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1 Simulation of Aleatoric Perturbations

Aleatoric failures originate from perturbations inherent in the data. To simulate such per-
turbations, we add noise, clutter, and changes in lighting conditions to all sequences. In the
following, we give a detailed desciption of the process used to generate these perturbations.
After applying the perturbations to the clean sequences generated from the SceneNet RGB-D
dataset, we clip pixels to the interval [0, 1] to get valid images. Example sequences are shown
in Fig. 1.

Noise is simulated by adding independent Gaussian noise with zero mean to each pixel. The
variance of the noise is independently sampled for each sequence from the interval [0,0.001].

Clutter is introduced by setting subregions of each image to the pixel mean u, computed on
a per-sequence basis. The clutter is generated once per-sequence and applied to each frame.
Thus, the resulting clutter pattern is the same in each frame, comparable to dirt on the camera
lens. The perturbed images x;» are calculated by:

X;=x;-(1-m)+p-m, (1)

where m is a per-sequence clutter mask, i the per-sequence pixel mean, and x; the clean
image. The clutter mask is generated by summing N, Gaussian kernels whose centers are
randomly placed (uniformly sampled) within the image dimensions. Each kernel is normal-
ized to the maximum value one. The number of kernels N, is uniformly sampled for each
sequence from the interval [0, 8]. In addition, we uniformly sample the standard deviation of
each dimension independently from the interval [10,36]. The kernels are truncated at three
times the standard deviation.
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2 WAGNER ET AL.: MODULAR AND INTERPRETABLE TEMPORAL FILTERING

Changes in lighting conditions are simulated by increasing or decreasing the intensity of
frames. For each sequence, we uniformly sample one frame x; and a scaling factor s from
the interval [0.5,1.0]. In addition, we draw a multiplier p which with a probability of 0.5 is
either 1 or -1. The perturbed images x'; are calculated by:

Vj<i:x;-:xj, 2)
Vji>i:x;=x;+p-03 "5 (3)

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7
Figure 1: Example sequences of the data used for training and in the evaluation. One se-
quence of length 7 is shown per row. Each sequence is perturbed with noise, clutter, and

changes in lighting conditions.
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2 Example Prediction of FMTNet

In Fig. 2, we show an example prediction of our FMTNet. In addition to visualizing the pre-
dicted semantic segmentation (Fig. 2c), we also show the predicted depth map (Fig. 2e) and
the update gate (Fig. 2f), which are two of the human interpretable representations computed
within our functionally modularized temporal filter. The model is able to predict a meaning-
ful depth map as well as camera motion, which are required to propagate information over
time. This is especially visible in the last frame of the sequence — although the last frame is
missing, the model is still able to produce a meaningful semantic segmentation. In Fig. 2f,
we show the gate i, of our update module. A white pixel corresponds to a gate value of
one, which means that the model uses information provided by the current input frame. A
black pixel, on the other hand, corresponds to a gate value of zero — the model relies on prior
knowledge of previous frames. As expected, the gate of the first frame is fully white, since
the filter has to rely on new information. In the last frame, the gate is mainly black, since no
meaningful information is provided in that frame. The gate values at the right border of all
frames are more white, as the model has never seen these areas before due to camera motion.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Fre-lme 6 Frame 7

Figure 2: Example prediction of our FMTNet. a): Input sequence; b): Ground-truth semantic
segmentation. c¢): Predicted semantic segmentation; d): Ground-truth deph; e): Predicted
depth; f): Update gate i,, white corresponds to a value of one (use new information).



