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Supplementary Material: MSPred: Video
Prediction at Multiple Spatio-Temporal
Scales with Hierarchical Recurrent Networks

A Datasets
We evaluate MSPred for different prediction tasks on three video datasets of different levels
of complexity, namely Moving MNIST [13], KTH-Actions [10], and SynpickVP. Table 1
summarizes the three datasets used in our work.

Moving MNIST is a standard video prediction dataset containing sequences of two ran-
dom digits from the MNIST dataset [4] moving with constant speed in a 64× 64 grid, and
bouncing off the image boundaries. In our experiments, we treat Moving MNIST frames as
RGB images, i.e., repeating the MNIST digits across the RGB channels. For the high-level
representations, we use Gaussian blobs centered at the digit locations. Despite its simplicity,
this dataset is commonly used as a benchmark for video prediction. For training, we ran-
domly generate sequences of 49 frames by sampling two random MNIST digits, a starting
position and speed; whereas for testing we use a fixed set containing 10,000 sequences.

KTH-Actions is a dataset consisting of real videos of humans performing one out of six
possible actions, namely boxing, hand-clapping, hand-waving, walking, running and jog-
ging. The dataset includes 600 videos of 25 different human actors performing the actions in
various indoor and outdoor environments. In our experiments, we downsample the images
to a resolution of 64× 64. We use 1436 training sequences of length 49 from 16 different
actors, whereas for testing we use 824 sequences from the remaining nine actors. In ad-
dition to video frames, we use nine human keypoints as intermediate level representations,
and a center-point of the person a high-level representation. We generate the ground-truth
keypoints using a pretrained OpenPose [1] model for human pose estimation.

SynpickVP is a new synthetic video prediction dataset, consisting of videos of various
bin-picking scenarios in which a suction-cap gripper robot moves in arbitrary directions in
a box containing different objects. We generate the dataset by selecting sequences from the
recently proposed SynPick [6] dataset. We use 1975 training and 200 evaluation sequences
containing 29 RGB video frames of size 64× 112. This is a challenging video prediction
benchmark, since the model needs to capture the motion of the robotic gripper, as well as
predict the future arrangement of displaced objects, while still representing a complex and
cluttered background. In our experiments on SynpickVP, we train our model to predict
image frames at the lowest level in the hierarchy, semantic segmentation maps from the
22 different classes at the intermediate level, and a single-keypoint heatmap for the robotic
gripper position at the highest level. Due to the synthetic nature of the dataset, semantic
segmentation and object localization annotations are readily available. When evaluating
semantic segmentation forecasting, we average the class-wise results into three different
categories: gripper corresponds to the robot gripper, static includes the different objects
contained in the box, and background corresponds to the red box where objects are placed.
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Table 1: Summary of the datasets used in our experiments, including the size of the dataset
splits and the type of high-level representations used for each dataset.

Dataset Name Img. Size # Train # Test Mid-Level Rep. High-Level Rep.

Moving MNIST [13] (3, 64, 64) - 10.000 Digit Blob Digit Position
KTH-Actions [10] (3, 64, 64) 1.436 824 Human Pose Person Position
SynpickVP [6] (3, 64, 112) 1.975 200 Segmentation Maps Gripper Position

B Evaluation Metrics

We employ several evaluation metrics designed for different tasks in order to evaluate the
predictions from the different MSPred decoder heads. For future frame prediction, we com-
pute several popular metrics which measure the visual similarity between the predicted and
ground-truth video frames. Furthermore, we employ different metrics to evaluate the ability
of our model to make high-level structured predictions, such as human poses or semantic
segmentation maps. For all metrics, we average the results across all predicted frames or
high-level structured representations.

Image Similarity Metrics: We evaluate our models for future frame prediction using four
popular metrics, namely MSE, PSNR, SSIM [15], and LPIPS [16]. MSE, PSNR and SSIM
measure pixel or statistical differences between predicted and target images. However, they
have been proven to correlate poorly with human perception, favoring blurred predictions
over more detailed, though imperfect, generations [9, 16]. Therefore, we favor LPIPS in our
experiments, which measures the distance between CNN feature maps, and has been shown
to better correlate with human judgment.

Pose and Keypoint Prediction Metrics: MSPred forecasts future human poses at its in-
termediate level on the KTH-Actions dataset. Given a predicted heatmap representing the
location of a body joint, we extract the position coordinates by taking the location with max-
imum value of the heatmap, provided that the maximum value exceeds a certain threshold.
Through empirical validation, we set the threshold value to 0.05.

In order to assess our model’s performance for human pose forecasting, we employ three
popular metrics. Mean Per Joint Position Error (MPJPE) calculates the average `2-norm
across predicted and target joints. Percentage of Detected Joints (PDJ) measures the frac-
tion of the correctly estimated joints among the joints present in the ground-truth pose. A
predicted keypoint is marked as a correct detection if its distance from the respective target
keypoint does not exceed a certain threshold. We select this threshold as 20% of the ground-
truth person’s height [8]. Similarly, Percentage of Correct Keypoints (PCK) measures the
fraction of correctly detected joints among the overall predicted joints. Additionally, we also
compute summary statistics for the PCK metric over a range of thresholds. We evaluate the
Average Precision (AP) as the mean PCK values computed over a range of thresholds 0.1,
0.2, ..., 0.5.

Segmentation Metrics: We predict semantic segmentation maps as the intermediate-level
representation on the SynpickVP dataset. We evaluate our predicted segmentation maps us-
ing two popular evaluation metrics. Pixel accuracy (Acc) measures the fraction of correctly
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Table 2: DCGAN Discriminator Encoder
Layer Size Activation Comment

Conv 4x4 64 LeakyReLU Stride 2
Conv 4x4 128 LeakyReLU Stride 2
Conv 4x4 256 LeakyReLU Stride 2
Conv 4x4 512 LeakyReLU -

Table 3: VGG16-Like Encoder
Layer Size Activation

2x Conv 3x3 64 LeakyReLU
MaxPool 2x2 - -
2x Conv 3x3 128 LeakyReLU
MaxPool 2x2 - -
2x Conv 3x3 256 LeakyReLU
MaxPool 2x2 - -
2x Conv 3x3 512 LeakyReLU

classified pixels in the image, whereas Intersection over Union (IoU) is computed by divid-
ing the corresponding number of correctly estimated pixels, i.e. the area of overlap between
predicted and ground-truth segments, by the area of union of the very segments.

We compute the average Acc and IoU metrics for three subsets of the classes. More
precisely, we average the metrics separately for three object categories: robot gripper, static
objects placed on the box, and the red box itself.

C Implementation Details

In this section we provide further implementation details of MSPred (Section C.1), and the
hyper-parameter values used in our experiments (Section C.2). Additionally we discuss the
implementation of the SVG’ baseline (Section C.3). Our codebase is implemented using the
PyTorch [5] deep learning framework. We run our experiments on an NVIDIA A6000 GPU
with 48 GiB RAM.

C.1 MSPred Architecture Details

Encoder: In order to ensure a fair comparison with baseline methods, the encoder is imple-
mented following the SVG [2] architecture. For the Moving MNIST dataset, the encoder fol-
lows the DCGAN discriminator [7] architecture, whereas for KTH-Actions and SynpickVP
we employ VGG16-like [12] modules. The architectures of both encoders are depicted in
Tables 2 and 3, respectively. All convolutional layers use padding ‘SAME’, include a bias
weight, and are followed by batch normalization [3].

Decoder: The decoder in MSPred is implemented as a mirrored version of the correspond-
ing encoder. In the DCGAN-like decoder, feature maps are upsampled via transposed con-
volutions, whereas in the VGG-like decoder upsampling is achieved via nearest neighbor in-
terpolation. The higher-level decoder heads are each composed of two convolutional blocks
with the same structure as the decoder.

Predictor: Our predictor module uses four ConvLSTM [11] cells for each of the three
levels in the hierarchy, each with 128 kernels of size 3× 3. The lowest-level LSTM pro-
cesses all inputs, whereas the higher-level LSTMs process one out of every T1 and T2 inputs
respectively.
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Table 4: Hyper-parameter values used for each dataset in our experiments

Hyper-Parameter Moving MNIST KTH-Actions SynpickVP

C 9 9 9
T1 4 4 2
T2 8 8 4

Learning rate 10−4 3 ·10−4 5 ·10−4

Batch size 16 12 12
Num. Epochs 350 800 200

λ1 2.5 1.4 2.0
λ2 2.5 0.2 0.3
β 10−4 5 ·10−5 10−4

Stochastic Component: The prior (LST Mψ ) and posterior (LST Mφ ) modules are imple-
mented as a single-cell ConvLSTM with 64 kernels of size 3×3, followed by a convolutional
layer mapping the feature maps into the desired latent dimensionality. Inspired by SVG [14],
we sample latent tensors with 10, 24 and 32 channels for the Moving MNIST, KTH-Actions,
and SypickVP datasets, respectively.

C.2 Hyper-Parameters

The hyper-parameters used in our experiments are reported in Table 4. We report the specific
values for the experiments on each of the datasets.

C.3 SVG’

As described in Section 4.4 of the paper, we train a specialized baseline SVG’, based on a
modified SVG-LP [2] model, which predicts high-level representations (e.g. human poses
or semantic segmentation) conditioned on input video frames. SVG’ follows the same archi-
tecture as SVG-LP, but we apply some modifications to adapt the model for the tasks of pose
and semantic segmentation forecasting, and for a fair comparison with MSPred. First, the
linear LSTM recurrent blocks are replaced by ConvLSTMs operating with a period of T1,
i.e., processing every T1-th input. Second, the number of output channels is changed from
three to nine for KTH-Actions, and to 22 for SynpickVP. Finally, since there are no predicted
image frames to be fed back into the model, we design SVG’ to be autoregressive in the fea-
ture space, i.e., the output of the predictor module becomes its input at the subsequent time
step.

D Qualitative Results
In Figures 1–4, we qualitatively compare several video prediction models for the task of
future frame prediction on the Moving MNIST, KTH-Actions and SynpickVP datasets, re-
spectively. Figures 5 and 6 depict additional examples of multi-scale prediction on the KTH
and SynpickVP datasets, respectively. Further images and animations can be found in the
project website1.

1https://sites.google.com/view/mspred/home
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Figure 1: Qualitative results on the Moving MNIST dataset. Top row corresponds to ground
truth frames. We display four seed frames and five predictions for three test-set sequences.
In general, all compared methods achieve good frame predictions. However, only MSPred
accurately resolves challenging cases in which digits overlap. Colors are inverted to improve
the visualization.

Figure 2: Qualitative results on the KTH-Actions dataset. Top row corresponds to ground
truth frames. We display four seed frames and five predictions for three test-set sequences.
MSPred achieves the sharpest and more accurate predictions among the compared methods.

Figure 3: Qualitative results on the SynpickVP dataset. Top row corresponds to ground
truth frames. We display three seed frames and five predictions for two test-set sequences.
MSPred qualitatively outperforms the compared methods, achieving sharp reconstructions,
whereas the baseline methods tend to blur the predictions.

Figure 4: Qualitative results on the SynpickVP dataset. Top row corresponds to ground
truth frames. We display three seed frames and five predictions for two test-set sequences.
MSPred qualitatively outperforms the compared methods, achieving sharp reconstructions,
whereas the baseline methods tend to blur the predictions.
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Figure 5: Predictions of different level of abstraction on the KTH-Actions dataset. We
display three seed frames and five targets and predictions for each decoder head. MSPred
forecasts frames on short time horizons, while also predicting human poses and person loca-
tions longer into the future using coarser temporal resolutions.

Figure 6: Predictions of different levels of abstraction on the SynpickVP dataset. We display
three seed frames, and five targets and predictions for each decoder head. MSPred forecasts
frames on short time horizons, while also predicting the semantic segmentation of the scene
and the gripper location long into the future using coarser temporal resolutions.
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