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1. Introduction

Autonomous service robots that assist in housekeeping, serve as butlers, guide visitors
through exhibitions in museums and trade fairs, or provide care to elderly and disabled peo-
ple could substantially ease everyday life for many people and present an enormous economic
potential (Haegele et al., 2001; Pollack et al., 2002; Siegwart et al., 2003). Moreover, regarding
the aging society in most industrialized countries the application of service robots in (elderly)
health care might not only be helpful but necessary in the future. However, these service
robots face the challenging task of operating in real-world indoor and domestic environments.
Domestic environments tend to be cluttered, dynamic and populated by humans and domes-
tic animals. In order to adequately react to sudden dynamic changes and avoid collisions,
these robots need to be able to constantly acquire and process, in real-time, information about
their environment. Furthermore, in order to act in a goal-directed manner, plan actions and
navigate effectively, autonomous mobile robots need an internal representation or map of their
environment. Nature and complexity of these representations highly depend on the robot’s
task and workspace.

When operating in preliminary unknown environments, e.g., when it is unfeasible (or simply
uncomfortable) to manually model the environment beforehand, the robot needs to construct
an internal environment model on its own. Moreover, in dynamic environments the robot
further needs to be able to continuously acquire and integrate new sensory information to
update the internal environment model in regions where changes have taken place. As inte-
grating new information into the model (mapping) requires knowledge about the robot’s pose
(position and orientation in the environment) and determining the robot’s pose requires a
map of the environment, these two problems need to be considered jointly and the problem



of constructing or updating an internal environment model is commonly referred to as Simul-
taneous Localization and Mapping (SLAM). In fact, SLAM is regarded as one of the major
prerequisites for truly autonomous robots (Wang, 2004).

Both, collision avoidance and SLAM are well understood in the two-dimensional case, e.g.,
when acquiring geometric information about surrounding environmental structures with 2D
laser range finders. However, as will be shown in the following section, this information is
not sufficient in order to adequately navigate in cluttered and dynamic, domestic environ-
ments. Presented in this work are methods and means for a fast 3D perception of the robot’s
surrounding environment as well as for extracting and processing relevant information in the
context of robust collision avoidance and SLAM.

Section 3 will provide an overview on methods and means for acquiring three-dimensional
information using laser range finders as well as related work. Extracting relevant informa-
tion from the continuous 3D data stream for the purpose of collision avoidance and SLAM
algorithms is described in Section 4. Efficient algorithms for collision avoidance based on this
information as well as SLAM for constructing two-dimensional and three-dimensional envi-
ronment models is described in Sections 5 and 6. Extensions for using recent time-of-flight
cameras are presented in Section 7. Section 8 will contain some concluding remarks and an
outlook on future work.

2. 2D-Perception in Domestic Environments

2D laser range-finders became the de facto standard sensor to tackle the problems of SLAM
and collision avoidance. These sensors measure, with high frequency and accuracy, the dis-
tances to environmental structures surrounding the robot. They emit a laser range beam and
measure the time until the emitted beam is received after being reflected on the surface of an
object in the robot’s vicinity. By means of a rotating mirror these beams are emitted over a
two-dimensional plane differing, depending on the used sensor, in apex angle and angular
resolution. Typically, 2D laser range finders are mounted horizontally in order to measure
distances to surrounding objects in a plane being parallel to the floor. A laser scan S is a set of
2-tuples (d,6) where d is a distance measurement and 6 the angle under which the measure-
ment has been taken, i.e.,

S = {(di,(?i) ‘ i€ [1,Ns]}. (1)

Each tuple (d;,6;) in S forms the polar coordinates of a point p; measured on the surface of an
object in the surrounding environment, i.e.,
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using a right-handed coordinate frame.That is, the robot is looking along the x-axis with the
y-axis extending to the right. The z-axis points upwards and represents the height of objects.
Depending on the measurement principle, S can be a totally ordered set with respect to, re-
spectively, i and 6; in either clockwise or anti-clockwise direction, i.e., fori < j:6; < 6; or
6; > 6. A 2D laser range scan is exemplarily depicted in Figure 1(a).

The inherent drawback of 2D laser range finders, in the context of simultaneous localization
and mapping (SLAM) as well as collision avoidance, is that objects not intersecting the scan-
ner’s measurement plane are not perceived. Consider for example the couch table in Figure
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Fig. 1. 2D laser range scan in an example scenario. Depicted is a range scan (a) from a data
set recorded by Zivkovic et al. (2007) together with an approximate floor plan of the scenario
(b). Note, that the couch table has not been sensed at all since it did not intersect the scanner’s
measurement plane.

1(b).The 2D laser range scan taken in this example scenario does adequately model surround-
ing environmental structures whereas not a single measurement has been taken on the surface
of the couch table. That is, the couch table is not at all perceived. Hence, it cannot be modeled
in the robot’s internal environment representation. As there is no obstacle in the correspond-
ing model region, the robot might plan a path that directly leads through the couch table.
Furthermore, a collision with the couch table cannot be avoided as it does not intersect the
scanner’s measurement plane. Even when standing directly in front of the table not a sin-
gle measurement would be reflected. In this example, the scanner is mounted too high so
that even the legs of the table do not intersect the measurement plane. However, even when
intersecting the scanner’s measurement plane, especially table and chair legs are not always
perceivable. Depending on material and shape of table legs, e.g., round metal rods, only a
portion of emitted laser scans are reflected in a way so that they are received by the scanner.
The same holds true for objects whose surface is less reflective. That is, primary reasons for
not perceiving an object with a 2D laser ranger finder are:

1. The object does not intersect the 2D scan plane. That is, objects below or above the the
two-dimensional measurement plane cannot be perceived.

2. The surface of the object is less reflective or reflects incoming range beams in direc-
tions other than the emitting range scanner. Black surfaces, for example, absorb a larger
portion of the incoming light. On the other hand, metallic objects with round shape, like
for instance table or chair legs, might cause diffuse reflections or completely diffract the
emitted beam.

Tables and chairs are not the only objects in domestic environments that are hard to perceive
with 2D laser range finders. Objects like for instance table tops, open drawers, small objects
lying on the ground or stairs might not be appropriately perceivable by the robot and mod-
eled in its internal environment representation (see Figure 2). When mounting the scanner
in another height to perceive a specific class of obstacles, other types of obstacles are still not
perceivable. Even the usage of several 2D range scanners in different heights does not appro-
priately solve this problem. For adequately handling all kinds of obstacles in a cluttered and
dynamic environment 3D information becomes crucial.
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Fig. 2. Different types of obstacles. Shown are four different examples of obstacles in a robot’s
workspace. They have in common that the robot is not able to reliably avoid them by means of
simple 2D perception. The measurement plane of a standard 2D laser range finder is depicted
in red only intersecting the ascending stair. By means of 3D perception, a single distance
measurement (green line) would allow the robot for detecting the obstacles.

3. Using Laser Range Finders for 3D Perception

Important criteria for the choice of a particular sensor in the design of mobile robots are size,
weight, power consumption and prize. Several approaches for acquiring 3D information have
been proposed that differ, amongst others, in the type, number and setup of sensors. Here, we
will focus on approaches that are based on range sensors.

3.1 Related Work

Thrun et al. (2000) use two 2D laser range finders. One scanner is mounted horizontally and
used for localizing the robot with three degrees-of-freedom. The other scanner is mounted
vertically. The data of the latter is used to compute a volumetric model of the scene based
on the poses determined by using the horizontal scanner. However, whereas this approach
allows for constructing three-dimensional environmental models, it only provides 3D infor-
mation about objects that are currently passed by the robot and intersect the measurement
plane of the vertically mounted scanner. That is, objects in front of the robot are only, if at all,
perceivable by the horizontally mounted 2D scanner.

Zhao & Shibasaki (2001) follow a similar approach but use multiple vertically mounted scan-
ners in order to reduce the size of these occlusions. In fact, the usage of multiple 2D range
scanners became a commonly found sensor setup in the context of the DARPA Grand and Ur-
ban Challenges. Thrun et al. (2006) mounted five 2D laser range scanners on the top of Stanley,
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the robot that won the DARPA Grand Challenge. The scanners were mounted in driving di-
rection (just like horizontally mounted 2D scanners), but under different pitch/tilt angles to
perceive the surface of the ground in different distances. Similar setups can be found in many
other participating teams of the Grand and the Urban Challenge. However, such a battery of
2D range scanners cannot be mounted on smaller household service robots.

Another possibility for acquiring three-dimensional information is the application of com-
mercially available 3D laser scanners as used, e.g., in land surveying. Sequeira et al. (1998)
use a RIEGL! laser scanner on an autonomous robot to construct 3D models of indoor envi-
ronments. Allen et al. (2001) use a Leica CYRAX? laser scanner on a car to construct three-
dimensional models or urban environments. A Zoller+Frohlich® scanner is used by Huber
et al. (2000) for reconstructing volumetric models of indoor environments. Urmson et al.
(2008) use a Velodyne* laser scanner in addition to a battery of 2D laser range finders for de-
tecting and avoiding obstacles in the immediate vicinity of an autonomous car in the DARPA
Urban Challenge. Commercially available 3D laser scanners directly provide highly accurate
three-dimensional point clouds. However, compared to 2D laser range finders, they are quite
expensive and unwieldy for the application on mobile household service robots.

Jet another possibility to acquire three-dimensional data is to mount a single 2D laser range
finder on a mechanical actuator to gain an additional degree of freedom. That is, in addition
to the rotating mirror for scanning two-dimensional planes, the actuator rotates the complete
scanner. Taking multiple 2D scans at different rotation angles allows for constructing locally
consistent 3D point clouds. Different setups have been proposed that differ primarily in field-
of-view (FOV) and spatial measurement density. The highest point density lies around the
rotation axis. Amongst others, Surmann et al. (2003) and Héahnel et al. (2002) started using a
horizontally mounted scanner where a rotation angle of 0° corresponds to acquiring a regular
2D laser range scan, i.e., with the measurement plane being parallel to the floor. Standard
servo motors or pan-tilt units are used to rotate, respectively, the scanner and the measure-
ment plane upwards and downwards in a nodding-like fashion. Wulf & Wagner (2003) eval-
uate this and other sensor setups and refer it to as a pitching scanner due to the rotation about
the y-axis in a right-handed coordinate frame. For acquiring a locally consistent 3D laser scan,
Surmann et al. stop the robot and rotate the scanner over the complete vertical aperture angle
of 120°. Multiple 3D scans are then matched and registered into a global coordinate frame to
construct a three-dimensional point model (Surmann et al., 2003). Strand & Dillmann (2008)
let the continuously scanner rotate about the x-axis (rolling scanner) and use the acquired data
for exploring and mapping indoor environments.

3.2 Continuously Rotating Laser Range Finders

The aforementioned approaches have in common that the robot is stopped in order to acquire
a locally consistent 3D point clouds by rotating the scanner. The resulting behavior of the
robot is thus composed in stop-scan-move cycles. Wulf et al. (2006) started using a continu-
ously yawing scanner for acquiring 3D data while moving. They segment the data stream
into individual point clouds and use the acquired information to localize the robot based on
ceiling structures that are normally not occluded by people or objects. Cole & Newman (2006)
use a pitching scanner that is continuously rotated over the complete vertical aperture angle

1 RIEGL Laser Measurement Systems: http://www.riegl.com
2 Leica Geosystems: http://www.leica-geosystems.com

3 Zoller+Frohlich: http://www.zf-laser.com

% Velodyne: http://www.velodyne.com/lidar



in a nodding-like fashion. Their robot is, however, not autonomously controlled and the ac-
quired 3D data is solely used to construct three-dimensional environment models. However,
augmenting a commercial 2D laser range finder with an additional degree of freedom seems to
be the most appropriate approach for acquiring three-dimensional on smaller mobile robots.
For safe navigation in dynamic and cluttered environments it is crucial to detect, as fast as pos-
sible, all obstacles with which the robot could eventually collide. Hence, the area in the robot’s
movement direction and in the height spanned by the robot’s three-dimensional bounding
box is of special interest. Since the continuously yawing scanner of Wulf et al. (2006) scans
only vertical planes by means of a single 2D range scanner, objects in the robot’s movement
direction get out of sight when the scanner is sensing environmental structures behind the
robot. For the DARPA Urban Challenge we have extended this setup by using two antipo-
dally mounted 2D laser range scanners (Maurelli et al., 2009; Rojo et al., 2007). The two scan-
ners are, furthermore, not mounted vertically but can be adjusted in the rotation angle. The
resulting scanner, the Fraunhofer IAIS 3DLS-K is shown in Figure 3.a and consists of two SICK
LMS 291 2D laser range finders mounted on a rotatable carrier. This carrier is continuously
rotated around the vertical axis. Depending on the current orientation, the 2D laser range
scans of the scanners are transformed into a sensor-centric coordinate frame. The transformed
scans are aggregated to form a local 3D point cloud (see Figure 3.b). However, even when
not waiting for a complete point cloud, but processing every single 2D scan as it arrives, it
remains the drawback of having larger areas in the robot’s vicinity not in sight until the other
scanner arrives at the corresponding rotation angle. Furthermore, larger portions of the ac-
quired information is obtained in regions that do not pose a threat to the robot, e.g., ceiling
structures. This is, in fact, the reason why the two scanners are not mounted vertically as for
the normal acquisition of 3D laser scans, but almost diagonally. This decreases the size of the
unseen region when processing the acquired information scan-wise.

However, for further reducing the sensed regions to those that are relevant for collision avoid-
ance, a pitching 3D laser scanner seems to be more appropriate (Holz et al., 2008; Wulf &
Wagner, 2003).

(@) (b) (©

Fig. 3. Continuously rotating 3D laser scanner (a) and example data (b) taken in front of the
Robotics Pavilion at Fraunhofer IAIS. A photo of the scene is shown in (c). The color of the 3D
points in (b) corresponds to the received remission values.

3.3 A Continuously Pitching Laser Scanner for Collision Avoidance and SLAM
In a pitching scanner setup the 2D laser range finder is mounted horizontally and rotated
around the y-axis. A pitching scanner, the IAIS 3DLS, is shown in Figure 4. For the
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RoboCup@Home world championship in Atlanta 2007, it was mounted on a three-wheeled
VolksBot RT3 platform allowing to acquire 3D scans of the arena. With the additional rota-
tion axis, driven by a standard servo motor, the scanner has a vertical aperture angle of up to
Opitch = 120° with a maximum angular resolution of Afp;, = 0.25°. Taking a 3D scan by ro-
tating the scanner over the complete vertical range and using a horizontal angular resolution
of Abyaw = 0.25° results in 3D point clouds containing 346 080 points. However, as a relatively
low angular resolution is sufficient for robust collision avoidance and has benefits in terms of
speed concerns while still providing a sufficient detail for mapping purposes, an angular res-
olution of Aflyaw = 1° is preferable. For the used SICK LMS 2xx range scanners, a single 2D
laser scan of 181 distance measurements is read in approximately 13.32ms (~ 75Hz) in this
operating mode. Reliable navigation in domestic environments requires for a fast and con-
tinuous 3D perception of surrounding environmental structures and obstacles. Therefore, the
scanner is continuously pitched around its horizontal axis in a nodding-like fashion allowing
the robot to perceive surrounding environmental structures in 3D while moving through its
workspace. Since a rotation over the complete aperture angle O, might yield a couple of
single 2D laser scans primarily containing information being not relevant for collision avoid-
ance, e.g., only floor points if the scanner is directed downwards or ceiling structures if the
scanner is directed upwards, we defined an area of interest (AOI) (Holz et al., 2008). This area
restricts the range of used rotation angles Bpitch to the interval [9pitch, minv Opiteh, max] SO that it
contains primarily relevant information.
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Fig. 4. Continuously pitching scanner and virtual corridor. By continuously rotating the scan-
ner in a nodding-like fashion over the area of interest (AQOI), all obstacles in the virtual corridor
are perceived.

To be able to react to suddenly appearing obstacles in front of the robot even a restricted but
fixed area might be too large to timely perceive especially small objects intersecting only a sin-
gle measurement plane during one rotation. Therefore, the boundaries of the AOI (6pitch, min
and 6piich, max) as well as the scanner’s pitch rate (Afpjcn /13.32ms corresponding to the num-
ber of taken consecutive 2D laser scans during one pitch movement), can be adjusted, e.g.,
to depend on the robot’s current velocity or special characteristics of the environment. In-
creasing the upper bound 6pjich, max When moving slow allows to perceive more information
about the environmental boundaries such as walls due to the height of the measured points.
For moving faster it can be decreased so that only the volume corresponding to the robot’s
height is sensed. We refer to this minimal area as the virtual corridor. It extends the idea of vir-
tual roadways (Lingemann et al., 2005a) to the third dimension, i.e., with respect to the robot’s



boundaries (in 3D) and thus possible areas of collision. The concept of the virtual corridor is
depicted in Figure 4. Here lower bound 6ptch, min and upper bound 6pitch, max of the AOI cor-
respond to the size of the virtual corridor and thus to the robot’s boundaries (marked with the
slightly colored background). The length d i, corresponds to the distance from which on the
full virtual corridor can be perceived during the pitch movement. It has to be chosen appro-
priately, e.g., for a dense or narrow environment it has to be rather small whereas dpyj, = 1m
is absolutely sufficient when driving fast along an uncluttered corridor. The minimum size
of the AQI for driving fast covers exactly the virtual corridor while the maximum size corre-
sponds to a complete 3D scan over the full 120° of ®pjtch. This allows to construct complete 3D
models of the environment containing all perceivable information as in (Surmann et al., 2003).
For the pitching scanner, a scan point is represented by the tuple (d;; Oyaw, i, Opitcn) With d; be-
ing the i-th distance measurement in the latest 2D laser scan while 8y, ; and Opjicp, are the i-th
measurement angle and the current pitch angle of the laser scanner respectively. The coordi-
nates of the 3D points corresponding to acquired distance measurements result from rotating
the 2D measurement plane by the current pitch angle 6y, Here, the scanner’s position on
the robot (w.r.t. the robot’s center of rotation) is taken into account with the translational part
ts = (t5,t],2)T. Note that the scanner’s orientation with respect to the robot’s movement
direction, has to be taken into account using additional rotations (not necessary here).

X cosbhiten 0 sinBpien d; cos Oyay,i
pi=1ly]| = 0 1 0 d; sin Gyaw,i + t5 3)
z —sin Gpitch 0 cos Gpitch 0
R}/ (epilch) Rz (eyaw,i)

By continuously sensing and monitoring the virtual corridor the different types of obstacles
(see Figure 2) can be perceived. Small obstacles lying on the ground and overhanging objects
do not intersect the measurement plane when using simple 2D perception, i.e., when holding
the scanner in a fixed horizontal position (red line). With the continuously pitching scan-
ner they are perceived and can thus be avoided. The ascending stair is perceivable with 2D
perception but depending on the scanner’s height, the measured distance is larger than the
distance to the first step. With 3D perception, the first step is perceived just like a small object
lying on the ground. For descending stairs, however, a little trick needs to be applied that is
presented in the following section.

4. Extracting Relevant Information from 3D Data

Real-time applicability does not only necessitate a fast acquisition of information but also to
efficiently process the acquired information. Due to the larger amount of data and the higher
dimensionality of information, directly processing raw 3D data is not feasible in many ap-
plications. Especially in the context of navigation, existing state-of-the-art approaches that
show real-time applicability normally perform on less complex and less information bearing
2D laser data (see e.g. Lingemann et al., 2005a). In order to combine these well-studied and
well-performing algorithms with the rich continuously gathered 3D data it is suggestive to
break down the three-dimensionality of the data into a slim two-dimensional representation
that still holds all necessary 3D information but is nevertheless efficient enough to apply these
efficient algorithms. For this purpose we are using virtual maps that have been initially pre-
sented in (Holz et al., 2008) and that are based on the idea of virtual 2D scans (Wulf et al.,
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2004). These egocentric maps, in which, respectively, the robot and the sensor form the origin
of the coordinate frame, store only relevant information that has been extracted from 3D data.
Two types of virtual 2D maps are distinguished: 2D obstacle maps and 2D structure maps. Both
are generated from consecutive single 2D laser range scans acquired during the continuous
pitching movement of the laser scanner presented above or extracted, for example, from one
depth image of a time-of-flight camera (see Section 7). Note that the following descriptions
will focus on continuously pitching lasers scanners. The actual implementation, however, is
the same for all kinds of 3D sensors.

4.1 Structure of Virtual Maps

To be able to apply the same algorithms for collision avoidance, mapping and localization
purposes to both standard 2D laser scans and virtual 2D maps constructed by means of 3D
perception, the representation of the virtual maps is chosen to extend the representation of
standard laser scans. That is, they are organized as a vector of distance measurements d; or-
dered by the discretized measurement angle (6y,y,). This extended representation has, com-
pared to a 2D laser scanner, a variable aperture angle ® € [0°,...,360°] and a variable angular
resolution Aeyaw. It is implemented as a vector of N = @/ Aeyaw points indexed by the ac-
cordingly discretized angle in which the measured point is lying from the robot’s perspective.
Furthermore, each point is represented by means of Cartesian and polar coordinates to avoid
algorithm-dependent transformations. An example of a virtual map modeling nearest obsta-
cles in a cluttered environment is visualized in Figure 5.

T s - T

Fig. 5. Visualization of a 360° obstacle map containing information about nearest obstacles
aggregated while moving through a cluttered indoor environment.

The virtual maps are ego-centric, i.e., the robot’s center of rotation forms the origin of the
map’s coordinate frame and the coordinates of points stored in the maps are referenced to
the base coordinate frame {B} of the robot. In addition to being an efficient representation



of relevant 2.5D information from 3D data, the maps can also be used to fuse information
from several sensors, e.g., different 2D laser range finders or a combination of 2D and 3D laser
scanners. In fact, the concept of virtual maps has recently been adopted by Stiene & Hertzberg
(2009) to fuse information of different 2D range scans. Furthermore, as the representation (and
the actually used implementation) does not differ from that of a standard 2D laser range scan,
basically all algorithms working on 2D laser data can be applied to the aggregated or fused
information in a virtual map. The remainder of this section will describe the two types of
virtual maps as well as the procedures for updating them.

4.2 2D Obstacle Maps

In the case of the obstacle maps, the point corresponding to the minimum distance in each
scan direction (6yaw,), projected into the xy-plane in which the robot is moving, is extracted
and inserted into the virtual map. These measurements correspond to the closest objects or
obstacles in that particular direction regardless of the actual pitch angle 6y, of the scanner.
Of course, only those points whose height above ground would intersect, respectively, the
robot’s bounds and the virtual corridor are inserted into the map. This explicitly includes
obstacles like small objects lying on the ground or overhanging objects like open drawers as
shown in Figure 4. Objects not intersecting the virtual corridor pose no threat to the robot and
can thus be ignored. In the update procedure of 2D structure maps they are, of course, used
since a lot of information especially on higher environmental structures would be neglected
otherwise.

In order to represent non-traversable areas and especially areas that correspond to holes in
the ground, like for instance descending stairs in the examples of Figure 2, artificial obstacles
are inserted into the map. Such non-traversable areas are characterized by those distance
measurements that correspond to points in the real environment that are located below floor
level. Note that the robot is assumed to be only able to traverse almost flat floor areas what is,
after all, a feasible assumption for domestic indoor environments. Once a measurement below
floor level occurs in an acquired laser scan its intersection with the floor plane is computed
and an artificial measurement is added to the obstacle map at exactly this point. Thereby, the
robot is able to perceive descending stairs and stop before the first step is reached. Such an
intersection point and artificial distance measurement representing the stair as an obstacle is
depicted with a red cross in Figure 4.

An important issue when constructing virtual obstacle maps is to not add points to the
map that correspond to traversable surface as the robot would otherwise avoid to move
through that particular region. Under the assumption of a perfect flat floor and minimum
measurement inaccuracies, the most straightforward way for determining which points be-
long to the floor plane, is to apply a simple height thresholding. That is, all points whose
height lies approximately at z = 0 are filtered out and ignored in the update procedure, i.e.,
floor(p;) = p7 € [—€, €;] where €; represents a tolerance according to the sensor’s accuracy.
Amongst others, Yuan et al. (2009) follow this approach. A value of €, = 2.5cm, for example,
is an appropriate tolerance for the aforementioned sensor setup leading to a robust removal
of floor points but would also neglect measurements on the surface of small objects lying on
the ground if their height does not exceed 2.5 cm.

A more reasonable, still simple and efficient, way for determining floor points is to evaluate
the neighborhood of individual measurements. Niichter et al. (2005), for example, apply a
segmentation algorithm that exploits the order of points in a range scan, the order of range
scans in the 3D point cloud and the 3D sensor setup to classify points regarding their corre-
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spondence to floor, wall, object or ceiling structures. It originates from the work in (Wulf et al.,
2004) and will be used in the remainder of this section.

By the aforementioned means, i.e., filtering out minimum distances in each direction while
ignoring points belonging to traversable surfaces, the robot obtains an egocentric map con-
taining all obstacles and non-traversable areas close to the robot. An obstacle map that exem-
plarily shows how small objects are perceived is depicted in Figure 6.a.

1m om —im ‘1m 0om —im

y y
(a) Obstacle map (b) Example scenario (c) Structure map

Fig. 6. Demonstration of the virtual 2D map types in an example scenario. The obstacle map
(a) is generated by extracting minimum distances (projected into 2D) in the continuously ac-
quired 3D data. Extracting maximum distances results in the structure map (c).

4.3 2D Structure Maps

In the case of virtual structure maps, the maximum distance in each scan direction (Gyaw/i), pro-
jected into the xy-plane, is extracted and inserted into the map. Extracting maximum distances
automatically filters out all objects that do not extend over the full height of the AOI since the
scanner will eventually look above or beneath these objects. The robot thereby replaces a pre-
viously measured smaller distance value with the newly obtained larger distance reading in
that direction. The resulting map will thus only contain those points that most probably cor-
respond to the environmental bounds while all points that belong to smaller or overhanging
obstacles are filtered out as are those that belong to dynamic obstacles. Such a structure map
is exemplarily depicted in Figure 6.c. Whereas the obstacle map shows the red and blue cans
representing the obstacle type of small objects lying on the ground, the structure map only
contains the environmental boundaries. When updating structure maps points belonging to
the floor or to traversable surfaces do not need to be ignored. They are inherently replaced
by points being measured on environmental structure farther away from the robot. Instead,
maximum range readings need to be sorted out as they would otherwise replace shorter but
valid measurements on environmental structures. However, compared to determining floor
points, an according procedure is straightforward.

While the obstacle maps are very valuable when it comes to local collision avoidance, the
structure maps are, for instance, very suitable for robotic self-localization, i.e., for tasks that
need large scale information about an environment. When sensing un-occluded parts of walls
and ceilings, using structure maps in a localization algorithm such as Monte-Carlo Localiza-
tion will have similar effects as localization based on ceiling structures (Wulf et al., 2006). The
obstacle maps will surely not be appropriate for such purposes as they would miss a lot of
information about environmental structures.



4.4 Update Procedures of Obstacle and Structure Maps
The steps to keep both representations egocentric and to update them, according to newly
acquired range scans and the definitions above, are:

1.) Transformation of the map to keep it sensor-centric (e.g., according to
odometry or a known pose).

2.) Removal of obsolete points to handle dynamics and inaccurate pose
shift estimates.

3.) Replacement of already saved points using more relevant points from
the current laser scan.

If the robot stands still and no pose shift has been estimated respectively, steps 1.) and 2.) are
skipped. The same holds true if the virtual maps are used as efficient representations of single
3D sensor readings, e.g., as obtained from 3D cameras (see Section 7). In its initial state, the
map is filled with dummy points that are chosen in a way that they are immediately replaced
during in the first update, i.e., points corresponding to the maximum measurable distance for
obstacle maps and distances of 0 m for structure maps. As soon as a valid measurement has
been taken in the direction of the dummy point, it replaces the dummy. As these measure-
ments correspond to either 0m or maximum range readings, they are naturally ignored in
algorithms processing 2D laser range scans (and the virtual maps respectively).

4.4.1 Transformation of the map to keep it egocentric
According to the robot’s movement the pose shift between the current and the last map update
(e.g. current and last reception of a laser scan) consists of a rotation Rpy around the z-axis by an

angle A0 and a translation (Ax, Ay)T. The egocentric maps need to be transformed according

to:
Xipt1) _ [cosAB  —sinAf\ (x;; N Ax W
Vitr1)  \sinAd cos A0 ) \y; Ay

where ¢ and (¢ + 1) represent discrete points in time.

As Eq. (4) transforms the map based on Cartesian coordinates, the values of the polar coor-
dinates have to be adjusted accordingly. Note, that the polar coordinates are not only stored
and kept up to date in order to avoid unnecessary transformations in individual algorithms
but also to avoid repetitive re-calculations in the update procedure itself. That is, even if not
a single algorithm operates on the polar coordinates of the points stored in the virtual maps,
this step cannot be skipped without a degradation of performance.

Due to the discretization of the N = ©®/Afyaw valid angles two points can potentially fall into
the same vector index. In this specific case the point being more relevant with respect to the
map type has priority. That is, in an obstacle map, for example, a point with a smaller distance
replaces a point in the same angular interval that is farther away from the robot. Furthermore,
vector indices being unassigned after the transformation are filled with dummy points.

4.4.2 Removal of obsolete Points to handle Dynamics

If the maps are not intended to only represent the gathered 3D information of one rotation
over the AOI or a single range image as acquired by a 3D camera, but to be used endlessly,
i.e., updated with every sensor reading, it is suggestive to remove points after a certain while.
Therefore, the number of transformations applied during step 1.) is stored for every single
point. To deal with dynamic obstacles, a saved point is removed and replaced by a dummy
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point after its count of transformations exceeds a certain threshold (e.g., 500 transformations,
approx. 5s in the case of the continuously pitching IAIS 3DLS). This is because an obstacle
passing by or crossing the robot’s path leaves a trace of non-existent points in the obstacle
map. This is not a drawback of the approach but a simple accounting for the uncertainty
in the obstacle’s movement. Points being removed by this means that correspond to static
obstacles will immediately be measured again if the obstacle is still in the virtual corridor and
thus still originates a possible source for a collision. The effect of applying this step can be
seen in the region behind the robot in Figure 5. Here the point density is smaller than in the
angular region in front of the robot, as some object points have already been removed and not
sensed again since the removal.

Furthermore, if pure odometry is used to estimate the robot’s pose shift for the transformation
in step 1.) instead of pose tracking and scan matching to accurately determine the pose shift,
errors and inconsistencies in both types of maps may arise from imprecise odometry. These
are, in the same way, removed from the map. As a side note, it is to remark that even the
rotated single 2D laser scans during the nodding-like movement of the sensor can be used
for fast pose tracking algorithms like the one presented in (Lingemann et al., 2005b) if floor
points are filtered out and the number of residual points is still sufficient for matching a newly
acquired scan against the last one. Here, we apply the scan matching algorithm that is going
to be described in Section 6.

4.4.3 Replacement of already saved Points

The final update procedure highly depends on the map type as described above. In a nutshell,
a point p; stored in an obstacle map is replaced by a point s; in the current laser scan S if
the angle of acquisition s? falls into the discretized angular interval p? and the measured
distance s;i is less than or equal to p?. In the same way a point p; stored in a structure map is
overwritten with s; if s? = p? and s? > p'l-j. The height s7 of an acquired point in a perceived
environmental structure is used as an additional information in both types of maps resulting
in a 2.5D representation. That is, the virtual maps store for each discrete angle the polar
coordinates (d;, Oyaw,i) as well as the Cartesian coordinates (p;, pf’ ,P7)- This will be extended
in future work to not only store the particular height of the most recent points but to store
minimum and maximum height of all points measured within a range of approximately 10 cm
around that most recent point or in a way comparable to Multi-Level Surface Maps (Triebel
et al., 2006). By this simple extension a complete egocentric 3D model of the surrounding
environmental structures can be reconstructed on the basis of the virtual 2D maps. In the case
of obstacle maps the height information p? of an acquired point p; is also used to neglect those
points that do not lie within the virtual corridor and are hence not relevant for representing
nearby obstacles. This has the effect, that the robot can, for example, underpass a table as long
as the table top is higher than the highest point on the robot and the passage between table
legs is not too narrow.

5. Simple Reactive Collision Avoidance using Virtual Obstacle Maps

In addition to the goal-directed motion control of a mobile robot e.g., to reach a certain po-
sition, reactive collision avoidance is important in dynamic and human-populated environ-
ments. That is, the motion of the robot needs to be adapted in the presence of obstacles
suddenly appearing in the robot’s vicinity. The virtual obstacle maps can be used with any
collision avoidance procedure known from processing standard 2D range scans. As a simple
example, we use a set of three simple reactive behaviors controlling and adapting the robot’s



translational and rotational velocities based on the robot’s current movement direction and
speed as well as surrounding objects modeled in the obstacle map. The obstacle map is con-
structed and updated during navigation. These behaviors and the corresponding algorithms
have been initially introduced in (Lingemann et al., 2005a).

The first behavior slows down the robot if obstacles appear, respectively, in the virtual corridor
and in front of the robot in the virtual obstacle map. If the distance to the nearest obstacle in
the virtual corridor falls below a certain threshold, the robot is completely stopped. Another
behavior turns the robot on the spot once it has been completely stopped. This avoids that the
robot gets caught in dead ends or corners. Alternatively, the robot can be moved backwards
so that it is positioned in free space again. Then an alternative path can be planned to reach
the position that is to be approached.

The third behavior is more complex compared to the aforementioned ones. It slightly adapts
the rotational velocity of the robot so that it prefers moving along free space. Consider for
example, the robot has planned a path along a longer corridor. As this path results from
searching for the shortest path between two positions, it can run directly along one of the
walls. When exactly following such a path, this third behavior causes that the robot is not
directly moving along the wall, but instead along the center of the corridor. The concept of
the behavior is to steer the robot towards a freespace orientation.

5.1 Determining the Freespace Orientation

The origin of determining the freespace orientation lies in the early work of Surmann & Peters
(2001) for fuzzy-based control of autonomous mobile robots. A comparable behavior was
obtained by applying a fuzzy controller with fuzzy rules like the following:

IF COMMAND is straight-ahead
AND IF FRONT-SENSOR is very-near
AND FRONT-LEFT-SENSOR is very-near
AND FRONT-RIGHT-SENSOR is near
THEN SPEED is positive-small, ANGLE is negative-small

An adaption to 2D laser range scans has been presented in (Lingemann et al., 2005a). Here the
following fuzzy rule is applied to every single distance measurement:

IF (angle_i is in driving direction) AND (distance_i is large)
THEN drive in this direction.

The actual driving direction of the robot, the wanted freespace orientation gy, further
adapted to meet our requirements, results as follows and is based on the above rule.

N N

Xfree = atan2 (Z sins{ - fo(s?) - fa(sf), Y_ coss] - fy(s]) - fd(S?’)> ®)
i=1 i=1

The functions f(s?) and fd(sfl) relate the i-th range reading in the form of the polar coordi-

nates (sig, s?)izl___ N as obtained from a 2D laser scanner or an obstacle map to the fuzzy sets
“angle is in driving direction” and “distance is large”. N is the number of points in the map and
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the laser range scan respectively.

fo®) = cos( ;) ©

1

d) = 7

fd( ) 1+exp<7 (d;g]ii;:a")) ( )

Here dtopin and dtomax determining the slope and the inflection point of the exponential,
correspond to the thresholds of the behavior that slows down the robot. That is, if an object
appears in front of the robot within a range dtomax, the behavior starts slowing down the robot
according to the distance to that object. If the distance to the object falls below dtoniy, the robot
is completely stopped or moved backwards. Plots of the weighting functions fy (6) and f; (d)

as well as the resulting application of the fuzzy AND by means of a multiplication are shown
in Figure 7.
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Fig. 7. Composed weighting function fy(s?) - f;(s

) to determine the freespace orientation in
a laser scan or obstacle map S.

The behavior simply adapts the rotational velocity, e.g., as set by a motion controller for fol-
lowing a planned path, so that the robot slightly moves towards free space thereby swerving
to avoid collisions. The influence of the behavior can be adapted and is kept rather small so
that the robot can enter narrow passages and follow paths that lead away from the max-
imally free space in the robot’s workspace. Referring to the resulting weighting function
fo (6) - f4 (d), the robot prefers moving straight and not adjusting its translational velocity.



5.2 Typical Results

A typical result of applying the three behaviors during navigation is shown in Figure 8. The
robot was put into an example scenario bounded by movable walls with an exit in the op-
posite corner. The experiment was repeated two times. In the first run the scanner was held
in a horizontal position (2D perception) comparable to a standard 2D laser range finder. In
the second run, the scanner was continuously rotated over the aforementioned area of inter-
est in a nodding-like fashion (3D perception). In both experiments, a constant translational
velocity of 0.3ms ™! was set with no rotational velocity. That is, the robot was commanded
to move forward. The application of the behaviors successfully moved the robot through the
exit and outside the scenario. With 2D perception, small test objects lying on the ground were
not perceived. The robot crushed into these objects and pushed them through the exit. With
3D perception, the objects have been perceived and the robot successfully avoided them. Al-
though it is not explicitly covered in this example, it is to note that the robot robustly perceives
sudden dynamic changes in the environment due to the fast pitch rate of the scanner while
driving. It therefore detects and avoids dynamic obstacles like, for instance, suddenly opened
drawers or people passing by.

What can also be seen in the figure is that simply commanding the robot to move forward
while enabling the three collision avoidance behaviors leads to an emergent behavior of wan-
dering around. This strategy can, amongst other applications, be used to perform a random
exploration.

(a) 2D Perception (b) Example scenario (c) 3D Perception

Fig. 8. Behavior-based collision avoidance in an example scenario by means of 2D perception
(2D laser range finder in a fixed horizontal position) and continuous 3D perception together
with the concept of obstacles maps. The small test objects are successfully avoided by the
robot when using 3D perception. A video showing the robot perform in a similar experiment
is available under http://www.b-it-bots.de/media.

6. Simultaneous Localization and Mapping

In the previous sections we showed that continuous 3D environment sensing together with
the concepts of an area of interest and the virtual corridor enables an autonomous mobile
robot to perceive and react to various obstacles being typical for domestic environments, like
for instance open drawers, small obstacles lying on the floor or descending stairs. In this
section we will show how the same continuous 3D data flow of the pitching laser scanner
can be used for 2D and 3D Simultaneous Localization and Mapping (SLAM), i.e., constructing
two-dimensional and three-dimensional environment representations and localizing the robot
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with three and six degrees-of-freedom (DOF) respectively. Central questions in this context
are:

1. Which information can be used for 3DOF- and 6DOF SLAM respectively?

2. Which SLAM algorithms can be used to process this information?

6.1 Extracting Information and Forming Local Point Clouds for SLAM

The pitching laser scanner delivers a continuous stream of 3D data acquired during the robot’s
movement through the environment. The first question addresses the segmentation of this
data stream and the extraction of locally consistent information about environmental struc-
tures usable in a SLAM approach. In the two-dimensional case (3DOF-SLAM) this is quite
straightforward. By storing maximum distances in each measurement direction the virtual
structure maps store aggregated information about boundaries of the environment, like for
instance walls, as well as larger static obstacles. A these maps are already represented in the
form of a 2D laser range scan, the contained information can be used with any known SLAM
algorithm working on range scans. Constructing individual structure maps for every full ro-
tation over the area of interest (AOI) results in locally consistent virtual range scans. Due to
the fact that the rotational velocity of the scanner as well as the size of the AOI are adjusted
according to the robot’s current velocities, these virtual range scans have a sufficient over-
lap, e.g., for applying scan matching algorithms. However, the range scans are only locally
consistent under the assumption that the pose shift estimates, used for keeping the structure
maps egocentric during construction, are not too inaccurate. Solely transforming the maps
based on inaccurate or erroneous odometric pose shift estimates can lead to inconsistent in-
formation, distorted environmental structures when turning fast for example. To account for
that, we interrupt the construction of a structure map when the pose shift estimates suggest
that the robot is turning fast and start building a new structure map after that turn. A simi-
lar procedure is followed by Cole & Newman (2006). However, matching consecutive scans,
as described later in this section, can correct false or inaccurate pose shift estimates and the
aforementioned interruption is only applied when solely using odometry information.
Another straightforward way of extracting information for 3SDOF-SLAM is to take those 2D
range scan that have a measurement plane being parallel to the ground, i.e., scans taken at
Opitch = O for a flat floor. Such a scan can be taken as is and is comparable to a range scan
acquired by a fixed horizontally mounted 2D laser range finder. Both the horizontal laser scans
as well as the constructed structure maps can be used with any SLAM algorithm processing
range scans, e.g., Rao-Blackwellized Particle Filters (Grisetti et al., 2007).

For being able to construct three-dimensional environment models and to localize the robot
with six degrees-of-freedom (6DOF-SLAM) we need to extract locally consistent 3D point
clouds out of the continuous data stream delivered by the pitching scanner while moving.
That is, we want to construct individual 3D point clouds that are each referenced to a dis-
tinct vehicle pose, the base pose P, just like 3D range scans acquired while standing (as in
Surmann et al., 2003). We therefore strip the robot’s movement in space during one complete
pitch movement by transforming successively the thereby gathered 2D scans according to the
estimated relative pose shift between the current robot pose and P,,. The scans are then com-
bined to form one 3D point cloud that, depending on the currently used pitch rate and size
of the AQI, consists of 15 to 500 single 2D laser scans. A point cloud being generated by this
means is shown in Fig. Figure 9.

The figure also shows the results of different processing steps that are performed for every
2D laser range scan acquired during the nodding-like movement of the scanner: 1.) reducing



Fig. 9. Example of a generated point cloud. The figure shows (from top to bottom): a photo of
the captured scene, the range measurements acquired during movement, the reduced set of
points (without floor points), detected lines and a rendered depth image.

the point density in the scan by replacing clusters of points, whose distance to each other falls
below some threshold, by their centroid, 2.) detecting line segments in the residual points, 3.)
merging line segments to planes and 4.) classifying points whether or not they belong to the
floor. All these algorithm are described, in detail, in (Surmann et al., 2003).

6.2 A Brief Overview on SLAM Algorithms

Performing SLAM to build maps and localizing in preliminary built maps are major precon-
ditions for the autonomous operation of mobile robots in changing or preliminary unknown
environments. Approaches addressing mapping and localization differ, amongst others, in
formulating the problem, the means to cope with the addressed problem and in represent-
ing the environment. A majority of SLAM algorithms is probabilistic and based on formu-
lations using Extended Kalman Filters (EKFs, Leonard & Feder, 1999), Unscented Kalman Filters
(UKFs, Chekhlov et al., 2006), Sparse Extended Information Filters (SEIFs, Thrun et al., 2004)
or Rao-Blackwellized Particle Filters (RBPFs, Grisetti et al., 2007). Graph-based SLAM algorithms
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(Grisetti et al., 2008; Olson et al., 2006) address SLAM in terms of nonlinear optimization and
are often used as generic back-ends to distribute accumulated errors after having detected
loops in the robot’s trajectory or to better align graphs of robot poses.

Another way of formulating SLAM is that by interpreting it as a problem of multi-view range
image registration, i.e., integrating and aggregating range measurements taken at different po-
sitions and orientations in the environment into a common coordinate frame forming the en-
vironment model. This problem can be formulated as follows: Given two sets of geometrical
features, a data set D or scene and a data set M or model, find a transformation T that min-
imizes the alignment error between the two sets and correctly maps D onto M. The goal
is to transform D in a way that it “fits best” with M. Normally, range images are taken of
non-deformable, static objects with the same sensor but from diverse viewpoints, i.e., from
different positions and under different orientations. In this case, T is a rigid transformation
that includes only translation and rotation.

6.3 Incremental Registration using the ICP Algorithm and Sparse Point Maps

A widely used solution to the registration problem is the Iterative Closest Point (ICP) algo-
rithm by Besl & McKay (1992), which determines T in an iterative way. In each iteration step,
the ICP algorithm determines pairs of corresponding points from D and M using a nearest-
neighbor search. These correspondences are used to quantify and minimize the alignment
error E:

ER ) = %%w-»ﬂm-— (Rd‘—l—t) 2w, = 1, m; corresponds to d; ®)
' a i=1j=1 KA / © M0, otherwise.
T = Ricp  tice with (R[cp, tICP) = arg min E(R, t) 9)
000 1 Rt

Finding the nearest neighbors and determining the correspondences is the computationally
most expensive step in the ICP algorithm (O(|D| |M|) for a brute-force implementation), since
for every point d; € D the closest point m; € M needs to be determined. Here, we use an
approximate kd-tree search (Arya et al., 1998), which reduces the complexity of the algorithm
to O(|D|log |M]).

To estimate the rigid transformation T, consisting of a rotation R and a translation t, that min-
imizes Eq. (8) there are closed form solutions in both the two- and three-dimensional case
(Lorusso et al., 1995). In order to cope with only partially overlapping sets, we reject corre-
spondence pairs for which the point-to-point distance exceeds a certain threshold. This thresh-
old exponentially decays during the registration process. While initially permitting larger
distances between corresponding points guarantees fast convergence of E(R, t), smaller dis-
tances in later iteration steps allow fine-tuning the registration result. Furthermore, we reject
pairs that contain the same model point and only keep the pair with the closest point-to-point
distance (ZinfSer et al., 2003).

For registering multiple range scans and constructing a consistent map that models environ-
mental surfaces, an incremental registration procedure is used. The first laser scan Dy is used
as the initial environment model M. Thus, the local coordinate frame of D forms the coor-
dinate frame for the overall map. All subsequent scans D;,i > 0 are matched against M;_1.
The resulting transformation T; is used to correct the position of all points contained in D;,
yielding the transformed point set D; = {El,-,]- | a,,]- = Rd;; + t}. As an initial estimate T, for
T; in this incremental registration we use the transformation from the last registration, i.e.,



T, = T,_;. This speeds up the convergence in the ICP algorithm and drastically reduces the
probability of converging to a local minimum possibly resulting in an incorrect registration
result. If odometry information is available, the estimate T, is further corrected taking into ac-
count the estimated pose shift between the acquisition of D;_; and D;. Furthermore, we only
register a new range scan D; if the robot traversed more than a certain distance, for example
50 cm, or turned more than a certain angle, for example 25°. Such a practice is quite common
a in variety of recent SLAM algorithms.
To account for possibly new information in D;, the transformed points are than added to M;_1.
That is, after matching range image D;, the model set M;_; computed so far is updated in step
i to:

M; = M;_1 U{d;; | d;; € D;}. (10)
Thus, a model My, constructed by incrementally registering N range images, contains all
points measured in the environment, i.e.

My= J {dijldij€Di}. (11)
i=[0,N]

The main problem of this incremental registration approach is its scalability with respect to
the size of the environment and the number of range images taken. To fully cover a large
environment, a lot of range images might be needed. When registering and adding all ac-
quired range images, the model set M can get quite large, e.g. several million points for 3D
scans taken in a large outdoor environment (Ntichter et al., 2007). However, when acquiring
range images in parts of the environment which are already mapped, lots of points would be
added to M without providing new information about the environment. This is exploited by
the following improvement to our SLAM approach, which makes the point clouds sparse.
The key idea of sparse point maps is to avoid duplicate storage of points, and thereby minimize
the amount of memory used by the map, by conducting an additional correspondence search.
Correspondence is, thereby, defined just like in the ICP algorithm, i.e. a point ai,]- € D; is not
added to M;_1, if the point-to-point distance to its closest point m;_1 y € M;_; is smaller than
a minimum allowable distance ep.

M;=M; 1 U{d;j|d;j € Dj,Bm;_1, € M;_q:||d;; —m;_14|| <ep} (12)

The threshold ep spans regions in the model in which the number of points is limited to 1,
thereby providing an upper bound on the point density in a sparse point map M. Choosing a
value of ep according to the accuracy of the range sensor used will exactly neglect duplicate
storage of one and the same point assuming correct alignment of range images. Choosing,
however, a larger value allows to reduce the number of points stored in the map. Although
some details of the environment might not get modeled, a map constructed in this manner
still provides a coarse-grained model of the environment. In the actual implementation, the
additional correspondence search is carried out on the kd-tree built for the ICP algorithm but
using ep as the distance threshold in the pair rejection step. However, here the rejected pairs
are used to determine the points in D; that need to be added to M;_.

6.4 3DOF-SLAM and 6DOF-SLAM in an Example Scenario

The following figures show typical results from applying the above described algorithms for
extracting 2D and 3D laser range scans out of the continuous 3D data stream and the incre-
mental registration using the ICP algorithm. In this example the robot was manually driven
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through a laboratory environment. The earlier described methods and means for avoiding
collisions were applied in order to change the manually set velocities in order to automati-
cally swerve around obstacles. Out of the stream of rotated 2D range scans delivered by the
continuously pitching 3D scanner both virtual structure maps as well as locally consistent 3D
point clouds have been extracted. These point sets were then incrementally registered using
the ICP algorithm and the aforementioned extensions. The two-dimensional sparse point map
obtained from matching the structure maps is shown in Figure 10(a) as well as the estimated
trajectory of the robot. Incrementally registering the generated 3D point clouds results in the
3D point model shown in Figure 10(b) in a top-down perspective with points classified as
corresponding to floor not being visualized. Views on the complete 3D model including floor
points are shown in Figure 11.
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(a) 2D point map and trajectory (b) 3D point map (floor points removed)

Fig. 10. Shown here are a two-dimensional sparse point map (a) as well as three-dimensional
sparse point map (b) of an example scenario. Measurements corresponding to flat floor have
been removed.

7. Extensions for using recent Time-of-Flight Cameras

An inherent drawback of the nodding-like movement of the continuously pitching laser scan-
ner is the high mechanical load of the actuator especially when accelerating the scanner at the
lower and upper bound of the AQ], i.e., when changing the rotation direction. Longer opera-
tions can cause an increase in gear backlash. When estimating the pitch angle solely based on
the current position of the servo motor can result in inaccuracies, i.e., the estimated angle may
deviate from the actual rotation angle of the pitching scanner. This effect can be seen in Fig-
ure 12(a). In this example a 3D scanner, that had already been used for several years without
changing motors or gear, was rotated from —30° to 15° and back to —30°. A vertical slice of
the generated point cloud is extracted that contains measurements on the planar floor as well
as on a vertical plane. Due to the inaccuracies in the estimation of the pitch angle, the result-
ing geometric is distorted. When explicitly measuring the pitch angle, like for instance using



(a) (b)

Fig. 11. Different views on the complete 3D model. It can be seen that the map does only
model environmental structures in a height of the robot. That is, only those regions are mod-
eled with which the robot can interact.

gyroscopes or an inertial measurement unit, allows for correctly reconstructing the geometric
structure as shown in Figure 12(b).

In contrast to custom built 3D scanners as the continuously pitching scanner used here, time-
of-flight cameras directly deliver 3D point clouds without a mechanical actuator. These solid-
state sensors emit an amplitude-modulated signal using an array of near-infrared light emit-
ting diodes (LEDs). The on-chip calculation of depth information is based on the phase shift
between the emitted and the received signal. Time-of-flight cameras provide depth images
at high frame rates while preserving a compact size, a feature that has to be balanced with
measurement accuracy and precision. Besides the depth measurements, they also provide the
amplitude of the reflected signal, which correlates to the reflectivity of the measured object.
Depending on external interfering factors (e.g., sunlight) and scene configurations, i.e., dis-
tances, surface orientations, and reflectivity, distance measurements from different perspec-
tives of the same scene can entail large fluctuations. Furthermore, these sensors have, com-
pared to 3D laser scanners, a restricted field of view, e.g., only 43° (H) x 34° (V) for a Swiss-
Ranger SR4000 from Mesa Imaging?.

One of the first applications in robotics considering ToF cameras as an alternative to laser
scanning, was presented by Weingarten et al. (2004). They evaluated a SwissRanger SR-2
camera in terms of basic obstacle avoidance and local path planning capabilities. In order to
cope with the poor data quality, Weingarten et al. determined the parameters for the perspec-
tive projection into the image plane in a photogrammetrical calibration as well as scaling and
offset values for correcting systematic errors in individual measurements. In order to detect
obstacles they apply a simple thresholding to remove floor points. As a result they presented
simple examples where an autonomous mobile robot using the SwissRanger camera was able

5 Mesa Imaging SwissRanger cameras: http://www.mesa-imaging.ch
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Fig. 12. Estimated and measured pitch angles. Depending on the gear backlash, pitch angles
estimated based on the position of the servo motor may deviate from the actual pitch angle (a).
Measuring the pitch angle, e.g., using gyroscopes still yields accurate and correct geometric
information (b).

to stop in front of a table that would have not been perceivable using a 2D laser range scan-
ner. However, they also mentioned that some objects and environmental structures have not
been perceivable with the SwissRanger due to the smaller field of view (Weingarten et al.,
2004). Sheh et al. (2006) also perform a per-pixel calibration similar to Weingarten et al. (2004)
and determine a lookup table storing an offset and a multiplying factor for every distance
measurement. In addition, Sheh et al. explicitly handle defect pixels. In order to handle the
smaller field of view in the context of 3D mapping, they stop the robot, rotate the camera and
acquire multiple range images under different rotation angles. The individual range images
are then merged into a single point cloud and registered into a global point map. The actual
registration is thereby assisted by a human operator. Swadzba et al. (2007) address the poor
data quality of the sensor by using a sequence of filtering operations and register successive
range images using a combination of feature tracking and registration with the ICP algorithm.
Recently, Yuan et al. (2009) adopted the ideas of virtual scans (Wulf et al., 2004) and virtual
obstacle maps (Holz et al., 2008) to fuse the sensory information of a SwissRanger SR4000 with
that of 2D laser range scanner. They apply the same pre-processing steps as Swadzba et al.
to filter out and correct inaccurate or erroneous measurements. However, due to that fact the
camera is fixed on the robot, they suffer from the same problem with the narrow field of view
as Weingarten et al., namely that not all obstacles in the robot’s vicinity can be perceived. Fur-
thermore, just like Weingarten et al., they only perform a simple thresholding to classify floor
points and detect obstacles. However, this procedure can cause different problems as already
mentioned in Section 4.

The narrow field of view and the poor data quality necessitate several extensions when ap-
plying a time-of-flight camera in the context of SLAM and collision avoidance.

1. Due to inaccuracies and erroneous measurements, the acquired 3D point clouds need to
be filtered and corrected in order to obtain accurate and correct geometric information.

2. Furthermore, the poor data quality necessitates a more robust classification of measure-
ments for reliably detecting obstacles.



3. The narrow field of view needs to be explicitly taken into account in the registration
with the ICP algorithm in order to avoid false correspondence when single range im-
ages contain less geometric features. When all measurements in the point cloud have
been acquired on a single planar surface for example, the registration problem is under-
constrained.

4. Again caused by the narrow field of view, the robot does not have all objects in sight
when the camera is mounted at a fixed position. In order to adequately perceive obsta-
cles in the robot’s vicinity and its movement direction respectively, the camera needs to
be rotated.

7.1 Filtering and Correction of Depth Measurements

Measurements from time-of-flight cameras are subject to different error sources (Lange, 2000).
They can be divided into systematic and random errors. Systematic errors can be corrected
by calibration (Fuchs & Hirzinger, 2008), whereas random errors can be coped with by means
of filtering. A common way in filtering random errors is to neglect measurements based on
their amplitude. Thresholding the amplitude neglects measurements from poorly reflecting
objects, objects being farther away from the robot and objects in the peripheral area of the
measurement volume.

Another source of errors in distance measurements are so called jump-edges. They occur at
transitions from one shape to another. The shapes seem to be connected due to spurious mea-
surements in between. These spurious measurements result from multiple-ways reflections
which also cause that hollows and corners appear rounded off (Lange, 2000; May et al., 2009).
Jump edges can be filtered by means of local neighborhood relations (May et al., 2009). From
asetof 3D points P = {p; cR3 |i=1, -, Ny}, jump edges ] can be selected by comparing
the opposing angles 6; , of the triangle spanned by the focal point f = 0, point ; and its eight
neighbors P, = {p;, |i=1,...,Np:n=1,---,8} with a threshold eg:

| |Pi,n ‘

p: fp»u‘“‘i“g”)' (13)
J = {pil6i>ep}, (14)

where ¢ is the angle between two neighboring distance measurements. Since this filter is
sensitive to noise, we apply a median filter to the depth image beforehand.

0;

max arcsin (

7.2 Detecting Obstacles and Information Fusion in Obstacle Maps

The filtered depth measurements are transformed to the robot’s Cartesian coordinate frame
by the extrinsic camera parameters, taking into account the sensor’s height and orientation. A
typical example of a resulting point cloud taken in an indoor scene is shown in Figure 13(a).
The colors of the points correspond to the distance of a point from the sensor, brighter colors
relate to shorter distances. This point cloud can be used to build a so called height image as
shown in Figure 13(b). The gray scale value of every pixel in the height value corresponds
to the height, i.e., the z-coordinate of the respective point in the point cloud. A point pij is
classified as belonging to an obstacle if

(Wmax - Wmin) > €H (15)

where Wnax and Wiy, are the maximum and minimum height values from a local window
W, spanned by the Moore neighborhood around p; ;. The threshold ey thereby corresponds
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to the minimum tolerable height of an obstacle. It needs to be chosen appropriately since it
should not be smaller than the sensor’s measurement accuracy. Due to evaluating a point’s
local neighborhood, floor points are inherently not considered as obstacles. The result of this
filter is shown in Figure 13.

(a) Raw point cloud (b) Rendered height image (c) Obstacles

Fig. 13. Detecting obstacles in range images. Based on the acquired range image (a), a height
image (b) is constructed. Filtering the height image results in the set of obstacle points (c).

The resulting obstacle points are used to extract a two-dimensional virtual scan similar to an
obstacle map by 1.) projecting the 3D data into the xy-plane and 2.) extracting relevant in-
formation. The number of range readings in the virtual scan as well as its apex angle and
resolution correspond to the acquired 3D data. For the SR4000, the number of range readings
is 176, which is the number of columns in the image array. The apex angle and the angular
resolution are 43° and 0.23°, which corresponds to the camera’s horizontal apex angle and
resolution. For every column of the ToF camera’s distance image, the obstacle point with the
shortest Euclidean distance to the robot is chosen similar to the update procedure of obsta-
cle maps in Section 4. This distance constitutes the range reading in the scan. If no obstacle
point is detected in a column, the scan point is marked invalid, by setting it to the maximum
measurable distance of the sensor.

Figure 14(a) shows an example scene of an indoor environment. The point cloud which re-
sults from the ToF camera’s depth image is shown in Figure 13. The result of the filtering
and the obstacle detection step is depicted in Figure 14(b). Points with a low amplitude are
removed from the cloud. Points classified as belonging to obstacles and the extracted virtual
scan are shown in Figure 14(c). Obstacle points are marked white and the obstacle points that
contribute to the virtual scan are marked red. The remaining points are marked green.

The resulting virtual scan is fused with a 2D laser range scan yielding a common obstacle map
modeling the closest objects in both sensors. The obstacle map for the aforementioned exam-
ple scenario is visualized in Figure 15. Measurements from the laser range scan are illustrated
by the blue points. The red points illustrate the virtual scan. The chair shows only a few points
in the 2D laser range scan since only the legs of the chair are in the scan plane, whereas the
virtual scan outlines the contour of the chair. By fusing the inforamtion of both sensors, the
robot possesses correct information about traversable free space (light blue region) in its im-
mediate vicinity. The obstacle maps can be used for collision avoidance just like the obstacle
maps obtained from extracting relevant information from the continuous data stream of the
pitching 3D laser scanner.



(a) Photo of the scene (b) Obstacles in height image (c) Point cloud and extracted scan

Fig. 14. Detecting obstacles in the filtered height image of an example scenario (a). Those
obstacles in the height image (b) that form the closest obstacles in the respective direction
and are comprised in the virtual scan are marked red. Obstalce points not contributing to the
virtual scan are marked white.

7.3 Frustum Culling as an Extension to the ICP Algorithm

The SLAM approach based on the ICP algorithm and described in Section 6 is quite sensitive
to false correspondences, especially when the point sets only partially overlap. Points in a
correpondence pair that do not model the same point in the physical environment can nega-
tively affect the registration result possibly leading to an incorrect local minimum. Due to the
narrow field of view of the SwissRanger camera, the overlap of the latest range image and the
so far built model has to be handled more explicit than solely using the pair rejection exten-
sions mentioned earlier. Here we apply a technique called frustum culling which known from
3D computer graphics. The frustum defines the volume that has been in the range of vision
while acquiring the model point set M. Points in the data D that do not lie within the model
frustum, are neglected in the correspondence search as they cannot form a valid correspon-
dence pair (May et al., 2009). Luck et al. (2000) use frustum culling in a preprocessing step
to sort out points by means of an initial pose esimate. The registration is then conducted on
the residual points. In contrast to that, we do not rely on an initial pose estimate and apply
frustum culling in every iteration step of ICP algorithm. This takes into account that points
in the data set are moved inside our outside the frustum during registration. Applying frus-
tum culling in every iteration step effectively reduces the number of false correpondences in
the registration and the total number of misregistrations caused by false correspondences. A
detailled description of this approach as well as the aforementioned calibration and filtering
procedures can be found in (May et al., 2009).

The procedure of neglecting points from the data set D that do not lie within the model frus-
tum is visualized in Chapter 16(a). Points of the model set M are shown in green. Those points
of D that lie within the frustum and that are considered in, respectively, the nearest neighbor
search and the registration of D are shown in red. Points from D that are neglected because
of not lying in the model frustum are shown in blue. A point map constructed by incremen-
tally registering range images using the aforementioned extensions and the frustum culling is
visualized in Figures 16(b) and 16(c).
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Free space in obstacle map
Closest obstacles in SwissRanger data —<—
Closest obstacles in 2D laser scan ---+---

Fig. 15. The resulting virtual scan of the scene is compared with the base laser scan. The base
laser scan is illustrated by the dashed green line. The red line illustrates the virtual laser scan.
The chair shows only a few points in the base laser scan since only the legs of the chair are in
the scan plane, whereas the virtual scan outlines the contour of the chair.

(b) (©

Fig. 16. Visualization of the frustum culling in the ICP algorithm (a) and two views on a
constructed 3D model (b+c).

7.4 Gaze Control

As already mentioned, the narrow field of view is a major issue in the context of collision
avoidance as not all obstacles in the robot’s vicinity can adequatly be perceived. Here, we
propose to mount the SwissRanger camera on some mechanical actuator, e.g., a pan-til-unit,
and to rotate the camera in a way that the robot perceives all obstacles in its movement direc-
tion. Rotating the camera is especially relevant when the robot is able to move sidewards or
to turn fast.

In order to rotate the camera and control the viewing direction or gaze, we have mounted
the SwissRanger on the head pan-tilt of an antropomorphic mobile service robot (see Fig-
ure 17(a)). As described in Section 7.2, the range measurements of the SwissRanger camera
are transformed into the robot’s coordinate frame and fused with the sensory information
of a 2D laser scanner. In order to perceive all obstacles in, respectively, the robot’s vicinity
and its movement direction, we determine an appropriate camera orientation for looking into



and perceiving all types of obstacles in the robot’s movement direction which is given by the
translational velocities (v* v¥)T and the rotational velocity «w. We compute the camera’s look
at point g = (g* g¥ g*)T using a simple controller.

X

g cosfw —sinfw 0 A v¥
g/| =a|sinfw  cosBw 0 < T ) vy (16)
g’ 0 0 1 vl 0

with dpyi, being the minimum distance (projected into the xy-plane) that can be perceived.
It is typically limited by the minimum pitch/tilt angle of the actuator. The scaling factors
« and B as well as the offset 7y can be used to adjust the gaze vector according to a specific
robot platform. We do not scale the function but use an offset of v > 1 thereby preferring the
perception of obstacles being farther away from the robot. That is, we assume that there is no
single obstacle directly in front (touching) the robot.
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(b) w=0 (¢) w =0.1257571 (d) w=0.25ms7"!

Fig. 17. The anthropomorphic service robot Dynamaid (a) and look at points g for different
configurations of v*, v¥ and w.

The result of applying this simple controller yields a behavior of smoothly adjusting the ori-
entation of the robot’s head towards the current movement direction. Figure 17 shows the
camera on top of the head of the antropomorphic robot as well as possible outcomes of the
gaze controller described above. Althoug this behavior appears quite reasonable for a human
spectator and allows for perceiving obstacles that would have not been perceivable with a
fixed camera, it should be noted that elaborating a more sophisticated strategy for controlling
the viewing direction is a matter of future work.

8. Conclusion and Future Work

With a focus on navigation in dynamic and cluttered domestic environments, we have pre-
sented a sensor setup for a 3D scanner that is especially appropriate for a fast 3D perception
of those regions in the robot’s vicinity that are relevant for collision avoidance. The 3D scan-
ner is continuously pitched in a nodding-like fashion where the range of rotation angles (area
of interest) is adapted in size just as the angular velocity with which the scanner is rotated.
The acquired 3D data is projected into the xy-plane in which the robot is moving and used
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to construct and update egocentric 2.5D maps storing either the coordinates of closest obsta-
cles or environmental structures. The representation of these maps is defined in a way that
they can be used with any algorithm for SLAM or collision avoidance that is operating on 2D
laser range scans. The obstacle maps have been used in a set of simple behaviors for reactive
collision avoidance. By means of the continuously pitching laser scanner and the concept of
the obstacle maps, an autonomous mobile robot is able to successfully avoid different obsta-
cles that can typically be found in domestic environments, like for instance table tops, open
drawers or stairs. The structure maps have been used in an ICP-based SLAM approach to in-
crementally build two-dimensional point maps modeling the environmental structures of the
robot’s workspace and to localize the robot with three degrees of freedom. Furthermore, we
segmented the continuously acquired 3D data stream into locally consistent 3D point clouds
and used this information in the same SLAM approach to build three-dimensional point maps
and to localize the robot with six degrees of freedom.

Current research and future work will focus on the application of recent time-of-flight cam-
eras. Several extensions have been described that allow the application of these cameras in
mapping tasks as well as for reactive collision avoidance by explicitly handling their narrow
field-of-view as well as inaccuracies and erroneous measurements.
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