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Abstract
Cross-lingual, cross-task transfer is challenged by task-
specific data scarcity, which becomes more severe as lan-
guage support grows and is further amplified in vision-
language models (VLMs). We investigate multilingual gen-
eralization in encoder-decoder transformer VLMs to enable
zero-shot image captioning in languages encountered only in
the translation task. In this setting, the encoder must learn to
generate generalizable, task-aware latent vision representa-
tions to instruct the decoder via inserted cross-attention lay-
ers. To analyze scaling behavior, we train Florence-2 based
and Gemma-2 based models (0.4B to 11.2B parameters) on
a synthetic dataset using varying compute budgets. While all
languages in the dataset have image-aligned translations, only
a subset of them include image captions. Notably, we show
that captioning can emerge using a language prefix, even
when this language only appears in the translation task. We
find that indirect learning of unseen task-language pairs ad-
heres to scaling laws that are governed by the multilinguality
of the model, model size, and seen training samples. Finally,
we demonstrate that the scaling laws extend to downstream
tasks, achieving competitive performance through fine-tuning
in multimodal machine translation (Multi30K, CoMMuTE),
lexical disambiguation (CoMMuTE), and image captioning
(Multi30K, XM3600, COCO Karpathy).

1 Introduction
Multilingual image-to-text modeling is a fundamental step
towards achieving universal accessibility of multimedia
content. Recent advancements in vision-language models
(VLMs) demonstrate impressive results across various tasks
such as image understanding and visual question answer-
ing (Liu et al. 2023; Xiao et al. 2024; Gemma Team 2025).
This progress is driven by the availability of large, primarily
English vision-language datasets. Two main approaches en-
able cross-lingual transfer, extending capabilities from En-
glish to other languages. The first method involves fine-
tuning multilingual models in a single language for a spe-
cific task, while keeping the embeddings and most layers
of the language model frozen in order to retain its multi-
lingual representations. (Wu and Dredze 2019; Chen et al.
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Figure 1: We train a vision-language model (VLM; mid-
dle) on an incomplete dataset (left) that covers the tasks
image captioning (blue) and multimodal machine transla-
tion (orange). While En→X translation is available for all
languages, captioning data is limited to only English and
German. The VLM generalizes to the missing captioning-
language pairs with sufficient scale (right).

2023; Futeral et al. 2025a). Models such as mBERT (Devlin
et al. 2019) and NLLB (Costa-jussà et al. 2022) are com-
mon choices, representing established multilingual large
language models (LLMs) and machine translation models
(MTMs), respectively. Evidence suggests that both multilin-
gual and monolingual models learn language-agnostic repre-
sentations, enabling cross-lingual transfer (Libovický, Rosa,
and Fraser 2019; de Souza et al. 2024). The second method
uses continuous pre-training on collected or generated mul-
tilingual data (Gogoulou et al. 2022; Qiu et al. 2022; Futeral
et al. 2025b).

Current methods are fundamentally constrained by their
underlying models and data. By using pre-trained LLMs,
they inherit the trade-off between performance and language
coverage (Conneau et al. 2020). Generating data requires ca-
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Figure 2: Test cross-entropy (CE) loss for various training compute budgets (GMACs, Giga multiply-accumulate operations).
We show results for the test splits for unseen captioning (UC) in Spanish (Es) and Chinese (Zh), seen translation (ST) in the
same languages, and seen captioning (SC) in English (En) and German (De). All models are trained for 0.5M, 2M, 5M, and 10M
seen samples. Equation 1 is fitted to the points on the Pareto frontier (gray staircase graph). Higher compute budgets improve
CE loss for UC (left), ST (middle), and SC (right). This suggests that translation facilitates generalization in captioning.

pable MTMs while collecting sufficient data is impractical.
Furthermore, multimodal approaches struggle to resolve lex-
ical ambiguities (e.g., distinguishing between “bat” as an an-
imal or sports equipment) (Futeral et al. 2023). The dynam-
ics of multilingual cross-task generalization, particularly at
scale, remains largely unexplored, despite its implications
for the necessity of collecting data for each task in every lan-
guage. To overcome these challenges, exploring systematic
generalization (Fodor and Pylyshyn 1988; Lake and Baroni
2023) is a critical next step.

We explore the scaling laws of generalization within a
realistic multimodal setting using a partially pre-trained
encoder-decoder transformer (Vaswani et al. 2017) and a
standard training method. Our goal is to learn a set of task
and language combinations and transfer these capabilities to
different task-language combinations in a zero-shot manner
by scaling, as illustrated in Figure 1. In summary, our main
contributions are:
• We investigate the scaling laws of model performance

on seen task-language data and its generalization to un-
seen task-language data, analyzing the effects of model
size, number of seen training samples, and initial cross-
entropy loss. We show that generalization by only learn-
ing translation to facilitate captioning is influenced not
only by multilingual pre-training but also by model scale
and seen training samples.

• We find that the observed scaling trends persist during
fine-tuning, resulting in competitive performance across
multiple benchmarks (Multi30K, CoMMuTE, COCO
Karpathy, and XM3600).

• We present a modular encoder-decoder framework built
on pre-trained VLMs and LLMs, with sizes ranging from
0.4B to 11.2B parameters.

• We propose a pipeline that generates synthetic multilin-

gual image captions and aligns a text-only translation
dataset to these images using contrastive VLMs and off-
the-shelf MTMs.

2 Related Work
Scaling laws. Following a power-law relationship, scaling
laws enable predictable and efficient large-scale training and
offer valuable insights into training dynamics. These laws
were first described for computer vision (Sun et al. 2017)
and have since been applied to natural language process-
ing (Kaplan et al. 2020; Ghorbani et al. 2022; Hoffmann
et al. 2022; Fernandes et al. 2023), transfer learning (Her-
nandez et al. 2021), and contrastive vision-language learn-
ing (Cherti et al. 2023). Current studies only focus on what
is explicitly learned and not on what is implicitly learned.
Machine translation. The transformer (Vaswani et al.
2017) has revolutionized machine translation, with impres-
sive results through pre-training on extensive translation
data (Costa-jussà et al. 2022), non-parallel multilingual
data (Devlin et al. 2019), and with weak supervision (Con-
neau et al. 2020). While models like NLLB (Costa-jussà
et al. 2022) demonstrate significant success by supporting
200 languages, many translation directions remain under-
resourced. Several techniques have been used to address this
issue, including language pivots (Wu and Wang 2007), the
generation of pseudo labels (Firat et al. 2016), and leverag-
ing similar languages or parallel data (Johnson et al. 2017).
Cross-lingual transfer. Multilingual LLMs (Devlin et al.
2019; Liu et al. 2020) and MTMs (Costa-jussà et al.
2022) exhibit strong cross-lingual transfer performance,
even when fine-tuned with monolingual data (Wu and
Dredze 2019; Pires, Schlinger, and Garrette 2019; Muen-
nighoff et al. 2023). Studies show that language-neutral and
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Figure 3: Test CE loss as a function of model size (P ), number of seen samples (S), and initial CE loss (T ) across the three test
splits: UC, ST, and SC. The dashed lines represent the fitted functions for three values of T : T = 10.44 for Florence-2 based
models, T = 6.02 for Gemma-2 based models, and T = 3.0 for a hypothetical highly multilingual VLM. Line thickness is
proportional to the T value. The measured results for all evaluated models are shown as points. The 10M seen-sample line is
highlighted in orange, while lower sample counts are represented by progressively lighter shades of gray. Notably, for the UC
task, test CE loss decreases as P and S increase and T decreases.

language-specific components develop and facilitate trans-
fer (Libovický, Rosa, and Fraser 2019; de Souza et al. 2024).
Multimodal multilingual learning. The issue of data
scarcity is addressed by adapting multilingual models with
machine translated data (Futeral et al. 2025a), small mul-
timodal multilingual datasets (Mitzalis et al. 2021; Futeral
et al. 2023; Hirasawa et al. 2023), text-only translation
data (Mitzalis et al. 2021; Hirasawa et al. 2023), and im-
age captioning as auxiliary task (Mitzalis et al. 2021). Web-
crawled multilingual vision data can unlock few-shot capa-
bilities (Futeral et al. 2025b). Adapting monolingual models
can also be effective, although the size of the pre-training
corpus can impact their final performance, while language
similarity has little effect (Gogoulou et al. 2022). Text-only
models can solve some multimodal multilingual tasks that
have few vision-dependent samples (Hirasawa et al. 2023;
Futeral et al. 2023). Resolving lexical ambiguities requires
additional context (Futeral et al. 2023). Contrastive mod-
els (Radford et al. 2021; Carlsson et al. 2022; Chen et al.
2023) excel at resolving ambiguities, whereas multilingual
generative models struggle (Futeral et al. 2023, 2025a).

Muennighoff et al. (2023) also perform cross-lingual
transfer by fine-tuning LLMs without target-task data but
rely on the model’s existing multilingual capabilities. In con-
trast, we investigate scaling laws for improving performance
in a new task-language combination with respect to model
size, seen training samples, and initial multilingual loss.

3 Models and Datasets
We construct partially pre-trained VLMs based on the pre-
trained models Florence-2 (Xiao et al. 2024) and Gemma-
2 (Gemma Team 2024). Florence-2 is an encoder-decoder
VLM supporting tasks ranging from object detection to im-

age captioning and is available with 0.2B and 0.8B parame-
ters. The encoder generates a sequence of tokens, represent-
ing both image and task, that is used to instruct the decoder
via cross-attention layers.

To obtain larger model sizes, we combine Gemma-2, an
LLM with sizes of 3B and 9B parameters, with the en-
coder of Florence-2. The image-task encoder outputs are in-
tegrated into the decoder by inserted cross-attention layers
that are weighted with a learnable parameter initialized with
zero following Flamingo (Alayrac et al. 2022).

For the decoder, we reuse the tokenizer of Gemma-2 with
a vocabulary size of 256k. For the two smaller models with
the Florence-2 decoder, we reinitialize the embedding layer
and language modeling head to fit the Gemma-2 tokenizer
using the method by Gee et al. (2022). The encoder retains
the original tokenizer and embeddings from Florence-2.

This leads to the standard transformer encoder-decoder
VLM designed for continuous pre-training, available in sizes
0.4B, 1B, 3.5B, and 11.2B.

3.1 Continuous Pre-training Dataset
We create a synthetic training dataset tailored for this study
based on CC12M (Changpinyo et al. 2021) and CCMa-
trix (Schwenk et al. 2021). The dataset covers six lan-
guages: English (En), German (De), French (Fr), Spanish
(Es), Russian (Ru), and Chinese (Zh). CC12M contains
12M web-crawled images of which 10M are available. We
pair the images with generated image descriptions sourced
from Hugging Face1 and translated to German with NLLB-
3.3B (Costa-jussà et al. 2022). CCMatrix is a web-crawled
corpus covering 38 languages with 6.8B parallel sentences

1hf.co/datasets/CaptionEmporium/conceptual-captions-
cc12m-llavanext



Task Coefficient Estimate [95% CI] p-value

SC
β1 -0.59 [-0.79, -0.38] p < 0.001
β2 -0.72 [-0.80, -0.63] p < 0.001
β3 0.10 [-0.10, 0.31] p = 0.293

ST
β1 -0.36 [-0.74, 0.03] p = 0.068
β2 -0.73 [-0.89, -0.57] p < 0.001
β3 0.29 [-0.09, 0.68] p = 0.125

UC
β1 -0.41 [-0.69, -0.12] p = 0.009
β2 -0.23 [-0.35, -0.11] p = 0.001
β3 0.57 [0.29, 0.85] p < 0.001

Table 1: Standardized coefficients for the second power law
(Equation 2) for UC, ST, and SC in log10 space.

of which about 661M are aligned with English. We extract
translations from English to the aforementioned target lan-
guages. Accelerated by Faiss (Douze et al. 2024), we use
CLIP-ViT-B/16 (Radford et al. 2021) to align the sentences
with the images of CC12M via top-5 matching and subse-
quent deduplication. See the appendix for more details.

In total, the training dataset contains 10M images aligned
with 32M captions in En and De and 105M translation pairs
for En→{De, Fr, Es, Ru, Zh}. To evaluate generalization,
we intentionally omit captioning data for {Fr, Es, Ru, Zh}.

For the test set, we use a subset of 4.4K images from
CC12M and create captioning data for two representative
languages for the unseen task-language pairs (Es and Zh).
We divide the test set into three parts: unseen captioning
(UC) with 4.4K Es and 3.5K Zh captions, seen translation
(ST) with 4.1K En→Es and 3.8K En→Zh translations, and
seen captioning (SC) with 4.4K En and 3.1K De captions.
Note that “seen” refers to the task-language combination be-
ing part of training, not the specific data instances.

3.2 Downstream Tasks Dataset
We construct a fine-tuning dataset that includes a mix of
downstream tasks with full language coverage, starting with
the train split of Multi30K (Elliott et al. 2016) for trans-
lation (Task 1, En→{De, Fr}). For captioning, we include
Multi30K (Task 2) for short En and De captions, Image
Paragraph (Krause et al. 2017) for detailed captions, and
DOCCI (Onoe et al. 2024) for highly detailed descriptions.
Missing languages are added to the aforementioned datasets
with neural machine translation (Costa-jussà et al. 2022).
Additionally, we include the train/restval split of COCO
Karpathy (Chen et al. 2015; Karpathy and Fei-Fei 2017).
In total, the fine-tuning dataset has 166K images with 1.6M
captions of different styles and 145K translation samples
covering all task-language combinations.

4 Scaling Laws
We explore the scaling laws of continuous pre-training
in a multilingual multi-task scenario, where not all task-
language combinations are given within the training data.
The relationship between cross-entropy (CE) loss and train-
ing compute can be described by a power law, where
changes in model size and seen samples result in predictable,
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Figure 4: Effect of adding a prefix (Fr: “La photo montre”,
etc.) to the decoder input to unlock zero-shot captioning.
Tested on the image captioning dataset XM3600 in the un-
seen languages Fr, Es, Ru, and Zh. The mean CIDEr over
unseen languages significantly improves with the prefix.

non-linear improvements (Kaplan et al. 2020; Ghorbani
et al. 2022; Hoffmann et al. 2022; Fernandes et al. 2023).

Our first power law selects the Pareto frontier from all
data points, an approach inspired by Cherti et al. (2023).
The scaling law to predict the CE loss y from the training
compute C and error term ϵ is given by:

y = α0C
α1 + ϵ, (1)

where α0 and α1 are the parameters to be estimated. The to-
tal computational cost C in multiply–accumulate operations
(MACs) is estimated by C = S ·F · (1 + Pt/P ), where S is
the number of seen training samples, F is the forward pass
MACs estimated with fvcore2, Pt is the number of train-
able parameters, and P is the total number of parameters.

The second, multivariate power law predicts the CE loss y
based on the seen training samples S, the model parameters
P , the mean initial CE loss T of the base model on the UC
and ST test sets, and the error term ϵ:

y = β0P
β1Sβ2T β3 + ϵ, (2)

where β0, β1, β2, and β3 are to be estimated. In developing
our model, we first considered a baseline using only vari-
ables S and P as commonly done in the literature. However,
the omission of variable T led to a biased result. We trans-
form Equations 1 and 2 into log10 space to enable a linear
regression analysis with ordinary least squares (OLS).
Training setup. We train all our models using
AdamW (Loshchilov and Hutter 2017) with CE loss,
a batch size of 1024, a weight decay of 0.01, and a learning
rate of 1e−4, which is scheduled with a linear warm-up for
100 steps and cosine decay. The input length for encoder
and decoder is truncated to a maximum length of 128 and
the image resolution is set to 224 px. Each model scale
is trained for 500, 2K, 5K, and 10K iterations, where
the latter corresponds to roughly one full epoch. We use
online balancing to sample equally from each task-language
combination. While the vision encoder is always frozen, we
freeze the decoder layers of the 3.5B and 11.2B models as
well. This means that the vision-task encoder, the inserted
cross-attention layers, the language modeling head, and the
embedding layer are trainable. Using the transformers
library (Wolf et al. 2020), we trained on a HPC node
equipped with 4 NVIDIA H100 GPUs.

2github.com/facebookresearch/fvcore
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Figure 5: Downstream task performance with respect to CE loss, measured on the UC, ST, and SC tasks, depending on the type
of downstream task. First row: Multi30K translation to De and Fr measured in BLEU (Task 1; mean over Test2016, Test2017
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De) (Task 2, Test2016), and XM3600 for En, De, and unseen languages (Fr, Es, Ru, Zh). We use a consistent y-axis scale for
matching dataset and task.

Evaluation setup. We calculate the CE loss y over the three
test sets of our continuous pre-training dataset covering the
settings: unseen captioning (UC) in Es and Zh, seen trans-
lation (ST) in Es and Zh, and seen captioning (SC) in En
and De. The initial CE loss T is calculated as a measure of
multilinguality on the UC and ST test sets before training is
conducted on the untrained but restructured models.

4.1 Results
The CE loss of the runs with compute budget and the fit of
the first power law (Equation 1) are visualized in Figure 2.
The analysis confirms a strong fit for SC (R2=0.98) and ST
(R2=0.95) and a slightly weaker fit for UC (R2=0.87). All
models exhibit a clear inverse correlation between CE loss
and train compute, which, while expected for seen tasks (SC
and ST), suggests that models can generalize to unseen tasks
(UC) in a language encountered only through translation.

Figure 3 presents the observed unstandardized coeffi-
cients of the second power law (Equation 2) along with
extrapolations for larger and more multilingual models. To
compare the relative importance of predictors across models,
we additionally report standardized coefficients (standard-
ized across the combined SC, ST, and UC tasks) in Table 1.
All three models have a strong fit with R2=0.98, R2=0.93,
and R2=0.97 for SC, ST, and UC, respectively. Regression
diagnostics indicate that OLS assumptions are satisfied.

The SC model is the standard setting with En and De cap-
tioning in the training and evaluation data. The standardized
coefficients reveal that both training samples S (β2=−0.72)
and model size P (β1= − 0.59) are negatively correlated
with the test CE loss. In contrast, a lower initial CE loss T is
weakly connected with a lower predicted loss (β3=0.10),

though this effect has high uncertainty. Though the neg-
ative dependencies on S and P are consistent with stan-
dard scaling laws, our findings contradict those of Zheng
et al. (2024), who suggest that model size is more important
than dataset size for the continuous pre-training of LLMs
for cross-lingual transfer. We found no evidence that either
predictor is more important, as the 95% confidence inter-
val (CI) of the estimated difference between coefficients in-
cludes zero (β1−β2=0.13, 95% CI [-0.09, 0.35]). This sug-
gests that known scaling behaviors may differ for multi-
modal tasks.

The ST model covers multilingual machine translation
from En to Es and Zh. In this setting, only the number of
training samples S (β2= − 0.73) has a negative effect on
test CE loss. The standardized coefficients for both model
size P (β1= − 0.36) and initial CE loss T (β3=0.29) re-
main inaccurate. The lack of a clear effect is unexpected, as
larger, more multilingual models are presumed to perform
better. An explanation for this finding and the model’s lower
R2 value is that machine translation may require separate
terms for encoder and decoder parameters (Ghorbani et al.
2022). In our setup, the encoder is relatively small, which
may introduce a bottleneck.

The UC model tests generalization to unseen image cap-
tioning in Es and Zh. Standardized coefficients show a posi-
tive association for initial CE loss T (β3=0.57) and negative
associations for model size P (β1= − 0.41) and seen train-
ing samples S (β2=− 0.23). By comparing the magnitudes,
we identify that the influence of initial CE loss T is greater
than that of training samples S (β3+β2=0.34, 95% CI [0.03,
0.65]). In contrast, the differences in magnitude between T
and model size P (β3+β1=0.16, 95% CI [-0.39, 0.72]) and



Multi30K CoMMuTE CoMMuTE COCO Multi30K XM3600
Translation Translation Ambiguity Caption Caption Caption

En→De En→Fr En→De En→X En→De En→X En En De En De Unseen

Model BLEU BLEU BLEU BLEU Acc. Acc. CIDEr CIDEr CIDEr CIDEr CIDEr CIDEr

Gemma-3-12B* 39.2 52.2 44.1 38.5 73.3 76.6 48.1 50.8 55.5 34.0 39.6 46.6
Pixtral-12B* 37.9 53.8 40.7 35.9 73.3 75.5 61.1 62.5 64.4 71.1 38.3 50.5

Baseline-6B* 37.3 54.3 41.5 32.5 61.7 61.1 145.2 84.0 50.4 82.0 38.2 45.1

Florence-2-L 143.3
PaliGemma-3B* 141.7 88.9 57.6 79.1 37.7 48.5

MOF 24.9 35.1 63.7 66.5
ZeroMMT-3.3B 37.1 53.3 60.8 62.2
VGAMT 37.4 58.4 57.1
NLLB-3.3B* 37.4 53.7 40.8 31.9 50.0 50.0

0.4B ft (ours) 37.7 53.7 26.5 20.8 59.0 56.6 138.2 76.6 77.4 76.9 38.6 40.0
1.0B ft (ours) 38.4 56.6 29.0 22.8 59.7 58.8 142.8 85.1 82.6 78.0 41.2 44.7
3.5B ft (ours) 39.2 56.9 32.0 26.0 61.3 62.6 141.6 81.8 84.5 77.7 38.2 43.7
11.2B ft (ours) 40.7 59.1 36.8 29.6 62.3 63.9 141.3 83.1 90.7 79.3 39.4 46.3

0.4B (ours) 34.1 44.3 34.1 25.9 54.0 53.6 28.2 24.5 12.8 24.8(31.3) 15.5(18.9) 0.8(1.7)

1B (ours) 35.3 47.4 35.4 27.1 54.7 54.1 21.3 17.9 9.4 17.0(34.1) 13.1(20.0) 0.8(5.6)

3.5B (ours) 35.8 48.3 36.7 28.7 53.0 54.3 28.7 24.9 14.8 24.4(38.2) 16.9(20.6) 0.8(24.1)

11.2B (ours) 36.6 50.9 39.5 29.8 52.7 53.5 30.5 26.1 15.6 24.3(39.3) 17.6(20.1) 0.9(26.6)

Table 2: Downstream task performance evaluated on Multi30K Task 1 (translation, mean over the Test2016, Test2017, and
AmbiguousCOCO splits), CoMMuTE translation and disambiguation (En→{De, Fr, Es, Ru, Zh}), COCO Karpathy (En cap-
tioning), Multi30K Task 2 (captioning), and XM3600 (captioning, Unseen contains {Fr, Es, Ru, Zh}). We report BLEU for
translation, accuracy (Acc.) for disambiguation, CIDEr for captioning. Bold indicates best results, rows marked with * are
evaluated by us, and values with a superscript number in braces are evaluated with a prefix.

P and seen training samples S (β1−β2= − 0.18, 95% CI
[-0.48, 0.13]) are not distinctive. While larger models are
known to perform well on zero-shot tasks, this is often at-
tributed to potential dataset contamination (Radford et al.
2019). Our findings suggest that generalization is not merely
an artifact of pre-training data contamination. Instead, over-
all model capacity and the quantity of observed, problem-
related training data also play a critical role.

During inference, even though the captioning CE loss for
unseen languages decreases, the models consistently fail to
produce text in the intended target language. Instead, they
default to En or De, the two languages encountered during
training for captioning. We found that adding a small prefix
to the decoder seeds the output of the model. The effect is
visualized in Figure 4 and shows the generation of captions
without prior exposure to captioning data in those languages.
Qualitative examples can be found in the appendix.

We extrapolate the second power law to estimate the
CE loss values for a larger, highly multilingual model with
P=30B, T=3.0, and a fixed compute budget of S=10M.
We predict that this model could achieve a CE loss of 1.92
with a 95% prediction interval (PI) [1.65, 2.23], 1.18 with a
95% PI [0.89, 1.57], and 0.71 with a 95% PI [0.63, 0.80] on
UC, ST, and SC, respectively.
Key findings. The insights of this scaling law study can be
summarized as follows: CE loss is predicted by initial mul-
tilinguality T , model size P , and seen training samples S.

For captioning with full coverage (SC), P and S contribute
comparably; for translation with only translation supervision
(ST), S dominates; and for captioning with only translation
supervision (UC), all three matter. Our results indicate that
scaling reduces, but does not eliminate, the need for task-
language supervision.
Limitations. This study has several limitations. First, our
scaling-law analysis is based on only 16 experimental con-
figurations, limiting the predictive capability of our findings.
Second, the derived power laws are specific to our exper-
imental setup. Additionally, other factors could influence
the parameters, including: the number of languages that the
model has to learn, the extensiveness of the pre-training, the
synthetic nature of our data and potential style and domain
gaps, the difficulty of tasks, and the effect of multiple tasks.

5 Downstream Tasks
To evaluate if the scaling laws transfer, we train on a mix of
downstream tasks designed to enhance multilingual transla-
tion and captioning.
Training setup. Starting from the models pre-trained for
10K steps, we train for an additional 5K steps using a sim-
ilar setting. The image resolution is set to 768 px, the batch
size to 256, and the learning rate to 5e−5.
Evaluation setup. We evaluate our models on three tasks:
image captioning, multimodal machine translation, and lex-
ical disambiguation. Image captioning is assessed on COCO



Karpathy (Chen et al. 2015; Karpathy and Fei-Fei 2017)
(5K images with five En captions), Multi30K (Task 2, 1K
images with five En and five De captions) (Elliott et al.
2016), and XM3600 (Thapliyal et al. 2022) (3.6K images,
captions in 36 languages) evaluated with CIDEr (Vedan-
tam, Zitnick, and Parikh 2015) using the pycocoevalcap
toolkit3. Following Futeral et al. (2025b), we apply seg-
mentation with stanza (Qi et al. 2020) for languages
without word boundaries. Multimodal machine translation
is assessed with BLEU (Papineni et al. 2002) (via Sacre-
BLEU (Post 2018)) on the Multi30K (Task 1, Test2016,
Test2017, AmbiguousCOCO splits) (Elliott et al. 2016,
2017; Barrault et al. 2018) and on CoMMuTE (Futeral et al.
2023, 2025a) (310 translations with images for context). Fi-
nally, lexical disambiguation is assessed with accuracy on
CoMMuTE.

5.1 Results
We perform OLS regressions in log10 space to model down-
stream task performance as a function of the CE loss on our
UC, ST, and SC test splits. The resulting trend curves are
plotted in Figure 5. We observe a strong to moderate fit for
most downstream tasks indicating that a lower CE loss on
the UC, ST, and SC test splits generally translates to better
downstream task performance. For En tasks and De tasks
with full task-language coverage, we observe weaker fits.
This is likely because performance has begun to plateau,
approaching or even exceeding state-of-the-art results on
XM3600 and Multi30K De captioning. The captioning task
on unseen languages in the Multi30K dataset shows a mod-
erate fit (R2=0.52). This indicates that the CE loss on the
UC task is likely a decent predictor for downstream task
performance. However, these interpretations should be taken
with caution due to the limited number of measurements.

The downstream task performance is detailed in Table 2.
More detailed results can be found in the supplementary ma-
terial. To put our experimental results into perspective, we
compare to a combination of BLIP-2 (Li et al. 2023) and
NLLB-3.3B (Costa-jussà et al. 2022) with context-enhanced
translation, referred to as Baseline-6B. For captioning, we
include PaliGemma-3B (Beyer et al. 2024) and Florence-2-
L (Xiao et al. 2024). For translation, we use NLLB-3.3B,
its multimodal extension ZeroMMT-3.3B (Futeral et al.
2025a), Multilingual Open Flamingo (MOF) (Futeral et al.
2025b), and multilingual VGAMT (Futeral et al. 2023).
Furthermore, we include three state-of-the-art multilingual
VLMs as references: Pixtral-12B (Agrawal et al. 2024) and
Gemma-3-12B (Gemma Team 2025). Note that baseline
models vary in their degree of exposure to the downstream
training data.

Before fine-tuning, the performance across all bench-
marks of our models is relatively weak but improving with
scale. Translation performance is slightly worse than our
baseline. However, the captioning metrics appear artificially
low, likely due to a style and domain mismatch. A language-
specific prefix (see Figure 4) resolves the complete failure on
unseen-language captioning tasks (0.9 CIDEr without and

3https://github.com/salaniz/pycocoevalcap

26.6 CIDEr with prefix for the 11.2B model on XM3600
unseen) while also boosting CIDEr scores for En and De.
The “step down” in captioning performance between 1.0B
and 3.5B, along with the slight drop in performance of 1.0B
in translation benchmarks, suggests that learning a multilin-
gual embedding layer is more difficult than learning mul-
timodal alignment. The gap does not transfer to fine-tuned
models, however.

Unsurprisingly, fine-tuning on the combined downstream
task dataset leads to substantial scalable performance im-
provements across nearly all benchmarks. Our model
achieves the best performance for Multi30K Translation
(40.7 and 59.1 BLEU for En→{De, Fr}, respectively),
and image captioning in De on Multi30K (90.7 CIDEr)
and XM3600 (41.2 CIDEr), outperforming both special-
ized and more-capable foundation models. On unseen lan-
guages in XM3600, our models are competitive, even sur-
passing Baseline-6B, and perform only slightly worse than
Gemma-3-12B, despite not relying on extensive multilin-
gual multimodal pre-training. The overall best performance
is achieved by Pixtral-12B (50.5 CIDEr).

The BLEU scores for CoMMuTE translation slightly de-
crease after fine-tuning. We attribute this to the dataset
containing translations that stylistically differ. Gemma-3-
12B outperforms all other models on this task including
the NLLB translation model. Similarly, the Gemma-3 mod-
els are excellent at resolving lexical ambiguities on CoM-
MuTE followed by Pixtral-12B. Our models fall behind, as
they are trained on synthetic data and only a small dataset
with real annotations. The disambiguation accuracy stays
constant for pre-training, while it increases with scale for
fine-tuning. MOF achieves 66.5% mean accuracy from pre-
training on web-crawled data but shows reduced Multi30K
translation performance. Our approach features 63.9% mean
accuracy while maintaining good results for Multi30K trans-
lation. Overall, our findings highlight the need for small
high-quality datasets with full task coverage in each lan-
guage addressing these ambiguities, while the pre-training
dataset can be of lower quality or even incomplete.

6 Conclusion
We presented scaling laws for generalization from multi-
modal machine translation to multilingual image caption-
ing, demonstrating how transfer performance scales with
the multilinguality of the base model, the model size, and
the amount of training data. While captioning in languages
encountered only in the translation task still requires a lan-
guage prefix in a zero-shot setting, our results highlight that
these factors strongly influence how well encoder-decoder
VLMs extend learned language capabilities to unseen task-
language combinations. Fine-tuning removes the need for
explicit prefixes and yields competitive performance across
downstream tasks. Our insights can help practitioners cre-
ate multilingual datasets more efficiently and make informed
trade-offs between model size, multilingual pre-training,
number of training samples, and task coverage. Future work
can investigate the interactions of more than two tasks and
the extension of our findings to decoder-only VLMs, poten-
tially leading to better, more versatile multilingual models.
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