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Abstract. This document describes the RoboCup@Home league team
NimbRo of Rheinische Friedrich-Wilhelms-Universität Bonn, Germany,
for the competition to be held in Istanbul in July 2011.

Our team uses self-constructed humanoid robots for object manipula-
tion and intuitive multimodal communication with humans. The paper
describes the mechanical and electrical design of our robots Cosero and
Dynamaid. It also covers perception and behavior control.

1 Introduction

Since 2009, our team NimbRo competes with great success in the @Home league.
In the first year, we participated at RoboCup German Open 2009 and at RoboCup
2009 in Graz, where we came in second and third, respectively. We also received
the innovation award for ”Innovative robot body design, empathic behaviors,
and robot-robot cooperation”. In 2010, we continued our success and reached
second places at RoboCup German Open and at RoboCup 2010 in Singapore.

In the project NimbRo – Learning Humanoid Robots – we investigate not
only humanoid soccer, but also intuitive multimodal communication between
humans and robots. Our test scenario for human-robot interaction is a museum
tour guide. This application requires interacting with multiple unknown persons.
In January 2010, our museum tour guide Robotinho has been successfully tested
in the Deutsches Museum Bonn, Germany [8].

Since 2009, we develop domestic service robots. Our robots, Dynamaid [11]
and Cosero, have been designed to balance indoor navigation, mobile manip-
ulation, and intuitive human-robot interaction. We equipped the robots with
omnidirectional drives for robust navigation, two anthropomorphic arms for ob-
ject manipulation, and with a communication head. In contrast to many other
service robot systems, our robots are lightweight, inexpensive, and easy to in-
terface.

In the next section, we detail the mechanical and electrical design of our
domestic service robots. Sections 3 and 4 cover perception and behavior control,
respectively.
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Fig. 1. The cognitive service robot Cosero with anthropomorphic arms and omnidirec-
tional base.

2 Mechanical and Electrical Design

We equipped our robots Cosero and Dynamaid (s. Fig. 1 and Fig. 2) with omnidi-
rectional drives to maneuver in the narrow passages found in household environ-
ments. Their two anthropomorphic arms resemble average human body propor-
tions and reaching capabilities. A yaw joint in the torso enlarges the workspace
of the arms. In order to compensate for the missing torso pitch joint and legs,
a linear actuator in the trunk can move the upper body vertically by approx.
0.9 m. This allows the robots to manipulate on similar heights like humans.

The robots have been constructed from light-weight aluminum parts. All
joints are driven by Robotis Dynamixel actuators. These design choices allow
for a light-weight and inexpensive construction, compared to other domestic
service robots. While each arm of Cosero has a maximum payload of 1.5 kg

Fig. 2. Our domestic service robot Dynamaid with anthropomorphic arms and omni-
directional base.
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(Dynamaid: 1 kg) and Cosero’s drive has a maximum speed of 0.6m/sec (Dyna-
maid: 0.5 m/sec), Cosero’s low weight of ca. 32 kg (Dynamaid: ca. 20 kg) requires
only moderate actuator power. This makes the robots inherently safer than a
heavy-weight industrial-grade robot.

Compared to its predecessor Dynamaid [11], we increased payload and pre-
cision of Cosero by stronger actuation. Cosero is mainly driven by Dynamixel
EX-106+ (10.7 Nm holding torque, 154 g) and RX-64 (6.4 Nm holding torque,
116 g) actuators. The strongest joints in the robot are the shoulder pitch joints
with a holding torque of 42.8 Nm. Each of these joints is actuated by two EX-
106+ in parallel via a 2:1 transduction. We also improved safety and appearance
of the robot with 3D-printed covering for joints and an energy chain in the torso.

The robots perceive their environment with a variety of complementary sen-
sors. A SICK S300 laser scanner measures the distance to objects in a height
of approx. 24 cm within 30 m maximum range and with a 270◦ field-of-view. It
is primarily used for 2D mapping and localization. In order to detect small ob-
stacles on the floor in front of the robots, a Hokuyo URG-04LX laser scanner is
mounted between the front wheels. It scans in a height of 3 cm. The robots also
sense the environment in 3D with a tilting Hokuyo UTM-30LX in their chest
(max. range 30 m) and an RGB-D camera in their head (max. depth 10 m) that
is attached to the torso with a pan-tilt unit in the neck. A second URG-04LX
laser scanner is attached through a roll joint to the torso. In horizontal align-
ment, its scan plane is adjusted to be 2 cm above the surface height when the
robot manipulates on tables or in shelves. Its height above the ground can be
adjusted from ca. 0.13 m to 1.03 m with the linear joint in the trunk.

The RGB-D camera is composed of a MESA SR-4000 time-of-flight cam-
era and two PointGrey Flea2 color cameras with a resolution of 1280×960. We
mounted the camera system on the head for several reasons: First, since the
robots have a similar body height (1.6 m default height) than humans, faces can
be viewed from the front. The fact, that we as humans design our environment
to be easily perceivable with our own sensing capabilities, further supports to
perceive the world from human eye height. The placement of the sensor on a pan-
tilt neck enables the robot to point its sensors towards targets in a human-like
way, i.e., humans can easily interpret the robot’s gaze. We use all laser scanners
and the time-of-flight sensor for obstacle detection. For robust manipulation, the
robots can measure the distance to obstacles directly from the grippers.

Finally, the sensor head also contains a shotgun microphone for speech recog-
nition. By placing the microphone on the head, the robots point the micro-
phone towards human users and at the same time direct their visual attention
to her/him.

3 Perception

3.1 Continuous People Awareness

For human-robot interaction, a key prerequisite for a robot is awareness of the
whereabouts of people in its surrounding. We combine complementary informa-
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Fig. 3. Recognizing pointing and showing gestures. Left: the user points to an object
in the scene. Right: the user shows an object to the robot.

tion from laser range finders (LRFs) and vision to continuously detect and keep
track of people. In LRF scans, the measurable features of persons like the shape
of legs are not very distinctive, such that parts of the environment may cause
false detections. However, LRFs can be used to detect person candidates, to
localize them, and to keep track of them at high rates. In camera images, we
can verify that a track belongs to a person by detecting more distinctive human
features like faces and upper bodies on the track.

Using the VeriLook SDK, we implemented a face enrollment and identifica-
tion system. In the enrollment phase, our robots approach detected persons and
ask them to look into the camera. The extracted face descriptors are stored in a
repository. If the robot meets a person later, it compares the new descriptor to
the stored ones, in order to determine the identity of the person.

3.2 Gesture Recognition

Gestures, like pointing or showing are a natural way of communication in human-
robot interaction. A pointing gesture, for example, can be used to draw the
robot’s attention to a certain object in the environment. We implemented the
recognition of pointing gestures, showing of objects, and stop gestures (s. Fig. 3).
The primary sensor in our system for perceiving a gesture is the ToF camera
mounted on the robot’s pan-tilt unit. We determine the position of the head,
hand, shoulder, and elbow which allows us to interpret gestures. The perception
is based on the detection of body parts in amplitude images as well as body
segmentation in three-dimensional point clouds of the camera.

We interpret gestures for their parameters. For example, we seek to interpret
the intended target of a pointing gesture. Especially for distant targets, the line
through eyes and hand yields a good approximation to the line towards the tar-
get. We also applied Gaussian Process regression to learn a better interpretation
of the pointing direction [2] using all body features.
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Fig. 4. Object Perception. Left: tabletop scene. Middle: points on extracted geometric
shape primitives for the left scene (yellow sphere, green cylinder, red plane). Right:
camera image (different scene) with rectangular object regions that are computed from
object detections. The image also shows extracted SURF features (yellow dots) and
recognized object class.

3.3 Auditory Perception

Speech is recognized using a commercial ASR system from Loquendo [7]. This
system is speaker-independent and uses a small-vocabulary grammar which changes
with the dialog state.

The grammar definition of the Loquendo speech recognition system allows to
tag rules with semantic attributes. When speech is recognized, a semantic parse
tree is provided that we process further. We use semantic parse trees to interpret
sentences for complex commands and to generate appropriate behavior.

3.4 Perception of Objects

For object perception we develop approaches that combine ToF sensing and
vision. From ToF depth measurements of manipulation scenes, we extract the
surface on which the objects are located through efficient RANSAC methods [6].
We cluster the remaining measurements to obtain a segmentation into objects
and extract geometric shape primitives.

The locations of the detected objects are mapped into the image plane (see
Fig. 4a). In the rectangular regions of interest, both color histograms and SURF
features [1] are extracted. For each object class, multiple descriptors are recorded
from different view points during training, in order to achieve a view-independent
object recognition.

3.5 Self-Localization and Mapping

To acquire maps of unknown environments, we apply GMapping [5], a Fast-
SLAM2 approach to the Simultaneous Localization and Mapping (SLAM) prob-
lem. We use adaptive Monte Carlo Localization (MCL) to estimate the robot’s
pose in a given occupancy grid map. In the standard MCL approach, the map
is assumed static. Movable objects like doors violate this assumption which may
lead to poor localization performance. Also, the knowledge about doors and their
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state could be considered for navigational planning. For these reasons, we de-
veloped an extension to the MCL approach to simultaneously localize the robot
and estimate the state of doors [9].

4 Behavior Control

The autonomous behavior of our robots is generated in a modular control archi-
tecture. We employ the inter process communication infrastructure of the Robot
Operating System (ROS) [10]. The control modules are organized in four layers.

On the sensorimotor layer, data is acquired from the sensors and position
targets are generated and sent to the actuating hardware components. The kine-
matic control module, for example, processes distance measurements of the IR
sensors in the gripper and feeds back control commands for the omnidirectional
drive and the actuators in torso and arm.

The action-and-perception layer contains modules for person and object per-
ception, safe local navigation, localization, and mapping. These modules use
sensorimotor skills to achieve reactive action and they process sensory informa-
tion to perceive the state of the environment. E.g., the local navigation module
perceives its close surrounding with the LRFs and the ToF camera to drive safely
to target poses.

Modules on the subtask layer coordinate sensorimotor skills, reactive action,
and environment perception to achieve higher-level actions like mobile manipula-
tion, navigation, and human-robot-interaction. For example, the mobile manip-
ulation module combines motion primitives for grasping and carrying of objects
with safe omnidirectional driving and object detection.

Finally, at the task layer the subtasks are further combined to solve complex
tasks that require navigation, mobile manipulation, and human-robot-interaction.
One such task in the RoboCup@home competition is to fetch an object from a
location in the environment after a human user gives a hint on the object location
through spoken commands.

4.1 Control of the Omnidirectional Drive

We developed a control algorithm for the mobile base that enables the robots to
drive omnidirectionally. Their driving velocity can be set to arbitrary combina-
tions of linear and rotational velocities.

4.2 Control of the Anthropomorphic Arms

The arms are controlled using differential inverse kinematics to follow trajecto-
ries of either the 6 DOF end-effector pose or the 3 DOF end-effector position.
Redundancy is resolved using nullspace optimization of a cost function that fa-
vors convenient joint angles and penalizes angles close to the joint limits. We
also developed compliant motion for the arm exploiting properties of the config-
urable position controllers in the Dynamixel actuators. Compliance can be set
for each direction in task or joint space separately. For example, the end-effector
can be kept loose in both lateral directions while it keeps the other directions
firm at their targets.
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Cosero can perform a variety of parameterizable motions like grasping, plac-
ing objects, and pouring out containers. For example, the robot can perform
pointing gestures towards a location given relative to the robot. We further
investigate learning of motion primitives by imitation and reinforcement learn-
ing [4].

4.3 Robust Indoor Navigation

For navigation, we implemented path planning in occupancy grid maps and
obstacle avoidance using measurements from LRFs and the ToF camera [3]. To
enlarge the narrow field-of-view of the ToF camera, we implemented active gaze
control strategies.

4.4 Mobile Manipulation

To robustly solve mobile manipulation tasks we integrate object detection, safe
navigation, and motion primitives. Our robots can grasp objects on horizontal
surfaces like tables and shelves. They can also carry the object, and hand it
to human users. We also developed solutions to pour-out containers, to place
objects on horizontal surfaces, to dispose objects in containers, to grasp objects
from the floor, and to receive objects from users.

When handing an object over, the arms are compliant in upward direction so
that the human can pull the object, the arm complies, and the object is released.
Fig. 2 (middle) shows how Dynamaid hands an object to a human user during
RoboCup 2009. For receiving an object from a person, we localize the object
that is extended towards the robot by the person with the depth camera and
drive towards it. As soon as the object is reachable with the arms, the object is
grasped. We also developed mobile manipulation controllers to open and close
doors, when the door leaf can be moved without the handling of an unlocking
mechanism.

4.5 Intuitive Human-Robot Interfaces

Domestic service robots need intuitive user interfaces so that laymen can easily
control the robots or understand their actions and intentions. Speech is the
primary modality of humans for communicating complex statements in direct
interaction. For speech synthesis, we use the commercial system from Loquendo.
Loquendo’s text-to-speech system supports natural and colorful intonation, pitch
and speed modulation, and special human sounds like laughing or coughing. We
also implemented pointing gesture synthesis as a non-verbal communication cue
for the robot. Cosero performs gestures like pointing or waving. Pointing gestures
are useful to direct a user’s attention to locations and objects.

5 Conclusion

The described system has been evaluated for two years now at RoboCup Ger-
man Open and RoboCup competitions in 2009 and 2010. In all competitions, it
performed very well. In 2009, we successfully participated in the tests Introduce,
Follow Me, Fetch&Carry, Who-Is-Who, Open Challenge, Walk&Talk, Supermar-

ket, PartyBot, and the Demo Challenge. With the new rules in 2010, we could
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participate with Dynamaid in all tests. She was the first robot to grasp an object
from a shelf in a previously unknown shopping mall and to open and close the
fridge at RoboCup.

We plan to equip Dynamaid and Cosero with an expressive communication
head similar to Robotinho. We will continue to improve the system for RoboCup
2011. The most recent information about our team (including videos) can be
found on our web pages www.NimbRo.net/@Home.

Team Members

Currently, the NimbRo@Home team has the following members:1

– Team leader: Prof. Sven Behnke, Jörg Stückler
– Staff: David Dröschel, Kathrin Gräve, Dirk Holz, and Michael Schreiber
– Students: Jochen Kläß, Ricarda Steffens, and Oliver Tischler
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