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Abstract— Laser range finders are used in industrial safety
and surveillance applications, e.g. to track persons. The relative
position between two sensors is needed for the correct operation
of such a system. In order to reduce costs, sensors are positioned
to have minimal overlap while extending the combined field
of view. The necessary calibration is often done in a time-
consuming manual process. To automate this, moving objects
are tracked in the laser scans and used to find the relative
sensor poses.

We present a novel approach to pairwise calibration using
shared observations in a RANSAC-based fashion to estimate
the relative transformation between two sensors. Afterwards,
we apply robust pose graph optimization that deals with
possibly faulty pairwise estimates. Our method uses `1-norm
minimization in the tangential space of the rotation matrices
under transitivity constraints and, thus, does not need a further
initial guess to obtain the final sensor poses. The complete
system is evaluated with simulated and real data in very
challenging situations. To emphasize the robustness of the
proposed calibration, we show results using a very simple non-
robust tracking. The overall accuracy is further improved when
ellipse fitting of the tracked targets is used.

I. INTRODUCTION

Laser range finders (LRF) contactless measure distances to
objects with high precision. As a result, they are often used in
industrial safety applications or for monitoring open spaces.
The sensors are positioned statically in the environment.
Walls, columns, and other obstacles restrict the field of view
achievable with individual sensors. Using multiple sensors
addresses this limitation, while ensuring either redundancy
or increasing the covered area, which is necessary in open
spaces.

During deployment, the sensors need to be configured for
their specific application. If the relative sensor poses are
known, this step can be simplified, e.g., protective fields can
be taught once to all sensors simultaneously. Furthermore,
the sensor data can be preprocessed directly on the sensor
instead of central processing. The bandwidth can be reduced
further by sending only object tracks, thus allowing to use a
larger number of sensors.

The relative poses are often not available, due to missing
or incorrect maps. Hence, the calibration of a LRF network
is in practice usually done manually. This is an elaborate
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Fig. 1. Overview of the proposed system. An arbitrary tracking can be
used in Step 1. The tracking is refined using ellipse-fitting (Step 2). The
pairwise calibration (Step 3) calculates a transformation hypothesis for every
track combination which is verified with all other tracks (Step 4). Then scan
matching (Step 5) is used to correctly align walls. In the final Step 6, the
sensor poses are generated using pose graph optimization.

and costly process. Calibrating in an automatic manner is
preferable and faster, especially when the production line
setup changes due to different requirements. Creating a
correct map with a mobile robot using SLAM [1] is possible
but increases the system costs and some areas might not
be accessible. Sensor localization could be done by scan
matching techniques but these are prone to getting stuck in
local minima. This occurs particularly in featureless, sym-
metric, self-similar, and occluded environments, especially
with minimal and non overlapping regions. Moving the
sensors oftentimes reduces ambiguity, but this is not possible
for static sensors.

Instead, we track moving objects in the vicinity of sensors.
The observed tracks are used to determine the pairwise rela-
tive poses between sensors. We do not make the assumption
that only one person or object is moving through the scene.
On the contrary, we use multiple tracks between two sensors
for verification, enabling us to distinguish between apparent
and actually matching tracks. Assuming only one moving
target would simplify the calibration and prolong calibration
but is not always possible when other preparations take place
or surrounding production lines are partially suspended.

After pairwise calibration, we represent the sensor network
as a pose graph, where the first sensor is fixed at the origin
of the reference coordinate frame. We assume that the graph
is strongly connected. This representation allows the usage
of Graph-SLAM algorithms[2], which perform non-linear
optimization. These methods need a good initial guess and
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are sensitive to outliers. To address this issue, we follow
the Multiple Rotation Averaging approach [2] and optimize
rotations first since translations highly depend on rotations,
whereas rotations only depend linearly on translations. We
propose a new robust method called L1MC. Our algorithm
does not require a similar accurate starting point and works
directly with all given pairwise rotation estimates. The rota-
tions are constrained to be inverse and transitive consistent.
Transformation into rotations tangential space allows for an
easy representation as a linear system. This enables the usage
of robust `1-norm minimization. The sensor positions are
then calculated in a least-squares fashion with fixed rotations.

In the following, we will restrict ourselves to the extrinsic
calibration of the planar relative transform between sensors
since for many industrial applications the planar case is
sufficient.

The key contributions of our paper are:
• robust object-based pairwise calibration using multiple

tracks for verification,
• robust Multiple Rotation Averaging without requiring

an initial guess using `1-norm optimization in tangential
space of rotations,

• evaluation in a wide variety of scenarios with multiple
moving persons with little to no overlap.

II. RELATED WORK

Several methods have been proposed for extrinsic LRF
calibration, based on feature extraction within the environ-
ment. For example Moghadam et al. [3] use lines, and Gong
et al. [4] exploit arbitrary trihedrons, which are formed by
two adjacent walls and the ceiling or floor. Similar, Choi
et al. [5] use two orthogonal walls for pairwise calibration.
Instead, Fernandez-Moral et al. [6] utilize a common planar
surface visible from different orientations, whereas Brscic et
al. [7] use poles with attached reflectors as artificial features.
The drawback for these methods is often either the required
overlapping field of view or the necessary availability of
features.

More general methods only require incremental egocentric
motion estimates. For example Brookshire & Teller [8]
apply non-linear least squares (LS) to find a good solution.
Instead, Schneider et al. [9] adapt an Unscented Kalman
Filter (U-KF) for online calibration. Kümmerle et al. [1]
even include the calibration parameters into their SLAM-
formulation, while Taylor et al. [10] utilize the motion
estimates in combination with observations similar to bundle
adjustment.

For static sensors, these methods are not applicable. In-
stead, object-tracking can be used to determine the relative
transformations between sensors. Sasaki et al. [11] apply
a Least Median of Squares method on estimated object
centers for pairwise calibration. Transformations with a mean
squared error below a predefined threshold are then accepted.
Instead, Glas et al. [12] match observations based on their
velocity profile. Common observations are then used to
create pairwise constraints, which are filtered by a KF. The
final sensor position is obtained by Mass-Spring-Relaxation.

Later the authors improved the quality by tracking groups
of people [13]. Recently, Glas et al. extended their approach
to 3D [14] by using head-detections from RGB-D data in
combination with horizontal laser range finders. In compar-
ison, Schenk et al. [15] demonstrate superior results using
LS-matching on observed positions for constraint generation.
After relaxation, the calibration was further improved by a
final ICP alignment on the static background scans. These
object-based approaches assume a high overlap between all
sensors, while the underlying tracking models assume people
as dynamic objects. The calculations are carried out on a
single central system.

A different approach is followed by Röwekämper et al.
[16]. The existence of overlap is determined by simultaneous
measurements on a dynamic object. This introduces a limit
of only one moving calibration target. The pairwise estimate
for overlapping sensors is generated using RANSAC, which
is further incorporated into a factor graph to produce a
joint initial guess. Afterwards, the graph is extended to
include landmarks. A pose configuration is determined that
minimizes the landmark reprojection error. The usefulness is
limited due to the restriction of only one moving calibration
target.

Instead, a combination of the above approaches is possible
to obtain a robust system by replacing relaxation with a
graph optimization. Outliers in the pairwise estimates lead to
false sensor poses. Hence, the research focuses strongly on
robustness to outliers. Carlone et al. [2] state that distinguish-
ing between inlier and outlier measurements is unobservable.
Therefore, they try to find the maximal set of inliers using
mixed-integer programming and `1-norm minimization to
solve a 2D-Graph-SLAM optimisation problem. Wang &
Singer [17] use alternating direction method of multipliers
to minimize the difference between measured and estimated
rotations. Chatterjee et al. [18] minimize the same `1-norm
using the Lie-algebra of rotations and Iterative Reweighted
LS (IRLS). Similarly, the Maximum Likelihood estimator by
Boumal et al. [19] operates on the rotation manifold while
adjusting weights to distinguish wrong from correct mea-
surements. Arrigoni et al. [20] extend the spectral relaxation
by Arie-Nachimson et al. [21] from the rotation manifold
SO(n) to the rigid transformation manifold SE(n). For
outlier rejection, IRLS is employed with a Cauchy weight
function.

Many of the above techniques rely on a good initialization
due to the non-linearity of the underlying methods. In our
work we do not require such an initial guess.

III. EXTRINSIC CALIBRATION

Our pairwise calibration can be thought of as a combi-
nation of Röwekämper RANSAC [16] and Schenk et al.
[15] object-based LS approach with an additional verification
step. Afterwards, we employ robust MRA which does not
need an initialisation. First, we will introduce our notation
and define necessary entities.



A. Pose Graph

Let G = (V,E) be a directed connected graph called
the pose- or measurement-graph. Each vertex represents the
sensor pose in the reference coordinate system:

V = {vi ∈ SE(n)|i = 1, . . . , N} ,
SE (n) = {(R, t) : R ∈ SO (n) , t ∈ Rn} ,
SO (n) =

{
R ∈ Rn×n : RᵀR = I, det(R) = +1

}
.

The rotation matrix R describes the orientation and vector t
the position. Since we are only interested in planar extrinsic
calibration, we restrict ourselves to n = 2, but the extension
to 3D would be straightforward. A directed edge (i, j) ∈ E
exists, if the visible areas of sensors i and j overlap and
measuring the relative position gi,j is possible. gi,j maps
from local coordinate frame i to local coordinate frame j.
Given two sensor positions vi and vj the relative position
gi,j = (Ri,j , ti,j) can be calculated by:

Ri,j = Rᵀ
iRj , (1)

ti,j = Rᵀ
i (tj − ti) . (2)

Since the sensor positions are unknown, we fix v1 at the ori-
gin of the reference frame. To distinguish between estimated
and measured relative position, the indices i, j are used for
the first and r, s for the latter.

B. Object Tracking

Any object tracking method can be used to generate the
necessary tracks. Here, we first subtract the background
to distinguish range measurements belonging to static ele-
ments like walls from dynamic objects. Close measurements
on dynamic objects are clustered into segments. For each
segment, the center of mass (CoM) is tracked over time
by an Extended Kalman Filter under the assumption of a
constant velocity. If multiple segments are candidates for
one track, we associate the geometrically closest. This object
tracking can be executed directly on the used SICK LRF.
At the cost of reliability, tracking enables the user to make
no assumption about the object shape. Tracking issues, like
changes of CoM depending on the view poses, vanishing,
reappearing, and near objects, present a challenge for a robust
calibration process. A list of the tracked object positions and
velocities is sent to the central system and collected for a
predefined time period.

The collected tracks can be further processed by fitting
an ellipse into the object points. We employ the method
by Fitzgibbon et al. [22]. The parameters for the major and
minor axis varies between consecutive scans. Therefore, we
non-linearly fit a second ellipse with fixed major a = 0.25 cm
and minor radius b = 0.15 cm in a second step. We are
only interested in the center point t of the object. Therefore,
we minimize the geometrical distance of a scan point Si
to its corresponding point under angle θi on the ellipse in

parametric form:

x∗ = arg min
[θ,α,t]

‖f (x) ‖22, (3)

fi (x) = Si −
[
R (α) ·

(
a · cos (θi)
b · sin (θi)

)
+ t

]
. (4)

The values for a, b are experimentally evaluated to fit a
human at upper body height. The center point of the ellipse
is again tracked via an EKF to improve the tracks accuracy.
This accommodates for the error introduced by the CoM,
resulting in more accurate and stable tracks.

C. Preprocessing for Track Association

To achieve online calibration capabilities, often a fixed
interval length is used. An estimate is generated after the first
interval and further refined each time. Instead, we calculate
the interval length dynamically to circumvent problems with
vanishing, appearing, and near objects. Whenever a change
in visible objects is detected, a new time period starts. In
contrast to existing methods, we do not only use Kalman
filtering, but use Kalman smoothing. The RTS-Smoother [23]
is applied on each time period to smooth the track estimates.
This is useful since the filtered estimate incorporates only
measurements from the past and present at each time step,
while smoothed estimates use all available measurements.

D. Pairwise Extrinsic Calibration and Verification

We are given the smoothed positions tlp, t
l
q for two objects

p, q, where p and q were observed simultaneously with sensor
r and q, respectively. To obtain a first hypothesis hr,s for
the rigid transformation gr,s = (R, t) ∈ SE (n), we wish to
minimize the distance:

ρ (R, t) =
∑
l

min
{∥∥(R · tlp + t

)
− tlq

∥∥2
2
, r2max

}
. (5)

Here, rmax is a constant representing the maximum sensor
range that should reduce the influence of disappearing ob-
jects. To be robust against outliers, we employ a RANSAC
variant called MSAC in combination with LS-optimization
as in [24] for minimization. We calculate such a hypothesis
for each track combination (p, q) and for each time interval.
The resulting set of hypothesis are then verified on all time
intervals. To find the best hypothesis, we use the Mahalanobis
distance dS to incorporate the uncertainty Σ of the tracked
position:

dS (a,b) =

√
(a− b)

ᵀ
[Σa + Σb]

−1
(a− b), (6)

di,j =
∑
l

dm
(
R · tli + t, tlj

)
, (7)

E (R, t) =

L,|P |,|Q|∑
k,i,j=1

wki,j ·min
{
dki,j , rmax

}
. (8)

Here, wi,j = {0, 1} represent the association between two
tracks. Each wki,j is calculated via nearest neighbour. One
should note that this association wki,j between tracks is not
static in time but is changed to cope with vanishing and



reappearing objects. The pair distance di,j is again bounded
above by the maximal LRF range rmax.

The key insight is that multiple tracks will give a similar
transformation. The error ρ will be small when applied
to other correctly associated tracks. At the same time, the
error ρ will be large for wrong transforms from incorrect
associated tracks, even though they might have a small MSE,
a metric often used by other methods. Therefore, E will
be small for correct transformations and large for wrong
hypothesis, thus penalizing wrong associations. Naturally, we
set gr,s to be the hypothesis with minimal error E. Again, we
calculate a least-squares hypothesis given all simultaneous
observed tracks over the complete dataset without explicitly
associating objects per time period but for every time stamp
between sensor r and s. Therefore, multiple tracks are
incorporated into a single transform.

With respect to the static environment, the resulting trans-
formation can still be inaccurate due to variations of the
tracked object. This effect can be reduced by further align-
ment of static structures between two views. Schenk et al.
only used ICP on the background after the final positioning
of all sensors. Instead, we employ a point-to-line-variant of
ICP [25] already on the pairwise relative poses.

E. Robust Multiple Rotation Averaging
The relative pairwise positions gr,s allow for a pose graph

formulation. Since we only obtain the imperfect estimates
gr,s for gi,j , we want to obtain the set of sensor positions
that minimizes these imperfections:

arg min
v1,...,vN∈SE(n)

∑
i,j

dR (Ri,j ,Rr,s)
2

+ dt (ti,j , tr,s)
2
. (9)

Here, dR denotes the angular difference or geodesic distance
between the rotations Ri,j and Rr,s, while dt is the Eu-
clidean distance between ti,j and tr,s.

This problem is non-linear and depends on a good initial
guess to converge to the global maximum. A typical strategy
[2] involves Multiple Rotation Averaging. At first, the trans-
lations are ignored and (9) is solved for the rotations only.
Estimating the translation then becomes an easy-to-solve
linear problem. Thereby, no weighting between rotational
and translational error is necessary.

All pairwise rotations Ri,j can be combined to a single
matrix H for which the following relationship holds:

H = RᵀR with R ∈ Rn×nN . (10)

Often R is either directly or iteratively calculated, starting
with an initial guess from odometry in SLAM. Instead, we
optimize on all pairwise rotations Rr,s. An advantage is that
no initial guess is needed, since we know

Ri,j ≈ Rr,s (11)

and we already calculated Rr,s.
To incorporate the above relationship (10), we constrain

the pairwise rotations to be inverse and transitive consistent:

I = Ri,j ·Rj,i = Rj,i ·Ri,j , (12)
Ri,j = Ri,k ·Rk,j . (13)

i j i

k

j

Fig. 2. The transform from sensor i to j is constrained to be the inverse
of j to i. For the transitivity we want gk,j ◦ gi,k to be the same as gi,j .

The intuition for the transitivity constraint (13) is the follow-
ing, illustrated in Fig. 2. When starting at sensor i, going over
to sensor k and moving towards sensor j, we expect to be at
the same position compared to moving directly from sensor i
to j. Similarly, for the inverse consistency when going from
sensor i to j and back, we should be at the initial position.

These constraints on their own do not allow for effi-
cient optimization, since the problem remains non-convex.
Like the authors in [18], we use the tangential space
TRr,s

(SO (n)) of the rotation matrices Rr,s to relax the
problem. The transformation into tangential space is done
via the logarithm map between the Lie-group SO (n) and
the Lie-algebra so (n):

logR : SO (n)⇒ TR (SO (n)) , (14)
TR (SO (n)) = {RW : W ∈ so (n)} , (15)

so (n) = {W = −Wᵀ} . (16)

The vectorized representation of TRr,s
(SO (n)) allows to

express the above constraints as linear equations. For n = 2
and n = 3 follows:

W =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 � w =

w1

w2

w3

 ∈ R3,

(17)

W =

[
0 −w1

w1 0

]
� w = w1 ∈ R1. (18)

Constraints (11), (12) and (13) become:

Ri,j ≈ Rr,s ⇔ wi,j ≈ wr,s (19)
I = Ri,j ·Rj,i ⇔ 0 = wi,j + wj,i, (20)

Ri,j = Rk,j ·Ri,k ⇔ wi,j = wk,j + wi,k. (21)

Reorganizing the equations leads to the form Ax ≈ b,
where x contains the stacked wi,j . Matrix A is very sparse
and all non-zero entries are either +1 or −1. The vector b
consists of the vectorised pairwise rotations wr,s and 0 for
the inverse and transitivity constraints. One has to keep the
cyclic nature of rotations in mind. Even though wi,j = 2π
is equal to wj,i = 0 the constraint wi,j = wj,i does not
hold. Therefore, normalization for wr,s is necessary. For the
transitivity, it suffices to set the corresponding entries of b
to k · π with k ∈ {−1, 0, 1}.
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Fig. 3. The simulated setup is shown on the left with six inward-facing LRFs. A central cuboid restricts the measurement range and provides static
background. Each field of view is color-coded like the corresponding LRF. The movement direction of the cylinder is indicated by the blue line. The
difference between non-robust (middle,[21]) and our robust pose graph optimization (right) is emphasized by the black lines, indicating the sensor orientation.
Ideally, the orientation lines of opposing sensors should coincide.

Algorithm 1: L1MC
// measurements: wi,j = wr,s
A1 = I; b1 = 0;
foreach (i, j) ∈ E do

Ai,j = I;
bi,j = normalize (log (Rr,s));
x′i,j = bi,j ;

end
Am = A; bm = b;
// symmetry: wi,j − wj,i = 0
As = [. . . , Ii,j , . . . ,−Ij,i, . . .] ;
bs = 0;
// transitivity: wi,k + wk,j − wi,j = 0
At = [. . . , Ii,k, . . . , Ik,j , . . . ,−Ii,j , . . .];
bt = Atbm − normalize (Atbm);
// solve A · x = b, starting at x′

A = [Am,As,At]
ᵀ;

b = [bm,bs,bt]
ᵀ;

x∗ = arg minx ‖A · x− b‖`1 ;
// axis-angle to rotation matrix
foreach (i, j) = [(1, 1) , . . . , (N,N)] do

R̂i,j = exp
(
x∗i,j
)
;

end

Due to noise, no unique solution Ax = b exists. Thus
we seek the difference to be sparse and have a small `1-
norm [26]. The expectation is that the constraints (12), (13)
hold, while the error is concentrated around the measurement
equations (11). Using the `1-norm reduces the influence
of outliers in the measurement graph, compared to the
standard LS-approach. Trust in pairwise measurements can
be reflected by weighting both sides of the measurement
equations, while missing measurements can be set to zero
or completely removed.

After minimizing the `1-residual, the stacked angles can
be extracted from x and mapped back towards SO (n). The
exponential-map expR uses the matrix exponential to trans-
form from tangential space into rotation space.The resulting
L1MC method is summarized in Algorithm 1.

The resulting rotations are so close to fulfil (10) that one
could extract the upper n × nN rows which correspond
to R. Alternatively, to ensure (10) we either use Spectral
Relaxation [21] or Riemannian Gradient Descent [27]. Since
the resulting transformations were very good, as we will
show in the next section, we did not use any further non-
linear optimization as in [27].

IV. EXPERIMENTS AND RESULTS

We evaluate our system with simulated and real datasets
from horizontal scanning LRFs. For the simulated dataset,
Fig. 3, we position six inward-facing sensors uniformly
distributed on a circle with 60 m diameter. The sensors range
is limited to 20 m, thus LRF on opposite sides have no
overlap. To further restrict the common sight, we add a
10× 10 m cuboid in the center of the circle. To distinguish
the influence of the underlying object tracking from the
algorithm accuracy, we use a moving cylinder with 50 cm
diameter.

We also tested the whole system in five challenging real-
world situations and compare against manual calibration. The
first two are conducted in a cluttered office environment
of size 16× 11 m. Many range measurements are scattered
on objects within the office and do not only occur on the
walls or on distinctive features. We use six SICK TIM561
with 10 m measurement range and 15 Hz scan frequency. The
sensors were connected via LAN with a PC and distributed
to cover the room from different view points as shown in
Fig.5. The sensors were time-synchronized using NTP. In the
second setup, Fig. 4, the sensors are positioned in a typical
Automated Guided Vehicle (AGV) scenario in a semi circle.
We recorded six trajectories of one person moving through
the scenes. In the distributed scene, we also tested up to four
people simultaneously walking within the environment.

The third real test was performed in an industrial setting.
Three LMS1xx and one LMS5xx are used with 20 m (50 m)
measurement range, 25 Hz scan frequency and 0.5◦ angular
resolution. Data transmission was done via 802.11g WLAN
onto a central PC. The setup is illustrated in Fig. 6. Two
sensors (LMS1xx) were positioned in a hallway and two are
within two industrial halls of different width. Each sensor
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Fig. 4. Second real world scenario with six outward-facing TIM 561, center: Each LRF is marked by a colour-coded rectangle. Left: the observed
movement is visible, where each object position is marked by a blue cross. Right: calibrated result. Each scan has the corresponding sensor color.

TABLE I
PERCENTAGE OF COMMONLY DISCARDED RELATIVE POSES WITH A

MSE ABOVE 20 cm AS IN [15].

simulated office,
semi-
circle

office,
distributed

industrial
setting

discarded [%] 38.50 54.12 57.78 75.00

has a minimal overlap with at most two neighbours. The
minimal cycle length is four. The high distance between the
sensors represents the hardest challenge, since neighbours are
up to 25 m away from each other. The view is mostly blocked
by walls, restricting the benefit of ICP. This scenario does
not represent a deployment scheme for industrial safety. The
range of safety LRFs is typically specified to be less than
7 m. Instead we wanted to test the boundaries of our method.
Again, we calibrated the system six times with one person
and four times with two persons walking in opposite and the
same direction. In all experiments, we used no fixed paths
and an average capture time of one minute.

For the fourth test we deployed five S300 LRFs at
upper body height to cover a L-shaped computer lab of
size 8× 7 m. The sensors were scanning at a frequency of
12.5 Hz with an opening angle of 270◦. In this scenario upto
four people were walking randomly through the laboratory.
Afterwards, we distributed the sensors to cover the corridors
outside the lab.

To emphasize the effect of the verification step, Tab. I
shows the percentage of pairwise estimates with a mean
squared error above 20 cm. Around 50 % of the estimates
are commonly discarded by other methods, despite the fact
that the relative poses are correct.

Unfortunately, some details regarding the Mass-Spring-
Relaxation in [15] are unclear, prohibiting a direct compar-
ison. In addition, their datasets are not publicly available,
hence we could not directly compare our methods. If we
consider their hardest test cases (C, D), our setting is more
challenging due to lower overlap, less common background
and a higher minimal circle length.

A method, similar to Mass-Spring-Relaxation, is obtained
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Fig. 5. A typical result for the distributed setup is shown in a cluttered
office space of size 16× 10m. Six laser range finders are positioned to
maximize the combined field of view with redundancy. The laser scans are
colour-coded to match the sensors.

via weighted Spectral-Relaxation [21] followed by weighted
least-squares translation estimation. Thus, we will compare
the robust approach against this purely weighted approach.

Weighting was not necessary on relative poses in L1MC
except for the industrial scene where the outlier proportion
approached 50 %. L1MC, like most MRA-methods [20], fails
at that point when using uniform weights. The weights were
calculated as proposed by Schenk et al. [15]. Table III reports
the mean and median rotational and positional error for the
four setups. We use the angular error dR for the rotations and
the Euclidean distance dt for the positions. As expected, the
non-robust approach is less accurate due to outliers in the
relative poses. Weighting reduces the influence, but cannot
completely remove it. On the contrary, the robust pose graph
optimization calculated a good calibration, even with uniform
weights. The results using the iterative L1RA [18] are not
reported, since they coincide with our L1MC up to numerical
errors. Thus, L1MC can be seen as a non-iterative L1RA that
does not need an initial guess.

The CoM on the cylinder differs around 40 cm between
two sensor poses in the simulated setup. Using the ellipse
without refinement reduces the result drastically from 27 cm



TABLE II
COMPARISON OF DIFFERENT EXTRACTED FEATURES AND THE RESULTING ACCURACY ON THE SHOWN DATASET IN FIG. 4 WITHOUT ICP.

our with L1MC our w/o MRA1 w/o MRA1 [15] our with SR [21]
mean median mean median mean median mean median

CoM dR [◦] 1.0776 0.5903 1.6635 0.9327 2.5689 1.6083 2.1988 1.7597
dt [m] 0.1086 0.0823 0.2722 0.0582 0.3378 0.1452 0.1148 0.1031

Ellipse dR [◦] 0.6490 0.6242 1.3505 0.4965 2.3493 0.7765 0.6232 0.4662
dt [m] 0.0599 0.0457 0.0706 0.0360 0.2056 0.1033 0.0605 0.0464

NLS-Ellipse dR [◦] 0.3144 0.1870 0.7531 0.2748 1.6595 1.0169 0.5722 0.3434
dt [m] 0.0406 0.0293 0.1921 0.0284 0.1727 0.0548 0.0404 0.0301

TABLE III
RESULTS FOR THE SIMULATED AND FIVE REAL SETUPS OVER ALL TRIALS W/O UNIFORM WEIGHTS. 2

robust simulated3 semi-circle3 distributed3 industrial setting3 computer lab corridor
mean median mean median mean median mean median mean median mean median

w/ yes dR[◦] 0.1125 0.1081 1.3706 0.9661 0.6011 0.5006 0.6725 0.7228 0.6801 0.6130 2.4112 2.0338
dt[m] 0.0624 0.0561 0.1075 0.0409 0.0902 0.0764 0.1861 0.1144 0.0431 0.0313 0.3425 0.1341

w/ no dR[◦] 0.1042 0.0945 1.2371 1.0059 3.3158 1.3237 3.7149 1.4346 0.3993 0.3416 6.8653 3.6297
dt[m] 0.0617 0.0550 0.0581 0.0319 0.1949 0.2174 3.1873 2.0526 0.0364 0.0339 1.5243 0.4993

w/o yes dR[◦] 0.4900 0.5026 1.2097 1.0677 0.8498 0.5448 – – 0.4036 0.4884 – –
dt[m] 0.0144 0.0381 0.0801 0.0604 0.0891 0.0721 – – 0.0353 0.0427 – –

w/o no dR[◦] 7.6167 7.5707 1.6324 1.0117 2.4811 0.9973 – – 0.4007 0.4672 – –
dt[m] 6.3353 6.3464 0.0947 0.0459 0.1569 0.1432 – – 0.0353 0.0427 – –
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Fig. 6. The resulting calibration with our system in the industrial test
setting. The scans are colour-coded by sensor. Two persons moved around
in the same direction with varying distance. The area is 30× 25m in size.
The left and right sensors are 25m apart.

to 7.7 cm (4 cm). The refinement kept the mean error fixed,
but reduced the median error to 2.8 cm. The rotational error
is reduced from 1.66◦ (0.93◦) to 1.3◦ (0.37◦) without L1MC.

One example for final sensor poses is shown in Fig. 4
(right) with overlayed laser scans in the second office scene.
We obtain a mean (median) rotational error of 0.3623◦

(0.3100◦) and 0.0434 m (0.0359 m), respectively, for the
positional error.

A typical result for the industrial setting overlayed with
the floor plan is shown in Fig. 6. Nearby poses are better
calibrated than the more distant ones. The upper left pose is
fixed on the origin while both sensors in the right half are
rotated to the left by around 1◦. Since the position depends
on the orientation, this results in a higher positional error.

TABLE IV
COMPARISON FOR DIFFERENT NUMBER OF PEOPLE AND THE RESULTING

ACCURACY ON THE COMPUTER LAB DATASET WITHOUT ICP.

number of people our with L1MC our with SR [21]
mean median mean median

1 dR [◦] 1.1193 1.0870 0.5044 0.4439
dt [m] 0.0531 0.0443 0.0345 0.0378

2 dR [◦] 0.9562 0.9064 0.4921 0.3589
dt [m] 0.0407 0.0331 0.0305 0.0140

3 dR [◦] 0.2496 0.2754 0.2024 0.1594
dt [m] 0.0450 0.0261 0.0466 0.0326

4 dR [◦] 0.3951 0.3196 0.3981 0.3243
dt [m] 0.0334 0.0295 0.0340 0.0352

Adding a sensor between the upper ones could reduce this
effect. We obtain a median positional error below 0.12 m and
an angular accuracy below 0.73◦. This is sufficient for many
surveillance applications.

In first tests in the office environment, we observed the
tendency of improving accuracy using multiple persons for
calibration in smaller environments. After further evaluation,
we found that more diverse walking paths in overlapping
areas influences the obtained accuracy rather than the number
of moving people. Tab. IV shows similar accuracy and
walking paths independent of the number of moving people
for the computer lab dataset, while the paths varied strongly

1Some relative position estimates are missing without multiple rotation
averaging.

2The pose graph optimization failed with uniform weights for the indus-
trial and corridor setting, due to the existence of ≥50% outliers.

3The denoted results were generated using only CoM for object tracking.



in the office environment.
The execution time of our Matlab implementation on a

single core of an Intel Core-i7 CPU varies between seconds
and some minutes, depending on the number of persons used
for calibration. Most processing time is used in the non-
linear ellipse fitting. In contrast, L1MC was done within
milliseconds without exploiting sparseness.

V. CONCLUSION

We presented a robust method to calculate the sensor
positions using object observations. A RANSAC variant
generates hypothesis for the relative poses between two
sensors. A verification step with soft-assignments chooses
the hypothesis that fits best the observed objects. Robust
pose graph optimization is applied on the relative poses
in form of Multiple Rotation Averaging. We optimize the
relative rotations in their tangential space under inverse and
transitivity constraints using the robust `1 norm. This does
not require any initial guess and copes with missing rotations.

The experimental results suggest that our system is ro-
bust under difficult conditions and achieves state of the art
accuracy.
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