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INTRODUCTION 

In this abstract, we present a method for on-line optimiza-

tion of dynamic walking patterns for a humanoid robot. 

The 19DOF robot has human-like proportions, weighs 

2.3kg, and is 60cm tall. A clock-driven gait engine [1] 

generates joint trajectories for various forward speeds.  

We use a hierarchy of open-loop and closed-loop control 

policies, each manipulating an individual subset of the gait 

engine parameters. These policies are improved by sto-

chastic policy gradient ascent. The nominal weight shift-

ing of the gait at zero speed is characterized by the rota-

tional roll and pitch motion of the upper trunk during the 

complete cycle. We reward imitation of this nominal 

weight shifting and measured walking speed. The policy 

gradients are estimated by the gradients of the long-term 

expected accumulated reward. The algorithm must handle 

non-stationarity of the learning problem caused by con-

tinuous changes in target speed. It must also cope with the 

dependencies between open-loop and closed-loop policy 

learning. Related methods [2-3] have been applied re-

cently to simpler robots. 
 

METHODS 

We apply gait-cycle synchronous Fourier analysis to char-

acterize the roll and pitch motion of the upper trunk. We 

use the first 6 complex coefficients for the roll axis, but 

only the first coefficient for the attitude pitch. After each 

gait cycle, the robot is rewarded with the weighted sum of 

the negative mean difference between actual and example 

Fourier coefficients. The achieved walking speed is also 

rewarded.  
 

The open-loop component learns a stochastic policy for all 

18 parameters of the gait engine. By estimating the aver-

age reward following the current policy, the algorithm 

performs hill-climbing to improve the policy according to 

the change in the value estimate. The closed-loop learning 

component is implemented in an actor/critic reinforcement 

learning scheme [4]. It controls shifting amplitude and 

phase shift with a stochastic policy. We use amplitude and 

phase shift of the second Fourier coefficient of the attitude 

roll motion as feedback after each gait cycle. The critic 

estimates the value function with linear function approxi-

mation and TD(
λ
) prediction. The actor manipulates the 

stochastic policy according to the TD(
λ
)-error in the critic. 

Because jumps in trajectories need to be avoided, we 

adapt the gait parameters smoothly to new values. To han-

dle the resulting delay we use eligibility traces in the actor.   
 

RESULTS AND DISCUSSION 
 

To assess the performance of the algorithm, we let the 

robot walk with slowly increasing target speed starting at 

zero speed. Fig.1 and Fig.2 show the estimated value of 

the open-loop learning component and walking speed,  

 

  

Figure 1 :  Average reward as estimated by the open-loop  
component with learning enabled (dotted) and disabled (dashed)   

   

  

Figure 2 :  Achieved walking speed with learning enabled (dotted) 
and disabled (dashed). The solid line is the nominal walking speed.   

  
   

 

respectively, with and without learning. When learning, 

the robot can walk at much higher gait target speeds. It 

also imitates the nominal weight shifting better at lower 

target speeds, which yields a more stable walking pattern. 
 

CONCLUSIONS 

Our algorithm improves walking patterns for bipedal lo-

comotion based on a performance measure that is evalu-

ated in each gait cycle. The measure rewards imitation of 

nominal weight shifting and walking speed. The combina-

tion of open-loop and closed-loop learning resulted in im-

proved walking stability and higher speeds.  

Currently, the method is evaluated for the simulated robot. 

Because the gait engine works well for the physical robot, 

we expect the results to carry over to the real robot. So far, 

we use only slow feedback. We plan to integrate a closed-

loop component that learns a control policy for a rate of 

83Hz to compensate for fast disturbances. 
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