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Abstract

Motion is a fundamental segmentation cue in video. Many current approaches seg-
ment 3D motion in monocular or stereo image sequences, mostly relying on sparse in-
terest points or being dense but computationally demanding. We propose an efficient
expectation-maximization (EM) framework for dense 3D segmentation of moving rigid
parts in RGB-D video. Our approach segments two images into pixel regions that un-
dergo coherent 3D rigid-body motion. Our formulation treats background and fore-
ground objects equally and poses no further assumptions on the motion of the camera
or the objects than rigidness. While our EM-formulation is not restricted to a specific
image representation, we supplement it with efficient imagerepresentation and registra-
tion for rapid segmentation of RGB-D video. In experiments we demonstrate that our
approach recovers segmentation and 3D motion at good precision.

1 Introduction

Common motion is a fundamental grouping cue in video sequences. While for monocular
and stereo image sequences, several approaches to motion segmentation have been investi-
gated, it still remains a research problem to compute dense 3D motion segmentation effi-
ciently. Many approaches match images sparsely at interestpoints and infer the groups of
points with common 3D rigid-body motion [1, 9, 12, 13, 15]. Methods for dense 3D motion
segmentation are still far from real-time performance [14, 16, 23, 25].

In this paper, we propose an efficient approach to dense 3D motion segmentation. We
formulate an expectation-maximization framework (see Fig. 1) that recovers motion seg-
ments, estimates their 3D rigid-body motion, and also finds the number of segments in the
scene. Our formulation makes no difference between background and foreground objects
and, hence, copes well with camera motion and multiple moving objects in the scene. We
exploit dense depth information from RGB-D cameras and utilize highly efficient probabilis-
tic image representation and registration techniques to obtain a rapid segmentation method.
Instead of segmenting the large number of pixels in the image, we represent RGB-D images
compactly as point distributions in 3D voxels at multiple resolutions. These maps capture
the noise characteristics of the sensor in a local multi-resolution structure in which the maxi-
mum resolution in the map adapts to the distance of the measurements. In effect, the content
of an RGB-D image is compressed from 640×480 pixels to only several thousand voxels,
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Figure 1: We segment motion in an RGB-D imageIseg towards a reference imageIref in an
efficient expectation-maximization framework. In the E-step, we evaluate the likelihood of
image site labelsli under the latest motion estimatesθk. Efficient graph cuts yield a max-
imum likelihood labellingLML given the motion estimates, which is then used to approxi-
mate the label likelihoods. In the M-step, new motion estimates for each segment are found
through image registration which takes the soft assignmentof sites to labels into account.

making dense inference of labels in the map efficient. In experiments, we demonstrate that
our approach efficiently identifies moving segments with high accuracy and recovers 3D
rigid-body motion of the segments at good precision.

2 Related Work

Several approaches to 3D motion segmentation have been proposed that represent images
sparsely through image features. Multi-body factorization methods [24] find groups of points
with common 3D rigid-body motion through factorization of the measurement matrix. These
approaches have been extended to also cope with outliers andnoisy observations [9, 13, 15].
Exploiting depth measurements for interest points from a calibrated stereo camera, Agrawal
et al. [1] propose a real-time capable framework for 3D motion segmentation based on
RANSAC and structure-from-motion. These approaches, however, do not provide dense
segmentations. Some approaches segment 2D image motion densely based on optical flow.
Cremers and Soatto [5] propose motion competition, a variational framework for dense mo-
tion segmentation of monocular image sequences. They estimate the 2D parametric motion
of multiple motion segments. Occlusions and multiple data associations are explicitly mod-
elled in the variational framework of Unger et al. [19], but the method is far from real-time
performance. In our approach, we also handle multiple data associations as additional pair-
wise labelling constraints during graph-cut optimizationof the motion segmentation. Kumar
et al. [10] segment scenes into 2D motion layers using a conditional random field model
that incorporates occlusions and lighting conditions. Thework by Ayvaci and Soatto [2]
defines an energy functional on a superpixel graph which is optimized using efficient graph
cuts. While these methods yield impressive results, they estimate motion of 2D layers in the
image and do not necessarily provide segments with consistent 3D rigid-body motion.

Superpixel segmentation can also be formulated based on color, stereo depth, and stereo
3D flow simultaneously [21]. This approach operates at about 2 Hz using a GPU for optical
flow computation and is not designed to find coherent segmentsof rigid-body motion. With
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a stereo camera, Zhang et al. [25] propose dense 3D multibody structure-from-motion using
an energy minimization framework. The approach relies on plane fitting to make the seg-
mentation robust and is reported to require ca. 10 min per frame. Wang et al. [23] transfer
the approach of Cremers and Soatto [5] to 3D time-of-flight images. They formulate a 3D
optical flow constraint, and optimize for the 3D motion segmentation using level sets, but do
not report on computational load. Recently, a variational framework has been proposed that
integrates rigid-body motion segmentation with dense 3D reconstruction [14] from monoc-
ular image sequences. The batch method requires about 8 to 9 sec per frame on a GPU.
We make efficient use of dense depth in RGB-D images for 3D motion segmentation—also
integrating texture cues. The frame-rate of our approach isbetween 2 to 10 Hz on a CPU.

In simultaneous localization mapping and moving object tracking (SLAMMOT, [22]),
dynamic objects are segmented in laser scans through distance comparisons, and subse-
quently tracked while concurrently mapping the environment statics in a SLAM framework.
Van de Ven et al. [20] recently proposed a graphical model that integrates CRF-Matching [11]
and CRF-Clustering [18] within a single framework for 2D scan-matching, moving object
detection, and motion estimation. They infer associations, motion segmentation, and 2D
rigid-body motion through inference in the model using max-product loopy belief propa-
gation. We formulate dense 3D motion segmentation of RGB-D images using expectation-
maximization and perform fast approximate inference usinggraph cuts.

In summary, the contributions of our work are a general expectation-maximization frame-
work for dense sequential 3D rigid-body motion segmentation in RGB-D video with tractable
efficient approximations, and an efficient implementation based on a compact image repre-
sentation and fast probabilistic registration techniques.

3 Dense 3D Motion Segmentation of Rigid Parts

Our approach segments moving rigid parts between two RGB-D frames, i.e., it determines
the number of rigid parts, their 3D rigid-body motion, and the image regions that map the
parts. We assume that an imageI is partitioned into a set of discrete sitesI = {zi}

N
i=1 such

as pixels or map elements in a 3D representation. LetL = {li}
N
i=1 be the labelling of the

image sites. The labellingli = k, k ∈ {O,1, . . . ,M} denotes the membership of sitei in one
of the distinct motion segmentsM = {mk}

M
k=1 or in the set of outliersO. All sites within a

segment move with a common six degree-of-freedom(6-DoF) rigid-body motionθk between
the segmented imageIseg and a reference imageIref .

3.1 Expectation-Maximization Framework

We explain the segmented image by the rigid-body motion of segments towards the refer-
ence image, i. e., we seek rigid-body motionsΘ = {θk}

M
k=1 that maximize the observation

likelihood of the segmented image in the reference image argmaxΘ p(Iseg | Θ, Iref ). In our
formulation, the labelling of the image sites is a latent variable that we estimate jointly with
the rigid-body motions of the segments using expectation-maximization (EM) [7],

argmax
Θ

∑
L

p(L | Iseg,Θ, Iref ) ln p(Iseg | Θ, Iref ,L), (1)

whereΘ is the latest motion estimate of the segments from the previous iteration of the EM
algorithm, andp(L | Iseg,Θ, Iref ) is the posterior distribution of the image labelling. The EM
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algorithm alternates the following two steps in several iterations until convergence, or until
a maximum number of iterations is reached:
E-step: Determine the posterior distribution of the image labelling given the latest motion
estimatesΘ to form the conditional expectation in (1).
M-step: Find new motion estimatesΘ by maximizing the conditional expectation (1), given
the posterior distribution of the image labelling.

3.2 Image Labelling Posterior

We model the likelihood of a labellingL in a random field

p(L | Iseg,Θ, Iref ) ∝ ∏
i

p(zi | θli , Iref ) ∏
j∈N (i)

p(li, l j | Iseg) (2)

that incorporates the likelihood of the data at each site andpair-wise interaction terms be-
tween neighborsN (i) of site i. The data likelihoodp(zi | θli , Iref ) quantifies the likelihood
of the observationzi ∈ Iseg at a site under its label’s motion estimateθli . For the outlier
label li = O, we set the data likelihood to a constantpO. In our concrete implementation,
an image sitei is transformed into the frame of the reference imageIref given the motion
estimate for its labelling. Subsequently, the site is associated with a closest site in the refer-
ence image. The data likelihood for sitei is retrieved from this matching. For the pair-wise
interaction terms we use a contrast-sensitive Potts model [3]

ln pS(li, l j | Iseg) =−γ(zi,z j) δ (li, l j), whereδ (li, l j) :=

{
0 , if li = l j ,

1 , if li 6= l j ,
, (3)

andγ(zi,z j)> 0 controls the strength of the coupling.

3.3 Efficient Solution of the Expectation-Maximization Formulation

We propose an efficient solution to the EM formulation. Firstly, we see that the matching
likelihood between image segments towards the reference image given motion estimates
and labelling,p(Iseg | Θ, Iref ,L), factorizes into the matching likelihood of the individual
observations since we assume stochastic independence between the observations and each
site is associated to exactly one segment given a concrete labelling, i.e.,p(Iseg | Θ, Iref ,L) =
∏i p(zi | θli , Iref ). By this, Eq. (1) becomes argmaxΘ ∑L p(L | Iseg,Θ, Iref ) ∑i ln p(zi | θli , Iref ).
Note that each term of the inner sum only depends on one of the image labels.

Since exact inference of the joint label likelihoodp(L | Iseg,Θ, Iref ) is not tractable, we
need to resort to approximations. One possible approach is to use inference algorithms
such as loopy belief propagation to infer the marginal distribution over site labellingsp(li |
Iseg,Θ, Iref ), and to optimize argmaxΘ ∑L ∑i p(li | Iseg,Θ, Iref ) ln p(zi | θli , Iref ).

We take a more efficient approach by using graph-cuts [4] to find an approximate max-
imum likelihood labellingLML = argmaxL p(L | Iseg,Θ, Iref ). Next, we apply a mean field
approximation to the joint label likelihoodp(L | Iseg,Θ, Iref ) to write

argmax
Θ

∑
l1

p(l1 | LML \ {l1}, Iseg,Θ, Iref ) . . .

∑
lN

p(lN | LML \ {lN}, Iseg,Θ, Iref )∑
i

ln p(zi | θli , Iref ), (4)
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wherep(li | L\ {li}, Iseg,Θ, Iref ) = η p(zi | θ li , Iref )∏ j∈N (i) p(li, l j | L\ {li}, Iseg) andη is a
normalization constant such that∑k p

(
li = k | LML \ {li}, Iseg,Θ, Iref

)
= 1. That is, for each

image sitei, we set the labelling of the neighboring sites constant according to the maximum
likelihood labellingLML, and evaluate the local conditional likelihood of the site labellingli.

By rearranging the sums and exploiting the normalization, we arrive at

argmax
Θ

∑
i

∑
li

p(li | LML \ {li}, Iseg,Θ, Iref ) ln p(zi | θli , Iref ). (5)

Each image sitei is assigned a weight for the reestimation of the rigid-body motionθk. The
weight intuitively is the likelihood that sitei belongs to the segment.

3.4 Resolving Ambiguous Data Associations

Our approach also needs to avoid multiple associations of image sites in the segmented image
with the same image site in the reference image. Otherwise, the approach could explain
different parts of the segmented image with the same part in the reference image, e.g. at
missing image overlap or in occluded regions. For sitesi and j in the segmented image
that map to the same site in the reference image for differentmotion segmentsk andk′,
repectively, we additionally model the pair-wise labelling probability

ln pA(li, l j) :=

{
−α , if li = k∧ l j = k′,

0 ,otherwise,
(6)

whereα sets the strength of the couplings.

3.5 Model Complexity

The pair-wise interaction terms prefer large motion segments and naturally control the num-
ber of segments to be small. In the case that a single 3D motionsegment occurs as multiple
unconnected image segments in the image, our approach so farmay still use different but re-
dundant motion segments for the image segments. To control model complexity, we enhance
the graph-cut optimization in Sec.3.3with label costs [6].

We initialize the EM algorithm with a guess of the number of motion segments (M = 1 in
our experiments). To let our approach possibly increase thenumber of segments, we append
one additional, yet unsupported segment before the M-step.All sites in segments that are
yet unsupported in the image are assigned the outlier data likelihoodpO. By this, our EM
algorithm prefers to explain sites that misalign with the already existing segments with new
motion segments. We define a motion segment to be supported ifit labels sites in the image
and reject very small segments as outliers. Unsupported segments (eventually the additional
segment) are dicarded after the E-step.

3.6 Sequential Segmentation

While our EM formulation may in principle segment motion between arbitrary images, we
augment it to perform efficiently on image sequences. We segment the first imageIseg in
a sequence iteratively towards subsequent imagesIref ,t . At each new image at timet, our
approach estimates the number of segmentsMt , a new segmentationLt , and new motion
estimatesΘt . Instead of starting our EM procedure all over for each new image, we initialize
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the approach with the estimates from the last imageIref ,t−1. This way, the EM algorithm
requires significantly less iterations per image to converge (typically one iteration suffices).

4 Image Representation

The performance of our EM algorithm in Sec.3 strongly depends on the underlying image
representation. In principle, any representation is suitable that defines data likelihoodp(zi |
θli , Iref ), image site neighborhoodNS(i), and dissimilarityγ(zi,z j) for the pair-wise interac-
tion terms. To solve for the motion estimates of the segmentsin Eq. (5), an image registration
technique is required that allows to incorporate individual weights for the image sites.

Instead of processing the RGB-D image pixel-wise, we chooseto represent the image
content in compact multi-resolution 3D surfel maps (MRSMaps, [17]). This image repre-
sentation respects the noise characteristics of the sensor, provides a probabilistic represen-
tation of the data, and supports efficient weighted registration. It stores the joint color and
shape statistics of points within 3D voxels at multiple resolutions sparsely in an octree. The
maximum resolution at a point is limited proportional to itssquared depth in order to cap-
ture the disparity-dependent noise of the RGB-D camera. In effect, the map exhibits a local
multi-resolution structure which well reflects the accuracy of the measurements and com-
presses the image from 640×480 pixels into only a few thousand voxels. Our MRSMap
implementation is available open-source from http://code.google.com/p/mrsmap/ .

4.1 Data Likelihood in Multi-Resolution Surfel Maps

Each voxel in a MRSMap contains a surfelzi which is defined by meanµi ∈ R
6 and co-

varianceΣi ∈ R
6×6 of the colored points falling into the voxel. Given the labelling li of the

surfel, the surfelzseg
i is observed at a corresponding surfelzref

j under the label’s rigid-body
motionθli , i.e.,

p(zseg
i |zref

j ,θli) =N
(
di, j(θli);0,Σi, j(θli)

)
,

di, j(θli) := µ ref
j −T (θli)µ

seg
i , Σi, j(θli) := Σref

j +R(θli)Σ
seg
i R(θli)

T
, (7)

whereT (θli) is the transformation matrix for the pose estimateθli andR(θli) is its rotation
matrix. Note, that our data likelihood takes spatial as wellas color information into account.

The evaluation of the data likelihood involves the association (i, j) ∈ A of the surfelzseg
i

with a surfelzref
j from the reference image. The mean position of the surfelzseg

i is transformed
to the reference image according to the motion estimateθli . We then search for a matching
surfel in the reference image from coarse to fine resolutions. We adapt the search radius
proportional to the resolution and find the association on the finest resolution possible.

Special care needs to be taken at image borders, background at depth discontinuities, and
occlusions. We assign the last observed data likelihood at such borders and in occlusions.

4.2 Smoothness Terms in Multi-Resolution Surfel Maps

We establish pair-wise terms between all six direct neighbors of a voxel in the 3D grid.
In addition, we couple a voxel with its children and its parent voxel within the octree. In
this way, spatial coherence can be enforced despite the sparseness of the representation and
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Figure 2: Example segmentations (top, outliers dark red) towards a reference image (bottom)
from test sequences (left: small, middle: medium, right: large).

across the discrete changes of the depth-dependent resolution limit. We lessen pair-wise
couplings between nodes at highly curved or textured spots,

γ(zi,z j) := max{γnnT
i n j,γL

∣∣µL,i − µL, j
∣∣ ,γα

∣∣µα ,i − µα , j
∣∣ ,γβ

∣∣µβ ,i − µβ , j
∣∣}, (8)

wheren· are the surface normals,µL,·, µα ,· andµβ ,· are the color means of the surfels in the
Lαβ color space [17], andγ· are weighting factors.

4.3 Motion Estimation between Multi-Resolution Surfel Maps

The MRSMaps are registered in an iterative dual refinement procedure similar to the itera-
tive closest points algorithm [17]. The algorithm alternates between efficient pose and data
association refinement steps. Assuming the current pose estimateθ fixed, new surfel associ-
ationsA are estimated in an efficient multi-resolution procedure. Given these associations,
a new pose is estimated by maximizing the observation likelihood of the associated surfels
θ̂ = argmaxθ ∑(i, j)∈A ln p(zseg

i |θ ,zref
j ), marginalized on the spatial dimensions. We augment

this algorithm to incorporate the weighting in our EM objective function (Eq.5) through

argmax
θli

∑
(i, j)∈A

p(li | LML \ {li}, Iseg,Θ, Ire f ) ln p(zseg
i | θli ,z

ref
j ). (9)

5 Experiments

We evaluate segmentation and motion estimation accuracy ofour approach on three RGB-
D video sequences with ground-truth information. We recorded two large objects (chairs),
two medium sized objects (a watering can and a box), and two small objects (a cereal box
and a tea can) (see Fig.2). The objects as well as the camera have been moved during
the recordings. The sequences contain 1,100 frames at 640×480 VGA resolution and at full
30 Hz frame-rate. Ground truth of the 3D rigid-body motion has been obtained with a motion
capture system. We attached infrared reflective markers to the backside of the objects. While
recording the data, we took care that the reflective markers were not visible for the RGB-D
camera. For frames at every 5 seconds, we manually annotatedthe individual object parts
that move throughout the sequences. Invalid depth readingsor non-rigid objects like arms
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Figure 3: Average segmentation accuracy vs. angular (top) and linear (bottom) ground-truth
object motion (left: small, middle: medium, right: large objects). The mean is determined
for segment motion greater or equal the value on the x-axis.

sequence small medium large

run-time in msec 200.2±42.3 213.1±54.7 138.7±37.5
error inM 0.05±0.29 (-0.09±0.35) 0.11±0.43 (0.04±0.45) -0.58±1.01 (-0.43±0.92)

avg. seg. acc. 0.95 (0.91) 0.94 (0.91) 0.63 (0.65)
median lin. acc. in m 0.012 (0.013) 0.018 (0.020) 0.034 (0.030)

median ang. acc. in rad 0.047 (0.045) 0.029 (0.030) 0.049 (0.048)

Table 1: Mean± standard deviation of run-time and error in the number of segments, seg-
mentation and motion estimate accuracy over all frames (in brackets: real-time mode).

and legs of persons are annotated with dont-care labels. Additionally, we set pixels to dont
care in the ground truth that project outside the reference image due to camera motion. Not
all annotated segments move between a ground-truth frame and an arbitrary frame in the
sequence. We thus automatically determine groups of objects that moved jointly between
the frames (0.12 rad angular and 0.05 m linear thresholds) and merge their segments.

The sequences are processed sequentially, starting from each ground-truth labelled image
as the image to be segmented. If not stated otherwise, the sequences are processed frame-
by-frame. In real-time mode, we drop frames if they would arrive during processing. The
experiments have been run on an Intel Core i7-4770K CPU@3.50GHz. We quantify the
segmentation accuracy of the ground-truth segments with the measure proposed in [8], σ =

true positives
true pos.+false pos.+false negatives , for which we back-project the resulting motion segmentation
into images. We also measure angular and linear errors between ground-truth and estimated
motion. We determined the parameters of our approach empirically, while for the MRSMaps
we use a maximum resolution of 0.0125m at a factor of 0.007 on the squared measurement
distance. The run-time of our approach is given in Table1. It segments images fast at a frame
rate of about 2 to 10 Hz which depends on the number of segmentsand distance to surfaces.
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Figure 4: Median angular (top) and linear (bottom) error of camera motion estimate vs. ob-
ject segmentation accuracy (left: small, middle: medium, right: large objects). The median
is determined for seg. accuracies greater or equal the valueon the x-axis.

5.1 Segmentation Accuracy

In Fig.3, we show average segmentation accuracy in dependency on theactual linear and an-
gular motion of the objects. To visualize the effect of different degrees of object motion onto
the segment accuracy, we vary a threshold for the linear and angular motion and determine
the avg. segmentation accuracy for those results for which the motion is above the threshold.
Most objects and the background in the sequences can be very well segmented. The box-
shaped objects show a continuous drop in segmentation accuracy with rotation since sides
of the boxes become occluded. For the chairs (bottom row) it can be seen that object motion
improves segmentation accuracy. This is explained by the distant hence noisy, structure-
less, and untextured background which allows only coarse misalignments to be detected.
The chair feet cannot be reliably segmented because of theirthin and rotationally repetitive
structure. Besides this, our approach recovers the number of segments well and achieves
good overall accuracies in segmentation and motion estimates (see Table1). Notably, if
frames are dropped to operate in real-time, we obtain similar performance.

5.2 Motion Estimate Accuracy

The results in Fig.4 demonstrate that our approach yields accurate motion estimates of the
camera relative to the objects. Here, we determine the median pose accuracy for all results
above the varied segmentation accuracy threshold. While for many objects motion accuracy
increases with segmentation accuracy, the motion is well estimated also for low segmentation
accuracies. This indicates that segmentation accuracy is mostly low for small displacements.
Only for the small objects, or for the background at low segmentation accuracy, the pose
estimates are slightly off. The small objects are difficult to track in angle with our depth-
based registration method due to measurement noise and hands of persons that touch the
object to move it. If the background is undersegmented, the registration arbitrates between
the background and a foreground object until motion is sufficiently large to split the segment.
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6 Conclusions

In this paper we presented an efficient motion segmentation approach for RGB-D image
sequences. We employ expectation-maximization to infer image labelling and motion es-
timates, and propose efficient approximations based on graph-cuts. Our approach recovers
the number of motion segments and is suited for online operation in real-time. An efficient
probabilistic image representation that supports rapid registration of RGB-D images facili-
tates fast performance.

In our experiments, we demonstrated high accuracy of our method with regards to seg-
mentation and motion estimates. The performance of our motion segmentation approach
strongly depends on the underlying image representation. In order to improve the segmen-
tation of fine-detailed structure and to increase the accuracy of motion estimation for small
objects, we will integrate point features into our dense segmentation approach. It could also
be useful to adapt an oversegmentation of the image such as superpixels or supervoxels to our
approach. While we handle degrading image overlap, segmentation evidence from multiple
view points would be beneficial to increase overlap.
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