position displacement, defined in Eq. 9. Hp is a set of K

points positioned between the thumb and the other fingers,

described in detail below. In the context of this reward,

these points guide the hand towards a position where the

object is between the thumb and the other fingers, which is

advantageous for manipulation.

The object hold reward is defined as:

rhold =
1

K

K
∑

k=1

d(Hpk
)− ρ

dmax
k

, (15)

Fig. 3: Equidistant points between thumb tip and middle

finger tip & center, used to query distances to the object.

Red: central point, green and blue: distal points. When the

hand closes, the points move closer together, yielding higher

reward in case of a grasped object.

where ρ is a predefined constant radius of spheres with points

Hp as centers and dmax
k is a per-point maximum possible

distance from the point to the closest finger surface. The

set of hold-detect points Hp is positioned between the tip

of the thumb and between the tip and middle of the other

fingers. Thus, points between fingertips represent positions

where objects can be pinch-grasped; and points between the

thumb tip and middles of the fingers represent positions

where objects are grasped more securely. Each direction tip-

tip or tip-middle of a finger has three equidistant points.

This ensures a positive response when an object is positioned

between the thumb and other fingers imperfectly. When the

hand closes, the equidistant points come closer to each other,

which promotes closing the hand around an object. Note, that

the maximum rhold is achieved when fingers evenly embrace

the object, which naturally resembles a grasp. For simplicity,

we use only the thumb to middle finger line in this work,

which yields six points (Fig. 3). In practice, we observed

that this is sufficient to learn a grasping behavior.

The object orient reward is defined as:

rorient(t)=
∆or(t−1)−∆or(t)

π
,∆or=φ(or,o

nominal
r ), (16)

where ∆or is a distance from the object rotation to the nom-

inal object rotation onominal
r . A nominal rotation resembles

a natural object orientation as intended for functional use:

the object z-axis points upwards and the object x-axis (the

direction of the tool tip) points away from the hand. Although

there are many other feasible object orientations to perform

a functional grasp, we find that such definition is generic

and unbiased. In practice, it provides good guidance on how

to reorient an object when it is in a state where a direct

functional grasp is not possible.

The manipulability penalty reward is defined as:

rMP = 1− 2
/(

1 +
(min(|J|,|J|max)

|J|max

)3
)

, (17)

where |J | is a determinant of the end-effector Jacobian

J and |J |max is a maximum determinant value which is

penalized. We define |J |max to be 15% of maximal observed

|J | for a specific arm. This reward penalizes coming close

to singularities and leads to learning more intuitive motions.



Finally, the target grasp reward is defined as:

rT =

{

1 if ∆hp < Tp ∧∆hr < Tr ∧∆hj < Tj

0 otherwise,
(18)

where Tp, Tr, Tj are the distances thresholds for hand posi-

tion, rotation, and hand joint positions to the target grasp that

define the accuracy with which the target grasp is achieved.

We use Tp = 1 cm, Tp = 0.15 rad, and Tp = 0.1 rad. The

episode ends when reaching the target grasp.

A wide use of differential distances in our reward instead

of directly using the velocities naturally avoids learning over-

shooting behaviors. Note that all reward terms are defined in

a generic way, and can be easily configured for an arbitrary

robotic arm and hand. All reward components are defined

to be in the interval [−1, 1]. This allows to apply relative

scaling easily. For best performance, we scale the rewards

proportionally to frequency of their achievement: rT ≫
rorient ≫ rhold ≫ rreach. We leave the other rewards unscaled.

This reduces the probability that the policy gets stuck in local

minima created by accumulating rewards granted for actions

which can be achieved easier than the final goal.

To summarize, the multi-component reward function can

be split into three terms:

1) the manipulability penalty reward rMP penalizes being

close to singularities and thus helps to avoid unintuitive

behavior,

2) the grasp reward rgrasp encourages reaching the given

functional grasp, and

3) the manipulation reward rman encourages to reach,

hold, and reorient the object.

Each component is a continuous dense reward. The com-

ponents combine to effectively guide the policy towards

learning a robust dexterous pre-grasp manipulation. Finally,

a sparse component rT rewards reaching the target grasp.

D. Curriculum

In this work, we avoid having any explicit expert demon-

strations and focus on learning robust and natural policies for

object pre-grasp manipulation through pure DRL with dense

reward shaping. To facilitate faster and more stable learning,

we propose a simple two-stage curriculum. In the first stage,

we place the objects in poses where target functional grasps

can be reached directly. The second stage then has full

difficulty, taking advantage of the warm-start provided by the

first stage. During the first stage, the objects are put on the

table in their nominal poses 5 cm away from the inner side of

the hand. The arm is set to a neutral configuration with high

manipulability score. We disable the rman reward term during

the first stage, so that the policy can converge faster without

being stuck in potential multiple local minima. Note, that

this curriculum is agnostic to object-specific details. Thus,

we keep the approach general while achieving faster policy

convergence.

IV. EVALUATION

To evaluate the proposed approach, we apply it to the

6 DoF UR5e robotic arm with attached 11 DoF Schunk SIH

hand. The joints of this wire-driven hand are coupled, leaving

5 controllable DoF. With this evaluation we try to answer the

following questions:

• Does our approach reliably produce robust manipulation

policies, capable of dexterous pre-grasp manipulation of

unseen object instances of a known category?

• Does the multi-component manipulation reward rman

lead to policies with higher success rates?

• Does the curriculum improve convergence stability?

A. Setup

We use Proximal Policy Optimization (PPO) [30] to

train the policies. We employ the RL Games [31] high-

performance implementation for GPU parallelization. We

use findings of Mosbach et al. [27] as a base, keeping the

learning algorithm hyper-parameters the same. The policy is

represented by a three-layer fully-connected neural network.

In our case, the input is a 57-element vector. The network is

a multilayer perceptron and has the following structure:

57× 512 → 512× 256 → 256× 128 → 128× 11.

In our experiments, we pursue the objective of learning

a single functional grasping policy for three rigid objects

categories: drills, spray bottles and mugs. To this end, we

prepared a 3D mesh dataset of 39 objects: 13 of each

category, where ten objects are for training and the remaining

three objects are used for testing. The dataset was composed

of meshes from [32] and of meshes available online1. We

make the dataset available online2.

We use the high-performance GPU physics simulator

Isaac Gym [6]. The experiments are performed on a single

NVIDIA RTX A6000 GPU with 48GB of VRAM.

B. Experiments

In this work, we assume that the objects are located on

a flat surface in front of the robot. Thus, there are three

possible natural poses in which drills, spray bottles or mugs

can be: standing upright and laying on their left or right side.

All other possible poses on a flat surface are unstable and

transition quickly to the one of the described poses. Mugs

can also be positioned upside down; however, we do not use

this pose in our experiments to ensure that the results are

consistent and comparable between object categories.

Actions are generated with a frequency of 30 Hz. An

episode terminates when: (i) a target functional pre-grasp is

reached, (ii) an object falls from the table, or (iii) a maximum

number of steps is reached. We set the maximum number

of steps to 200, which corresponds to ≈ 6.7 seconds. The

objects are spawned on a table in front of the robot, such

that at least 75% of their bounding box is in its manipulation

workspace. Poses in which objects are lying on their sides

are the most challenging for functional grasping because of

the occlusion. For this reason, we focus on such poses and

use the following object rotation distribution: 20% of the

objects are upright, 40% are on their left side, and 40% are

1https://free3d.com, https://3dsky.org
2https://github.com/AIS-Bonn/fun_cat_grasp_

dataset



Fig. 4: Average success rates during the curriculum ablation

experiment (mean and 95% confidence intervals). The two-

stage curriculum significantly improves convergence stabil-

ity, compared to the runs without curriculum.

on their right side. The yaw angle and the object position

are sampled uniformly. The hand starts at a random 6D pose

above the table. Notably, objects laying on the right side

require more complex pre-grasp manipulation for functional

grasping with the right hand. Learning is performed on the

training set of 30 objects. A target functional pre-grasp was

defined for each object manually.

To make the simulation setup more realistic, Gaussian

noise is applied to all observations supplied to the policy. For

positions and distances, the zero-mean noise has σ = 3mm.

For rotations, the zero-mean noise has σ = 5◦. The only

two observation which do not have noise are the object

category and the target grasp. In each environment, an object

is assigned a realistic random mass. The mass distribution in

kg per category is represented by a Gaussian: N (1.4, 0.2) for

drills, N (0.5, 0.15) for spray bottles, and N (0.3, 0.07) for

mugs. Both noise and mass are limited to deviate from the

mean for not more than 3σ. We scale the reward components:

target grasp reward rT by 5000, orienting reward rorient

by 500, and holding reward rhold by 25. The other reward

components are not scaled.

We train the policy on a single GPU with 16,384 parallel

environments. Each policy in this evaluation is trained three

times with three different seeds to assess convergence sta-

bility. First, we perform an ablation study of the two-stage

curriculum proposed in Section III-D. During the first stage,

the objects are spawned with a nominal rotation and close

to the hand. Since at this stage the grasp is easily reachable,

we disable the manipulation reward rman to ensure quicker

convergence. The first stage continues until at least 50%

success rate is achieved for each object. During the second

stage, the objects are spawned with rotations described

above and the full reward is used. Fig. 4 shows average

success rates during learning with and without curriculum.

In addition, the wall time is shown for the curriculum runs.

Wall time of other runs is similar (±10min). The first stage

of the curriculum is completed quickly. The second stage

takes longer, but all three runs reliably converge to a success

Fig. 5: Average success rates during the manipulation reward

ablation experiment (mean and 95% confidence intervals).

Disabling single reward components slightly deteriorated

the convergence rate and stability. Disabling the whole

manipulation reward component made the learning process

significantly slower and less stable.

rate of 97% in under three hours with little variance. Without

curriculum, the policy achieves only ≈ 50% success rate

and has a large variance within runs. Hence, the two-stage

curriculum significantly improves convergence stability and

success rate. We used a default discounting factor γ = 0.95
in all experiments. Lower values, such as γ = 0.9 decreased

learning speed significantly, since only short time spans were

represented in rewards, leaving longer-term consequences of

complex manipulation unrepresented. Higher values, such as

γ = 0.975 did not provide any significant improvement.

Next, we perform an ablation study of the proposed multi-

component reward function. We train five policy variants:

full reward, with disabled reward component encouraging

moving the hand towards the object rreach, with disabled

reward component encouraging holding the object rhold, with

disabled reward component encouraging rotating the object

towards the nominal rotation rorient, and finally, with disabled

whole manipulation component rman = rreach + rhold + rorient.

Fig. 5 shows the of average success rates for this ablation

study. One can observe that when a single component of the

manipulation reward is disabled, the policy learns to achieve

the goal slower, but still reliably makes progress towards high

success rate. The most influence has the removal of the rhold

component. Without rhold, the policy had the highest variance

within runs and achieved the lowest success rate among

single-component ablations. This shows that the reward com-

ponent encouraging holding behavior is the most important

one of the proposed manipulation reward. A deteriorated,

but still reliable convergence without single reward terms

suggests that although each component is important, the

formulation is generic enough to not depend on the exact

details. In contrast, disabling the whole manipulation reward

rman has a drastic negative effect on the performance of



Fig. 6: Rollouts of policy manipulating unseen objects of known categories, which are positioned in a way that a direct

functional grasp is impossible. Top to bottom: drill, spray bottle, and mug. Note the functional grasps achieved in the end.

the policy. Although it achieved a success rate of 50%, it

struggled to learn a robust behavior for objects in difficult

configurations. Overall, this ablation study demonstrated that

the proposed manipulation reward component significantly

speeds-up learning of dexterous pre-grasp manipulation.

To evaluate the generalization capability of the learned

policy, we measure the success rate of the policy learned with

curriculum and full reward on the training set and on the test

set. The training set consists of 30 objects, ten for each of the

three categories. The test set consists of nine novel objects of

the known categories. We perform 100 grasping attempts for

each object. This results in 3000 attempts for the training set

and 900 attempts for the test set. Object initial rotations are

sampled as during learning: 20% upright, 40% on the left

side and 40% on the right side. Once the target pre-grasp

is reached, the success is tested by closing the hand. If the

object stays in the hand and the key condition of a functional

grasp (such as an index finger on the trigger) is satisfied, an

attempt is considered successful. We allocate 300 steps or

10 s per episode. Fig. 6 shows example rollouts for three test

set objects. One can observe that dexterous interactive pre-

grasp manipulation has been learned that leads to functional

grasps for all three object categories. The observed success

rates for all object categories are reported in Table I. On

the training set, the learned policy shows a high success rate

of 97.7%. As expected, on the test set the success rate is

with 94.1% lower, but still high. The highest success rates

were achieved on mugs. This is because they are relatively

TABLE I: Average success rate per category in %.

Category Training set Test set

Drills 96.0 ± 1.2 94.3 ± 2.6

Spray bottles 97.7 ± 0.9 92.3 ± 3.0

Mugs 99.3 ± 0.5 95.6 ± 2.3

Σ 97.7± 0.5 94.1± 1.5

*Mean ± 95% confidence interval is shown.

easy to flip over from the side position and have a simple

geometry. The hardest object category was the spray bottles.

This is because spray bottles are narrow, have a high center

of mass, and can be easily dropped. Videos of the learned

interactive functional grasping behavior are available online3.

One can observe that complex pre-grasping strategies such

as repositioning the object, reorienting and up-righting the

object, and regrasping have been learned. The policy learned

to reattempt the subtasks in case of failures.

C. Discussion

The evaluation showed that the proposed approach is ca-

pable of consistently learning robust dexterous manipulation

policies for functional grasping in simulation. The main

strength of the approach is the generality of the proposed

reward function and two-stage curriculum, which do not

require any category or instance-specific engineering. At the

same time, the multi-component reward function provides

dense continuous rewards which quickly guide the policy to-

wards general and robust behavior without a need for human

demonstrations. In combination with a high-performance

GPU simulation, complex pre-grasping strategies are learned

in under three hours. The state and the reward are formulated

in a way that is agnostic of the robotic arm joint number and

can be easily adapted to a hand with an arbitrary number of

fingers and controlled DoFs.

The main limitation of the proposed approach is its

reliance on frequent and accurate estimation of the target

object pose. In the real world in presence of the robotic hand,

6D object pose estimation is challenging [33]. Transferring

our approach to a real robot is a prominent future work.

Although the learned policies showed a robust behavior, it

is likely that additional real-world learning will have to be

performed in order to close the sim2real gap. For this, we

envision an additional, smaller network on top of our policy.

3https://www.ais.uni-bonn.de/videos/CASE_2023_

Pavlichenko



Such a corrective policy could be learned online on the

real robot [34], using the proposed dense multi-component

reward for faster convergence.

V. CONCLUSION

In this paper, we presented a deep reinforcement learning

approach for dexterous categorical pre-grasp manipulation

for functional grasping with an anthropomorphic hand. We

introduced a dense multi-component reward function and a

two-stage curriculum to quickly learn a single policy for dex-

terous manipulation of complex objects of three categories.

Our experiments demonstrated that learning with our ap-

proach reliably converges and produces policies with a high

success rate, even for previously unseen object instances

of known categories. Complex pre-grasping strategies such

as repositioning the object, reorienting and up-righting the

object, and regrasping have been learned.

Ablation studies confirmed the importance of the proposed

multi-component reward function and the curriculum. Our

approach utilizes a high-performance GPU-based simulation,

and the policy was learned on a single GPU in less than three

hours. Our policy achieved 94.1% success rate for functional

grasping of novel object instances.
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