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Abstract— In this paper, we discuss the RoboCup@Home
league as a benchmark for service robot systems in every-
day environments. The competition requires skills in mobile
manipulation and human-robot interaction. Specifically, we
detail the contributions of our team NimbRo, which won
the RoboCup@Home competition in 2011. We demonstrated
novel capabilities in the league such as real-time table-top
segmentation, flexible grasp planning, real-time tracking of
objects, and human-robot cooperative manipulation. We report
on the experiences made with our robots at the competition.

I. INTRODUCTION

Robot competitions such as the DARPA Grand and Ur-
ban Challenges [1], the European Land-Robot Trial (EL-
ROB) [2], and—not the least—RoboCup [3], [4] provide
a standardized test bed for robotic systems. They require
participating teams to operate their robots in a common
environment, outside their own lab, at a scheduled time.
This makes it possible to directly compare the different
approaches for robot construction, environment perception,
and control.

The annual RoboCup competitions are well known for
their soccer leagues. As a step towards applications, fur-
ther leagues have been included such as the RoboCup
Rescue league for robots supporting first responders and
RoboCup@Home addressing service robot applications in
everyday environments.

Since 2009, we participate in the RoboCup@Home league
with great success. The competition fosters research on
mobile manipulation and human-robot interaction. Since the
application domain requires the integration of many capabil-
ities, the approaches are integrated systems and benchmark-
ing individual components becomes less suitable. Instead,
benchmarking them can be conducted by demonstrating
(and comparing) the performance and reliability of complete
systems in a realistic setup and in an integrated way.

Integrated demonstrations of service robots in everyday
environments are also performed by research groups in their
own lab or at trade fairs, e.g. at TU Munich [5], at KIT [6],
at DLR [7], at Willow Garage [8], and at Yaskawa [9].
While the technical achievements of these demonstrations
are impressive, due to the isolated performances, it is hard
to compare them directly to the work of other groups.

II. THE ROBOCUP@HOME LEAGUE

The RoboCup@Home league [10], [11] has been estab-
lished in 2006 to foster the development and benchmarking
of dexterous and versatile service robots that can operate
safely in everyday scenarios. The robots have to show a wide
variety of skills including object recognition and grasping,

Fig. 1. Cognitive service robot Cosero in a supermarket and opening a
bottle.

safe indoor navigation, and human-robot interaction (HRI).
In 2011, 19 international teams competed in the @Home
league. It is currently one of the strongest growing leagues
in RoboCup.

The competition is organized into two preliminary rounds
or stages and the Final. The stages consist of predefined
test procedures as well as open demonstrations in which the
teams can show what their robot can do best.

The lean rules in the RoboCup@Home league facilitate
a variety of approaches. Some teams construct new and
innovative robot hardware, while others resort to off-the-
shelf hardware in order to focus on algorithmic problems.
In the following, we discuss some approaches of teams that
participated in the Robocup@Home competition in 2011.

The team WrightEagle [12] from the University of Science
and Technology of China competes in the @Home league
since 2009. They proposed a cognitive software architecture
for their KeJia robot, which combines methods for natural
language processing, reasoning, and task execution. In 2011,
WrightEagle introduced the KeJia-2 robot platform that
supports omni-directional driving and is equipped with two
7-DOF manipulators for human-like reach. In the compe-
tition, KeJia made popcorn in a microwave oven. For this
demonstration, the robot had to press buttons and to open
and close the microwave door.

The German team b-it-bots [13] from the Bonn-Rhein-
Sieg University of Applied Sciences introduced their robot
Jenny in this year’s competition. Jenny consists of a modified
Care-O-Bot 3 platform from Fraunhofer IPA with a 7-
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Fig. 2. Our service robot Dynamaid opens the fridge to fetch a drink.

DOF Kuka lightweight robot arm and a 3-finger hand from
Schunk. They proposed means for object categorization,
facial expression recognition, and interpretation of pointing
gestures. Their control framework incorporates a deliberative
layer implemented in a hierarchical task network.

The Australian team RobotAssist [14] from the ARC
Centre of Excellence in Autonomous Systems competes with
a mobile manipulation platform that is built from a Segway
RMP 100 base and an Exact Dynamics iArm manipulator.
For manipulator control, they apply an optimization method
that finds collision-free arm configurations for the object to
manipulate. RobotAssist also demonstrated person detection,
identification, and social skills with their robot.

In this year’s competition, our team NimbRo participated
with Dynamaid and its successor, Cosero. In the tests, the
robots showed their human-robot interaction and mobile
manipulation capabilities. We introduced many new develop-
ments, like grasp planning to extend the range of graspable
objects, real-time scene segmentation and object tracking,
and human-robot cooperative manipulation of a table. Our
performance was well received and has been awarded the first
place in the RoboCup 2011 competition. In the following, we
will detail our main contributions to the @Home league.

III. ROBOT DESIGN

We focused the design of our robots Dynamaid and Cosero
(s. Fig. 1 and Fig. 2) on typical requirements for autonomous
operation in everyday tasks. While Cosero [15] still retains
the light-weight design principles of Dynamaid [16], we
improved its construction and appearance significantly and
made it more precise and stronger actuated. Cosero’s mobile
base has a small footprint of 59 × 44 cm and drives omni-
directionally. This allows the robot to maneuver through the
narrow passages found in household environments. Its two
anthropomorphic arms resemble average human body pro-
portions and reaching capabilities. A yaw joint in the torso
enlarges the workspace of the arms. In order to compensate
for the missing torso pitch joint and legs, a linear actuator in
the trunk can move the upper body vertically. This enables
the robot to manipulate on similar heights like humans, even
on the floor.

We constructed our robots from light-weight aluminum
parts. All joints in the robots are driven by Robotis Dy-

Fig. 3. Left: panorama image of an office. Right: 3D surfel map learned
with our approach (surfel orientation coded by color).

namixel actuators. These design choices allow for a light-
weight and inexpensive construction, compared to other
domestic service robots. While each arm has a maximum
payload of 1.5 kg and the drive has a maximum speed
of 0.6 m/sec, the low weight (in total ca. 32 kg) requires only
moderate actuator power.

Cosero perceives its environment with a variety of com-
plementary sensors. The robot senses the environment in 3D
with a Microsoft Kinect RGB-D camera in its pan-tilt head.
For obstacle avoidance and tracking in farther ranges and
larger field-of-views than the Kinect, the robot is equipped
with multiple laser-range scanners. The sensor head also
contains a shotgun microphone for speech recognition. By
placing the microphone on the head, the robot points the
microphone towards human users and at the same time
directs its visual attention to them.

IV. EVERYDAY MANIPULATION SKILLS OF OUR ROBOTS

A. Mobile Manipulation

One significant part of the competition in the @Home
league tests the mobile manipulation capabilities of the
robots. They shall be able to fetch objects from various
locations in the environment. To this end, the robot must
navigate through the environment, perceive objects, and
grasp them.

We implement 2D navigation with state-of-the-art meth-
ods. In static environments, Cosero localizes and plans paths
in a 2D occupancy grid map. The main sensor for localization
is the SICK S300 laser scanner on its mobile base. For 3D
collision avoidance, we integrate measurements from any 3D
sensing device, such as the tilting laser in the robot’s chest.

We address several shortcomings of using 2D maps for
localization and path planning by building 3D maps of the
environment [17]. One problem of such 2D maps occurs in
path planning, if untraversable obstacles cannot be perceived
on the laser scanner’s height. Localization with 2D lasers
imposes further restrictions if dynamic objects occur, or the
environment changes in the scan plane of the laser. Then,
localization may fail since large parts of the measurements
are not explained by the map.

We choose to represent the map in a 3D surfel grid
which the robot acquires from multiple 3D scans of the
environment. Fig. 3 demonstrates an example map generated
with our approach. From the 3D maps, we extract 2D
navigation maps by exploring the traversability of surfels.



We check for untraversable bumps between surfels and for
obstacles within the robot’s height range.

For localization, we developed an efficient Monte Carlo
method that can incorporate full 3D scans as well as 2D
scans. When used with 3D scans, we extract surfels from
the scans and evaluate the observation likelihood. From 2D
scans, we extract line segments and associate them with
surfels in the map. Localization in 3D maps is specifically
useful in crowded environments. The robot can then leverage
measurements above the height of people to localize at the
static parts of the environment. More general, by representing
planar surface elements in the map, we can also rely for
localization mainly on planar structures, as they more likely
occur in static environment parts. For further details please
refer to [17].

Typically, in mobile manipulation the robot estimates its
pose in reference to the walls, objects, and persons. For
example, when the robot grasps an object from a table, it
first approaches the table roughly within the reference frame
of the static map. Then, it adjusts in height and distance to
the table. Finally, it aligns itself to bring the object into the
workspace of its arms.

Cosero grasps objects on horizontal surfaces like the floor,
tables and shelves in a height range from ca. 0 m to 1 m.
It carries the object and hands it to human users. We also
developed solutions to pour-out containers, to place objects
on horizontal surfaces, to dispose objects in containers, to
grasp objects from the floor, and to receive objects from
users.

B. Compliance Control

From differential inverse kinematics, we derived a method
to limit the torque of the joints depending on how much
they contribute to the achievement of the motion in task-
space [18]. Our approach not only allows to adjust compli-
ance in the null-space of the motion, but also in the individual
dimensions in task-space. This is very useful when only
specific dimensions in task-space shall be controlled in a
compliant way.

We applied compliant control to the opening and closing
of doors that can be moved without the handling of an un-
locking mechanism. Refrigerators or cabinets are commonly
equipped with magnetically locked doors that can be pulled
open without special manipulation of the handle. See Fig. 2
for an example. Several approaches exist to manipulate doors
when no precise articulation model is known ([19], [20]).
Our approach does not require feedback from force or tactile
sensors.

To open a door, our robot drives in front of it, detects
the door handle with the torso laser, approaches the handle,
and grasps it. The drive moves backward while the gripper
moves to a position to the side of the robot in which the
opening angle of the door is sufficiently large to approach
the open fridge or cabinet. The gripper follows the motion
of the door handle through compliance in the lateral and the
yaw directions. The robot moves backward until the gripper
reaches its target position. For closing a door, the robot has

(a) (b) (c)

Fig. 4. Table-top segmentation. (a) Example setting. (b) Raw point cloud
from Kinect with RGB information. (c) Each detected object is marked with
a distinct color.

to approach the open door leaf, grasp the handle, and move
forward while it holds the handle at its initial grasping pose
relative to the robot. When the arm is pulled away from this
pose by the constraining motion of the door leaf, the drive
corrects for the motion to keep the handle at its initial pose
relative to the robot. The closing of the door can be detected
when the arm is pushed back towards the robot.

C. Real-Time Table-Top Segmentation

In household environments, objects are frequently located
on planar surfaces such as tables. We therefore base our
object detection pipeline on fast planar segmentation of the
depth images of the Kinect [15]. Fig. 4 shows an exemplary
result of our approach in a table-top scene. Our approach
processes depth images with a resolution of 160×120 at
frame rates of approx. 16 Hz on the robot’s main computer.
This enables our system to extract information about the ob-
jects in a scene with a very low latency for further decision-
making and planning stages. For object identification, we
utilize texture and color information [16].

In order to process the depth images efficiently, we com-
bine rapid normal estimation [21] with fast segmentation
techniques. The normal estimation method utilizes integral
images to estimate surface normals in a fixed image neigh-
borhood in constant time. Overall, the runtime complexity
is linear in the number of pixels for which normals are
calculated. Since we search for horizontal support planes,
we find all points with vertical normals. We segment these
points into planes using RANSAC [22]. We find the objects
by clustering the points above the convex hull of the support
plane points.

(a) (b) (c)

Fig. 5. Grasp planning. (a) Object shape properties. The arrows mark the
principal axes of the object. (b) We rank feasible, collision-free grasps (red,
size prop. to score) and select the most appropriate one (large, RGB-coded).
(c) Example grasps on box-shaped objects.



Fig. 6. Left: Objects composed from shape primitives recognized in a
transport box. Right: Cosero executes a planned collision-free grasp on an
object in a box.

D. Efficient Grasp Planning

We investigate grasp planning to enable our robots to
grasp objects that they typically encounter in RoboCup. In
order to grasp objects flexibly from shelves and in complex
scenes, we consider obstructions by obstacles [15]. In our
approach, we assume that the object is rigid and symmetric
along the planes spanned by the principal axes of the object,
e. g., cylindrical or box-shaped objects. We found that our
approach also frequently yields stable grasps when an object
violates these assumptions. Fig. 5 illustrates the main steps
in our grasp planning pipeline and shows example grasps.

We consider two kinds of grasps: A side-grasp that ap-
proaches the object horizontally and grasps the object along
the vertical axis in a power grip. The complementary top-
grasp approaches the object from the top and grasps it with
the finger tips along horizontal orientations. Our approach
extracts the object’s principle axes in the horizontal plane
and its height. We sample pre-grasp postures for top- and
side-grasps which we examine for feasibility under kinematic
and collision constraints.

In on-going work, we advance our method to operate in
more general scenes and to be less restrictive in collision
checking (s. Fig.6). We apply the method by Schnabel
et al. [23], [24] and Berner et al. [25] to detect objects
composed from shape primitives such as cylinders, spheres,
and cones in point clouds. On the shape primitives, we
sample pre-grasp postures and identify feasible collision-
free grasps. For fast grasp planning, we successively prune
infeasible grasps in stages of ascending run-time complexity.
Finally, we efficiently plan collision-free reaching motions
using a multi-resolution sampling-based planner [26]. Our
method is suitable for recognizing and grasping objects in
complex scenes such as object piles.

(a) (b) (c)

Fig. 7. Learning object models. (a) During training the user selects points
(red dots) to form a convex hull around the object. (b) Color and shape
distribution modeled at 2.5 cm resolution. Lines indicate surface normals
(color-coded by orientation). (c) Color and shape distribution modeled at
5 cm resolution. Lines indicate surface normals (color-coded by orientation).

E. Real-Time Object Tracking

When a robot interacts with objects, it has to estimate its
pose with respect to the objects. Frequently, the localization
of the object in a map is not precise enough for this purpose.
For example, the place of many household objects such as
tables or chairs is subject to frequent changes. The robot
must hence be able to detect the object in its current sensor
view and estimate the relative pose of the object.

We developed methods for real-time tracking of ob-
jects with RGB-D cameras [27]. We train full-view multi-
resolution surfel maps of objects (s. Fig. 7) and track these
maps in RGB-D images in real-time.

Our maps represent the normal distribution of points
including their color in voxels at multiple resolutions using
octrees.

We register these maps to the object map with an ef-
ficient multi-resolution strategy. Instead of comparing the
image pixel-wise to the map, we build multi-resolution surfel
maps ms with color information from new RGB-D images
and register these maps to the object map mm with an
efficient multi-resolution strategy. We associate each node
in the image map to its corresponding node in the object
map using fast nearest-neighbor look-up. We measure the
matching likelihood

p(ms|x,mm) =
∏

(i,j)∈C

p(ss,i|x, sm,j) (1)

for the surfel correspondences, where C is the set of surfel
correspondences between the maps, and ss,i = (µs,i,Σs,i)
and sm,j = (µm,j ,Σm,j) are corresponding surfels.. We
iteratively optimize this likelihood to find the most likely
transformation between the maps. In order to cope with
illumination changes, we ignore minor luminance and color
differences.

The observation likelihood of a surfel match is the differ-
ence of the surfels under their normal distributions,

p(ss|x, sm) = N (d(sm, ss, x); 0,Σ(sm, ss, x)) ,

= N
(
µm − T (x)µs; 0,Σm +R(x)ΣsR(x)T

)
,

(2)

where T (x) is a transformation matrix that rotates and
translates the spatial dimensions according to the pose x
and R(x) is the corresponding rotation matrix.



Fig. 8. Left: Relative scores per finalists 2011. Right: Reached scores in
the predefined test procedures per functionality.

We associate surfels between maps using efficient nearest
neighbor look-ups in the octree. In order to determine the
correspondences between surfels in both maps, we apply
a coarse-to-fine strategy that selects the finest resolution
possible. We only establish a correspondence, if the surfels
also match in the color cues. Our association strategy not
only saves redundant comparisons on coarse resolution. It
also allows to match surface elements at coarser scales if
shape and color cannot be matched on finer resolutions. By
this, our method allows the object to be tracked from a wide
range of distances.

F. Human-Robot Cooperative Manipulation

We study physical interaction between a human user and
a robot in a cooperative manipulation task [27]. In our
scenario, the human and the robot cooperatively carry a large
object, i. e., a table. For the successful performance of this
task, the robot must keep track of the object and the actions
of the human.

In order to accurately approach the table, the robot tracks
the 6 DoF pose of the table in real-time. The user can then
lift and lower the table, which the robot simply perceives
through the motion of the registered table model. Once the
table is lifted, the robot lifts the table as well and sets its arms
compliant in the horizontal plane and in vertical orientation.
This enables the human to move the robot arms through the
table. The robot follows this motion until the human puts the
table down again.

V. PERFORMANCE AT ROBOCUP 2011

With Dynamaid and Cosero, we competed in the RoboCup
@Home 2011 competition in Istanbul. Our robots partici-
pated in all tests of Stages I and II, and performed very well.
We accumulated the highest score of all 19 teams in both
stages. Our final demonstration was also awarded the best
score such that we achieved the first place in the competition.

A. Stage I

Stage I begins with the Robot Inspection and Poster
Session test. Our robots registered themselves at the regis-
tration desk, while we presented our work to the leaders of
other teams in a poster session. Overall, we received the
highest score in this test. In the Follow Me test, Cosero

met a previously unknown person and followed him reliably
through an unknown environment. Cosero could show, that it
can distinguish this person from others, and that it recognizes
stop gestures. In Who Is Who, two previously unknown
persons introduced themselves to Cosero. Later in the test,
our robot found one of the previously unknown persons,
two team members, and one unknown person and recognized
their identity correctly. The Open Challenge allows the teams
to show their research in self-defined tasks. Cosero fetched
a bottle of milk, opened it, and poured it into a cereal bowl.
Then, Cosero grasped a spoon using our approach to grasp
planning and placed it next to the bowl. Cosero understood
a complex command partially and went to a correct place
in the General Purpose Service Robot I test. In the Go Get
It! test, Cosero found a correct object and delivered it. After
Stage I, we were leading the competition.

B. Stage II

In Stage II, Cosero participated in the Shopping Mall test.
It learned a map of a previously unknown shopping mall
and navigated to a shown location. Taking a shopping order
was hindered by speech-recognition failures in the unknown
acoustic environment. In the General Purpose Service Robot
II test, Cosero first understood a partially specified command
and asked questions to obtain missing information about the
object to grasp and the location of the object. It executed the
task successfully. In the second part of the test, it worked
on a task with erroneous information. It detected that the
ordered object was not at the specified location, went back
to the user, and reported the error. In the Demo Challenge,
we demonstrated pointing gestures by showing the robot in
which baskets to put colored and white laundry. The robot
cleaned the apartment, picked white laundry from the floor,
and put it into the correct basket. Afterwards it cleaned up
the appartment and picked objects from a table. The technical
committee awarded us the highest score.

Fig. 8 summarizes the scores achieved for individual
functionalities as proposed in [28]. Note that due to the
sequential nature of the predefined test procedures, in some
tests our robots did not reach specific sub-tasks. For instance,
in Enhanced Who Is Who or Shopping Mall, our system
had difficulties to understand the orders by the human user
and, hence, did not have the chance to gain score for object
manipulation. The results demonstrate that we were able to
improve most functionalities compared to 2010 and achieved
well in developing a balanced domestic service robot system.
Overall, we reached the Final with 8,462 points, followed by
Wright Eagle from China with 6,625 points.

C. Final

In the Final, we demonstrated the cooperative carrying of
a table by Cosero and a human user (s. Fig. 9). Then, a user
showed Cosero where it finds a bottle of dough to make an
omelet. Our robot went to the cooking plate to switch it on. It
succeeded partially in turning the plate on. Then, it drove to
the location of the dough and grasped it. At the cooking plate,
it opened the bottle and poured it into the pan. We applied



Fig. 9. Cosero cooperatively carries a table with a user and bakes omelet
during the RoboCup@Home Final 2011 in Istanbul.

our real-time object tracking method in order to approach the
cooking plate. Meanwhile, Dynamaid opened a refrigerator
and grasped a bottle of orange juice out of it. It placed the
orange juice on the breakfast table. Fig. 8 shows the relative
scores of the finalists in 2011. Our performance received the
best score by the juries that consisted of members of the
executive committee and external judges from science and
the media.

VI. CONCLUSION

The RoboCup@Home league is a competition for service
robots in everyday environments. It benchmarks mobile ma-
nipulation and HRI capabilities of integrated robotic systems.

As a specific example of approaches in the RoboCup
@Home league, we presented the contributions of our win-
ning team NimbRo. In this paper, we detailed our meth-
ods for real-time scene segmentation, object tracking, and
human-robot cooperative manipulation. In the tests in Stages
I and II, our robots Cosero and Dynamaid performed very
well. Our advanced mobile manipulation and HRI skills have
been well received by juries in the open demonstrations and
the Finale.

In future work, we aim to further advance the versatility of
the mobile manipulation and human-robot interaction skills
of our robots. The learning of models of arbitrary objects
and the real-time tracking of these models is one step in this
direction. Equally important, we are working to improve the
perception of persons and the interpretation of their actions.
We also plan to remove the necessities to adapt the tools that
the robot uses to its current end-effectors. In order to improve
the manipulation skills of our robots, we will improve the
design of the grippers. We plan to construct thinner fingers
with touch sensors. Then, we can devise new methods to
grasp smaller objects or to use smaller tools.
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