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Abstract— The feeding of parts from bulk supply to produc-
tion lines is a common but still challenging task in industrial
automation. In this paper, we present a part feeding system
that has two objectives: first, it needs to be easy reconfig-
urable to handle new part variants, and second, it should
be safe for collaboration with human workers. We propose
a reconfigurable vision system that finds generic graspable
parts and robustly estimates 6D pose given CAD data with a
learning method based on synthetic data. To guarantee that the
system is human safe, we use a cable-driven lightweight igus-
robolink R© WR manipulator that can move at high velocities
without risk of harming human workers. We improve the
safety by detecting persons entering the workspace of the arm
and quickly stopping its movement. We demonstrate in our
experiments a high success rate in feeding industrial parts with
safe human collaboration.

I. INTRODUCTION

Picking parts from bulk supply and feeding them to
production lines are common tasks in industrial automation
[1], [2]. Existing automation solutions to part feeding, such
as vibratory bowl feeders and robotic pickers, require spe-
cialized engineering for each product variant [3].

We present a solution for the automatic bin-picking and
feeding of textureless parts such as the ones shown in Fig. 1b.
These, so called, chain links are assembled to energy chains
for guiding cables as shown in the bottom of Fig. 1b. The
parts can have different sizes and variations of the shape
in a total of 63 possible configurations. This variability has
prevented until now the automation of the feeding of parts
for their assembly into chain links.

Our solution3 addressees two requirements: 1) it is easily
reconfigurable for new part variants, and 2) it is safe for
the collaboration with human workers. An overview of the
system is given in Fig. 1a: a cable-driven 6 DOF robolink R©

WR manipulator4 picks parts from a bin (from 3 to 4 in
Fig. 1a), estimates their pose and feeds them in the slot with
a specific orientation (from 4 to 5 in Fig. 1a). The parts
are sensed by means of an Intel RealSense SR300 RGB-D
camera mounted on the wrist of the arm (2) in Fig. 1a).
Furthermore, a workspace camera, ASUS Xtion Pro, (6) in
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Fig. 1: (a): 1) The robolink manipulator. 2) The SR300 RGB-
D camera mounted on the arm. 3) A pile of chain link parts.
4) The surface where the parts are placed to estimate their
pose. 5) The part feeder. 6) Asus Xtion RGB-D workspace
camera.
(b) From top to bottom: different variants of the chain link
parts; the assembled energy chain; and the energy chain in
its use for conducting cables.

Fig. 1a) allows us to detect humans entering the workspace in
order to halt the motion of the arm. This improves the safety
of human workers together with the intrinsic collision safety
feature of the lightweight compliant cable-driven robolink R©

manipulator.
A key component of the easy reconfiguration is an adaptive

vision system that can detect new part variants and estimate
their 6D poses. Precisely estimating the 6D pose of the part
is crucial in order to correctly place it in the feeding slot.
Several approaches have been proposed in the literature for
estimating the pose of objects. Given the CAD model of a
new part, one can apply iterative 3D registration methods [4]
when an initial guess of the pose is available. Feature-based
initial alignment methods [5] can be used for this purpose;
however, they are not robust against noisy and partial mea-
surements and require specific hand-crafted features. Another
approach is generating a synthetic dataset by rendering the
CAD model from multiple view poses, and estimating the
pose of the object given 2D camera measurements. For
example, Liu et al. [6] generated rendered depth edge maps
for each pose, based on which a template matching algorithm
was used to find the best-matching pose. However, this
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approach requires a specially designed multi-flash camera
to extract good edge features and exhaustive template search
due to the different depth-edge silhouettes in different poses.

Instead, we propose a deep neural network (DNN) to
estimate the 6D pose of the part. Since CAD models of
the part variants are available, we produce a synthetically
rendered dataset in order to train the network. This end-to-
end approach does not need manually designed features nor
distance functions which are critical to target objects in the
aforementioned methods. Therefore, the proposed method re-
duces reconfiguration time with minimal engineering effort.

II. RELATED WORK

Since the related literature spans two different fields,
we first present the related work on applications of cable-
driven manipulators, and second, related approaches on bin-
picking as well as learning-based object detection and pose
estimation methods.

A. Cable-driven Manipulators

The WAM arm pioneered the research on cable-driven
robotic manipulators, and was commercially launched by
Barret Technology [7]. An inherent characteristic of cable-
driven robotic arms is that they can be backdriven, and
thus, a common application of this technology is in medical
rehabilitation [8].

Quigley et al. [9] present a 6 DOF arm with a human-safe
design. The shoulder of the arm is driven by three stepper
motors, which have cables attached to perfom the movement
of the joints. This ensures safety for a human. The distal three
joints are actuated by compact Dynamixel servos. So, the arm
is controlled by motors of mixed type. To demonstrate the
capabilities of the arm, authors used the arm to play chess
via teleoperation and to bake pancakes using a tool.

Whitney and Hodgins [10] describe a passively safe and
gravity-counterbalanced anthropomorphic robot arm with
joints controlled via cables by stepper motors. The shoulder
design is done in a way that the motors are completely
grounded, and hence, the counterbalancing weights are
placed away from the shoulder as well.

B. Bin Picking Methods

On the topic of bin picking, one can distinguish methods
that aim at finding graspable parts of the object and those that
try to estimate the pose of the object in the pile. An example
of the first category is the work presented by Domae et al.
[11]. The authors propose a method for finding graspable
surfaces of textureless objects in unordered piles. For a given
gripper, they define two convolutional filters to find collision-
free graspable points in depth maps. Liu et al. [6] use fast
directional chamfer matching [3] to find the pose of objects
in random piles on depth edge images obtained from a multi-
flash camera.

In the second category, Buchholz et al. [12] use point-
pair features and a random sampling algorithm for locating
objects in bins using depth data. They use CAD models
of the objects. Rodrigues et al. [13] propose a method

for estimating the pose of texture-less shiny objects in
bin-picking scenarios. They construct a multi-light system
that produces images where colour changes encode changes
in surface orientation. In their work, a voting scheme is
designed where small image patches vote for the pose of the
object. Holz et al. [1] estimate the refined part pose based on
the initially detected object candidate. A workspace camera
was used to detect multiple object candidates, and a wrist
camera then recognizes and localizes the part to grasp.

C. Deep Learning for Grasping Objects

Levine et al. [14] propose a method that uses a deep
network to learn motion commands to a robotic arm directly
from image data. In their setup, the bin contains coloured
objects of different categories, and the network controls the
movement of the arm in order to grasp an object with mul-
tiple sequential images. In our case we have no distinctive
colour features since all the parts are black and use a single
image to detect grasping pose. Redmon and Angelova [15]
propose a method for detecting grasping poses in RGB-D
images. The authors assume that a single object is present in
the input image. This is not applicable in our case where we
have to deal with a random pile of untextured objects. Lenz
et al. [16] propose a two-stage network for detecting grasps
in images containing multiple objects. In their approach, the
first stage of the network—swallow and fast—is in charge
of ranking candidate grasps in an exhaustive-search. The
second stage taking these filtered candidates is able to find
the optimal grasp for each object by means of a deeper
architecture. Pinto and Gupta [17] propose a CNN to predict
whether a grasp is suitable for an image patch at 18 possible
orientations. They collect a dataset with 50 thousand trials
and errors of object grasps which they use to train their net-
work. Schwarz et al. [18] develop a deep-learning approach
that combines object detection and semantic segmentation
in the manipulation scenes captured with RGB-D cameras.
The combined components complement each other and yield
reliable perception for the bin-picking in clutter.

III. SYSTEM DESCRIPTION

A. Hardware

For our feeding demonstration we have used the
robolink R© arm produced by igus GmbH, which has two
main components: customisable manipulator and motor unit.
The motor unit houses six stepper motors (M1 – M6 in
Fig. 3) with 1:16 reduction gearing to which pulley disks
are mounted. The manipulator is constructed out of thin alu-
minum tubes connected with high-grade plastic mechanisms
which act as joints. The order and type of joints as well
as length of the tubes can be exchanged, which yields a
versatile solution. The arm is actuated at its base, where the
stepper motors are located. The cables are routed through
the tubing and connect motor pulleys with their respective
joints. Motion is transferred through cables to the joint by
rotating one of the pulleys, which in turn produces a rotation
in the corresponding joint. The result of this arrangement is a
lightweight, reconfigurable arm which is compliant and safe
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Fig. 2: Software system overview for the two tasks of the proposed robolink R© feeder.
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Fig. 3: Schematic of the igus-robolink R© WR manipulator:
joints J1 to J6 and their corresponding actuators M1 to M6.

to interact with. In our setup, we have used a configuration
with six degrees of freedom, assigning yaw and pitch axes
with three of them each.

B. Active Perception System

The robolink R© feeder is capable of singularizing parts
from a bin (picking) and placing them into a slot (feeding).
Fig. 2 shows the workflow of the software modules for
the two tasks. The main sensor of the system is a short-
range RGB-D camera (Intel RealSense SR300) mounted on
the robot wrist, which is able to actively observe the scene
at different distances and perspectives. We implemented a
coarse-to-fine search strategy that moves the camera close to
objects for both tasks.

In the picking task, the manipulator first moves to a
predefined pose to observe all parts in the bin. With the depth
measurements from the wrist camera, multiple graspable
parts are detected by a local depth minima detection method,
and the highest one is selected as the most graspable part.
In order to grasp the part, the robot approaches the selected
graspable part and detects the part with the wrist camera
again, by which the pose of the graspable part can be
estimated more accurately in higher resolution. Then, the
robot is able to move to the part, grasp and pick it up, and

place it on the table.
The feeding task requires reorienting the part so that its

pose fits to the slot of the chain link assembly machine.
The main perception task is estimating accurate 6D pose
of the part on the table, with which the manipulator plans
where to grasp, how to rotate, and where to place the part
on the slot. In the same manner as the active perception in
the picking task, accurate part pose estimation is achieved
using the wrist camera and robot movements as shown in
Fig. 2b. First, the robot moves to the predefined observation
pose and estimates initial part pose using PoseNet which is
pretrained offline given the CAD model of the part. Then
the robot moves the camera above the part and refines
the pose with higher resolution depth measurements of the
part. Here, another pre-trained neural network, SymNet, is
used to identify ambiguous symmetric poses and correct the
estimated pose.

Another RGB-D camera (ASUS Xtion Pro) covers the
workspace of the arm. When a human worker intervenes
in the robolink R© feeder’s tasks, the human movement is
detected by the workspace camera, and the robot stops
moving until the person exits the workspace. The stopping
and resuming robot movements is controlled by a trajectory
planner, which generates joint trajectories given a task and
sends the reference commands to the robot controller.

IV. PERCEPTION SYSTEM FOR PICKING

The perception system for the picking task aims at finding
multiple graspable parts by the gripper, which is fast, appli-
cable to texture-less objects in arbitrary shapes, and invariant
to the position and orientation of the camera.

A. Graspable Part Detection

A two-finger gripper can grasp a sticking out area which is
closer to the wrist camera than the neighborhood of that area.
As shown in Fig. 4b, the sticking out parts form valleys of 3D
surfaces in the depth map. The graspable area of the valley is
the part whose width is less than the opening of the gripper.
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Fig. 4: Finding graspable parts from a depth map.

Similar to the skeletonization algorithm in [19], we propose
an operator to find pixels that belong to the valley whose
width is smaller than w. Given the maximum width (w),
the operator traverses each depth pixel d(u, v) and observes
eight boundary pixels d(u±s, v), d(u, v±s), d(u±s, v±s)
with the depth-dependent pixel size s corresponding to w,

s =
w

‖p1 − p2‖
, (1)

p1 = deproj(u, v, d(u, v)), (2)
p2 = deproj(u+ 1, v, d(u, v)), (3)

where deproj(u, v, d) yields a de-projected 3D point of a
pixel (u, v) in the depth image with the depth value d.

For all valid pixels (which are non-black pixels in Fig. 4a),
the operator computes the number c(u, v) of neighboring
pixels having an equal or smaller depth-level. Fig. 4c shows
pixels which have c(u, v) < 0. This means that there are no
pixels that have smaller depth values than the central pixel in
8-directions within the area of {(i, j)|‖(i, j)− (u, v)‖ < s},
which corresponds to the part of a valley with the width
of w. Multiple graspable parts are then computed by region
growth clustering of the connected local depth minima, and
described by rotated bounding boxes B = {bk} of clusters
C = {ck} (depicted as red rectangles in Fig. 4d):

ck = {(u,v,d)|max(ui − ui+1, vi − vi+1) < 1}, (4)
bk = minRect(ck) (5)

= {xk, yk, wk, hk, θk}. (6)

B. Grasping pose estimation

To obtain a reliable grasping pose of the most graspable
part, first the robot observes all parts at the pre-defined
observation pose, and selects the closest graspable part,
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Fig. 5: Observation pose to locate the part at the center of
the wrist camera view.

which has the minimum averaged depth of the cluster:

cmin = arg min
ck

d̄, d ∈ ck. (7)

Next, the robot moves towards the selected part so that the
wrist camera can observe the part in detail. Based on the
3D position of the part ppart = {px, py, pz}, the camera tilt
angle φ, and distance from the part dcam, the target gripper
pose Ttcp is calculated as follows:

θ = arctan
py
px
, (8)

Tcam =Trpy(px, py, pz, φ, 0, θ − π/2), (9)
· Trpy(0, 0,−dcam, 0, 0, 0), (10)

Ttcp =Tcam · T cam
tcp , (11)

where Trpy is a homogeneous transformation matrix given
3D positions and roll, pitch, yaw angles.

After moving to Ttcp, the robot detects multiple gras-
pable parts again, and selects the centered graspable part
(cgrap, bgrasp). Then, a 3D point cloud of the graspable part
P can be obtained by de-projecting the pixels of the selected
cluster:

P = deproj(u,v,d), (u,v,d) ∈ cgrasp. (12)

The final grasping pose Tgrasp is calculated using three
eigenvectors (e1, e2, e3) of the covariance matrix of P:

Tgrasp =

[
e1 e2 e3 ppart
0 0 0 1

]
. (13)

V. PERCEPTION SYSTEM FOR FEEDING

Feeding a part into the slot requires an accurate estima-
tion of its pose. We propose a learning-based active pose
estimation method, which first estimates an initial pose by
PoseNet, then moves the wrist camera close to the object,
and refines the initial pose by checking symmetry of the
shape using SymNet. The two deep neural networks (DNN)
are easy reconfigurable due to the use of synthetic training
data given a CAD model, which does not require manual
annotations for labeling ground truth poses.

A. Network Architecture

Fig. 6 shows our network structures. PoseNet and SymNet
have the same structure for training deep features with
six convolutional and four pooling layers. This structure is
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Fig. 6: Deep Neural Networks for estimating 6D part pose (PoseNet) and for defining symmetries (SymNet).

adopted from the first six weight layers of the VGG-11
model suggested in [20]. Each convolutional layer has 3×3
receptive field size and batch-normalization [21] is applied
with ReLU activation function.

Following convolutional layers, PoseNet consists of two
regression networks to produce 3D position and orientation
of a part in the input depth map. Here, we represent 3D ori-
entation as a quaternion with four variables. Each regression
network is composed by three fully connected layers with
batch-normalization and ReLU activation functions, and the
last fully connected layer with linear activation.

If the given object shape is nearly symmetric, PoseNet
could estimate an orientation that is flipped along the symme-
try axis. One way to correct this is by flipping the orientation
once the wrong estimation has been detected. SymNet aims
to learn distinctive features that discriminate between depth
images of symmetric shapes given the estimated orientation.

First, SymNet extracts the symmetry-sensitive features
of the input image through the convolutional and pooling
layers, and then concatenates the features with given query
orientation. The following fully connected network for each
symmetric axis estimates if the given orientation is opposite
or not along the axis. Here, the fully connected layers all
have batch-normalization and ReLU activation functions.

B. Data Generation

Given a CAD model of the object, training depth images
are generated by rendering the model with a number of dif-
ferent poses. Orientation variants are generated by allocating
various camera poses on a sphere with 2-level subdivision
of icosahedron, which has 162 vertexes as shown in Fig. 7.
On each vertex, 16 camera poses are defined by rotating π/8
radian per step along the z axis toward the origin. By doing
so, a total 2,592 orientations are regularly sampled.

For each camera pose, an initial depth map of the model is
rendered, where the object is positioned at the image center.
To generate translation variants, 16 pixels on the initial depth
map are randomly sampled. We use the offset from the
centre of the image to each sampled pixel to translate the
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Fig. 7: Examples of rendering camera poses on the sphere.

Fig. 8: Rendered depth map samples for five translations and
three camera poses. Images at each row are rendered by the
same camera pose with different translations.

initial depth map of the model. With the randomly sampled
16 translations for each camera pose, 41,472 poses were
sampled in total. Among them, randomly sampled 33,178
poses are used for training, and the remaining 8,294 poses
are used for validation. Fig. 8 shows rendered depth maps
for five translations and three camera poses.

Each rendered depth map is combined with a synthe-
sized background as shown in Fig. 9. The background is
a combination of four sources: horizontal depth gradient
(Fig. 9a), vertical depth gradient (Fig. 9b), uniform depth
noise (Fig. 9c), and a constant depth offset. The max depth
values of the horizontal and vertical gradients are randomly
sampled within the given limit depth value. The fully random
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Fig. 9: Online data augmentation process.

variables for the background composition are sampled for
each image at each epoch of training. The on-line data
augmentation prevents the network from over-fitting to a
particular background data distribution.

For each epoch, the training set for PoseNet consists of
33,178 pairs of synthesized depth images Isyn ∈ R64×64 and
ground truth poses (position p ∈ R3 and quaternion q ∈ R4)
of the model with respect to the camera. Due to the duality
of quaternion, we require the w value of all quaternions to
be positive:

Dposenet = {P1, ..., Pi, ..., P33178}, (14)
Pi = {Isyn,p,q}. (15)

The total loss in the batch of training data is computed by
the sum of L2 losses between PoseNet output and ground
truth pose.

Training data for SymNet requires labeling for a proper
query orientation q. The output of the network f indicates
whether the query orientation should be flipped for each axis:

Dsymnet ={P1, ..., Pi, ..., P33178×4}, (16)
Pi ={Isyn,q, f}. (17)

For a ground truth orientation q, we can create three false
data pairs by flipping about each axis:

q =


q if i = k × 4

flipx(q) if i = k × 4 + 1

flipy(q) if i = k × 4 + 2

flipz(q) if i = k × 4 + 3.

(18)

The output of SymNet is encoded as a one-hot vector for
three axes:

f =


(1, 0), (1, 0), (1, 0) if i = k × 4

(0, 1), (1, 0), (1, 0) if i = k × 4 + 1

(1, 0), (0, 1), (1, 0) if i = k × 4 + 2

(1, 0), (1, 0), (0, 1) if i = k × 4 + 3.

(19)

Given the label data, the loss of the network is computed by
the averaged sigmoid cross entropy in the batch of training
data.

C. Part Pose Estimation

When a part is placed on the table by the picking task, the
robot moves to a pre-defined table observation pose. First,
the object is detected by using table top segmentation and
Euclidean clustering using the PCL library implementation
[22]. Based on the detected position, a depth map around the
object is cropped and fed into PoseNet. The output pose of
the network is relative to the image center, so the initial part
pose can be computed by de-projecting the center pixel of
the cropped image.

The robot approaches the object to observe the part closely
as Eq. (8-11). The wrist camera observes the part and
performs 3D registration using Iterative Closest Point (ICP)
with the estimated initial pose. This is a fast and efficient
method as long as the initial pose is correctly estimated.
Then, the depth map of the part and the refined orientation
are fed to SymNet to check if the estimated orientation is
flipped or not due to the symmetry of the part. If the network
outputs false for an axis, the orientation is flipped about the
axis. Then, the refinement step using ICP is performed again.

VI. SAFE MOTION CONTROL

In order to detect person intrusion into the workspace of
the robot, we utilize ASUS Xtion Pro depth sensor, which
observes the workspace from the top. We design a method to
filter out any known objects in the workspace (e.g., the bin),
and the robot itself, by representing them as a set of cuboids.
Points measured by the workspace camera that correspond to
these elements are filtered out of the point cloud. Points that
fall out of the workspace of the arm are also not considered.
On the remaining points, we set a threshold on the number
of points to detect the presence of unknown objects entering
the workspace. We set the value of this threshold empirically
to 800 points.

To control the motion of the arm, we use the estimated
pose of the object as a source for creating the desired
observation, approach and grasp pose for the tip of the
gripper in Cartesian space. Movement to pre-recorded arm
configurations is realised in joint space. We utilise the
Reflexxes library [23] for interpolating between the current
and desired position in Cartesian or joint space. Interpolated
Cartesian poses are converted to joint positions through
inverse kinematics with the selectively damped least squares
(SDLS) method [24].

VII. EXPERIMENTS

The proposed system was evaluated in three aspects: i)
accuracy and computation time of pose estimation, ii) success
rate of picking and feeding tasks, and iii) human safety.
The demonstration took place during the official showcase
evaluation of the European Robotics Challenge (EuRoC) at
Fraunhofer IPA. We recorded data and evaluated following
performance measures in the presence of an examiner from
the challenge host6.

6Video link: https://www.ais.uni-bonn.de/videos/
robolink_feeder/



Fig. 10: Results of the estimated pose (green) and manually
found ground truth pose (red).

A. Part Pose Estimation

The examiner randomly placed a part on the table, and the
system detected the part and estimated its pose. After saving
the estimated pose, the examiner manually annotated ground
truth pose by overlaying the part CAD model on the scene
using a 3D visualizer and GUI interface. The evaluation was
repeated ten times. Fig. 10 shows the difference between
estimated pose (green) and annotated ground truth pose (red).
Table I shows the results of the pose accuracy and the
computation time.

Even the maximum position and orientation errors (see
fourth image at top row in Fig. 10) are precise enough to
be grasped by the gripper of robolink R© feeder, which has
30 mm stroke. Errors from the other cases are within the
manual labeling.

B. Picking and Feeding

The second evaluation is measuring success rate and
cycle time for the picking and feeding tasks. In the first
picking task, the robot attempted 20 times bin-picking, where
the graspable part detection is critical to estimate reliable
grasping pose. In the second feeding task, the examiner
randomly placed a part on a table, then the robot estimated
part pose and planned trajectories to grasp and feed the part
into the slot. The feeding task was repeated 10 times. Table
II shows the evaluation results.

Due to the typical noise and incorrect depth measurements,
false positive graspable parts are possibly detected. This
results in failed picking at the first attempt, as the images

TABLE I: Evaluation result of part pose estimation

Position Orientation
Avg. error 3.9704 mm 2.7369 degree

Median error 3.6124 mm 2.7826 degree
Max. error 6.7180 mm 4.9921 degree

Avg. computation time 1.5564 sec

TABLE II: Evaluation result of part picking and feeding

Picking
(1st attempt)

Picking
(2nd attempt)

Feeding

Success rate 65 % 100 % 90 %
Avg. cycle time 32.53 sec 79.82 sec 86.42 sec

Fig. 11: The first (top) and second (bottom) attempts of
picking in the case of false positive graspable part (yellow
rectangle in the top left image). Left images show the
selected graspable parts, and right images show the placed
objects on the table.

at the first row in Fig. 11. Once the robot cannot find any
part on the table, it returns back to the observation pose and
selects the second highest graspable part, which is the second
attempt. As shown in the second row in Fig. 11, the robot
successfully picked all parts at the second attempt in our
experiments.

C. Complete Pipeline Test with Collaboration with a Human

We performed complete test of picking and feedinig with
human interventions. During picking and feeding parts ten
times in sequence, the examiner intentionally reached into the
workspace several times. The response time is measured by
a duration between the time the workspace camera detects
and sends stop request to the robot and the time all robot
joint velocities are zero. The robolink R© successfully fed
nine parts out of ten. One missing feeding was caused by
wrong pose estimation when the part was placed outside of
the observation field. There were 46 intervention attempts in
total, and the robot successfully stopped its movement fast
enough to avoid colliding to the human.

VIII. CONCLUSION

We have presented a demonstrator for the feeding of parts
from bulky supply. Our goal was to develop a system that
is easy to reconfigure for new part variants, and that is
safe for the presence of human workers. To these ends, we
proposed a vision system that finds generic graspable points
in RGB-D data, and a learning-based method that robustly
estimates the pose of the grasped part. The chosen hardware,

TABLE III: Evaluation result of safe motion control

# of attempts 46
Success rate 100 %

Avg. response time 0.2057 sec



a lightweight cable-driven igus-robolink R© WR manipulator
allows for performing fast motions without posing safety is-
sues for human workers in the vicinity. We have additionally
proposed a fast method for detecting the presence of humans
in the workspace of the arm in order to stop its motion. We
have shown in the experiments the reliability of our system
in performing 1) the detection of graspable parts in random
piles of objects, 2) estimating the 6D pose of the part that was
grasped, and 3) feeding the part with the right orientation.
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