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Abstract. This document describes the RoboCup Humanoid League
team NimbRo TeenSize of Rheinische Friedrich-Wilhelms-Universitét
Bonn, Germany, as required by the qualification procedure for the com-
petition to be held in Mexico City in June 2012.

Our team uses self-constructed robots for playing soccer. The paper de-
scribes the mechanical and electrical design of the robots. It also covers
the software used for perception and behavior control.

1 Introduction

Our TeenSize team participated with great success at last year’s RoboCup Hu-
manoid League competition in Istanbul. The robots won the 2 vs. 2 soccer
tournament—the third TeenSize success in row.

In 2011, the main rule change in the TeenSize class was an increase in size
of the field to 9x6 m. We successfully adapted our system to the larger field size
and repeated the reliable performance from 2010 in the 2011 finals without a
single fall and without need for human intervention.

Fig. 1. RoboCup 2011 TeenSize finale: NimbRo vs. KMUTT. Our team played with
the robots Dynaped (field player) and Bodo (goalie).
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Figure 1 shows an image of the final soccer game, where our robots met team
KMUTT from Thailand. The field players of both teams were able to find and
approach the ball. Both teams had goalies able to jump quickly to the ground.
Because our robot Dynaped was usually the first at the ball, which it kicked
very reliably, the game ended 10:0 for NimbRo.

Our robots also won the 2011 technical challenges with a good performance
in the Double Pass and the Obstacle Dribbling challenges.

In 2012, we will continue to use the NimbRo TeenSize robots Dynaped and
Bodo, but we will also use our new robot Copedo. It is constructed to not
only survive a fall but to also get up afterwards. We continuously improve the
computer vision and behavior control software.

This document describes the current state of the project as well as the in-
tended development for the RoboCup 2012 competitions. It is organized as fol-
lows. In the next section, we describe the mechanical and electrical design of the
robots. The perception of the internal robot state and the situation on the field
is covered in Sec. 3. The generation of soccer behaviors in a hierarchy of agents
and time-scales is explained in Sec. 4.

2 Mechanical and Electrical Design

Fig. 2. NimbRo TeenSize robots Copedo, Dynaped, and Bodo.

Fig. 2 shows our three TeenSize robots: Copedo, Dynaped, and Bodo. As
can be seen, the robots have human-like proportions. Their mechanical design
is focused on simplicity, robustness, and weight reduction.

Copedo is 114 cm tall, and weighs 8kg. The robot has 17DOF: 5 DOF per
leg, 3DOF per arm, and one joint in the neck that pans the head. Its legs
use parallel kinematics, which keeps the hip parallel to the ground in sagittal
direction. The joints are driven by master-slave pairs of Robotis Dynamixel EX-
106+ actuators. As shown in Fig. 3, the knee actuators are supported by parallel
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Fig. 3. Mechanical details of Copedo: overload protection in the hip with preloaded
spring (left); parallel leg kinematics with knee spring (right).

springs in straightening the leg. The springs compensate gravity when standing
and increase the kicking speed of the robot.

Size and weight of Dynaped are 105 cm and 7 kg, respectively. The robot has
13DOF: 5DOF per leg, 1 DOF per arm, and 1 DOF in the neck. Its also uses
parallel kinematics with pairs of EX-106 actuators.

Bodo is 103 cm tall and has a weight of about 5kg. The robot is driven by
14 Dynamixel actuators: 6 per leg and 1 in each arm.

The skeleton of the robots is constructed from carbon composite material
and aluminum extrusions with rectangular tube cross section. We removed all
material not necessary for stability. For protection, we included a layer of foam
between the outer shell of the robots and their skeleton. As shown in Fig. 3, our
robots are equipped with a mechanical fuse between hip and spine, which allows
the robots to jump quickly to the ground as a goalie. Copedo has this protection
also in the neck.

The robots are controlled by a tiny PC, which features an Intel 1.33 GHz
processor and a touch screen, and a HCS12X microcontroller board, which man-
ages the detailed communication with all joints via a 1 Mbaud RS-485 bus. The
microcontroller also reads in a dual-axis accelerometer and two gyroscopes. The
robots are powered by Lithium-polymer rechargeable batteries which last for
about 20 minutes of operation.

3 Perception

Our robots need information about their internal state and the situation on the
soccer field to act successfully.

3.1 Proprioception

For proprioception, we use the joint angle feedback of the servos and apply it
to the kinematic robot model using forward kinematics. Additionally, we fuse
accelerometer and gyroscope measurements to estimate the tilt of the trunk in
roll and pitch direction. Knowing the attitude of the trunk and the configuration
of the kinematic chain, we rotate the entire model around the current support
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Fig. 4. NimbRo perception and localization. Left: TeenSize field with detected goal,
ball, obstacle, X-crossing and center line. Center: Egocentric world view of the robot.
Right: Localization given the perceived landmarks.

foot such that the attitude of the trunk matches the angle we measured with
the IMU. This way, we obtain a robot pose approximation that can be used
to extract the location and the velocity of the center of mass. Temperatures
and voltages are also monitored for notification of overheating or low batteries,
respectively.

3.2 Computer Vision

For visual perception of the game situation, we capture and process 752x480
YUV images from a IDS uEye camera with a fish eye lens (Fig. 4 left). Pixels are
color-classified using a look-up table. In down-sampled images of the individual
colors, we detect the ball, goal-posts, poles, penalty markers, field lines, corners,
T-junctions, X-crossings, obstacles, team mates, and opponents using size and
shape information.

For the avoidance of own and opponent robots, we investigated the learning
of robot detection based on color histograms [4]. This is increasingly relevant
for the Humanoid League, as the color restrictions on the robot appearance are
relaxed.

We estimate distance and angle to each detected object by removing radial
lens distortion and by inverting the projective mapping from field to image plane
(Fig. 4 center). To account for camera pose changes during walking, we learned a
direct mapping from the IMU readings to offsets in the image. We also determine
the orientation of lines, corners and T-junctions relative to the robot.

We have been investigating the self-localization of humanoid robots using
cameras for some years [3]. To localize a robot on the field, we track its three-
dimensional pose (x,y, ) using a particle filter [11] (Fig. 4 right). The particles
are updated using a motion model which is a simple linear function of the gait ve-
locity commanded to the robot. Its parameters are learned from motion capture
data [8]. The weights of the particles are updated according to a probabilistic
model of landmark observations (distance and angle) that accounts for measure-
ment noise. To handle unknown data association of ambiguous landmarks, we
sample the data association on a per-particle basis. The association of field line
corner and T-junction observations is simplified using the orientation of these
landmarks. Further details can be found in [10].
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Fig. 5. Pose tracking without line observations, with line observations and using all
available features based on data recorded online while walking from target area to target
area autonomously. The lines-only approach only deviates slightly from the other two,
greatly reducing our dependence on a color-coded soccer environment.

In an experiment, we set up four target areas on the playing field. Our robot
autonomously walked from target area to target area, while we record observed
camera frames, IMU data and motion commands. We then process the video in
three configurations: Using all available observations, using no line and corner
observations, and using only line and corner observations. Since without colored
markers global localization is ambiguous, we initialize the pose for all runs man-
ually and then track the pose without global localization. Figure 5 shows the
resulting tracks. All conditions yield qualitatively similar results. Unsurprisingly,
the trajectory using all features is in between the other two trajectories, which
is supported by the quantitative measures presented in the table. Most notably,
however, is the result that we can reliably track the robot pose without the use
of colored landmarks.

4 Behavior Control

We control our robots using a framework that supports a hierarchy of reac-
tive behaviors [2]. This framework allows for structured behavior engineering.
Multiple layers that run on different time scales contain behaviors at different
abstraction levels. When moving up the hierarchy, the update frequency of sen-
sors, behaviors, and actuators decreases. At the same time, they become more
abstract. Raw sensor input from the lower layers is aggregated to slower, abstract
sensors in the higher layers. Abstract actuators enable higher-level behaviors to
configure lower layers in order to eventually influence the state of the world.
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Currently, our implementation consists of three layers. The lowest, fastest
layer is responsible for generating motions, such as walking, kicking and the
goalie dive. Our omnidirectional gait [1] is based on rhythmic lateral weight
shifting and coordinated swinging of the non-supporting leg in walking direction.
This open-loop gait is self-stable when undisturbed. In order to reject larger
disturbances, we recently extended our gait engine with a lateral capture step
controller [5] that modifies the timing and the lateral location of the footsteps
to maintain balance. This controller uses a linear inverted pendulum model to
predict the motion of the robot’s center of mass. This is illustrated in Fig. 6. In
an experiment with approx. 100 lateral pushes, all returning CoM trajectories
could be stabilized with only a few capture steps.
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Fig. 6. Lateral capture steps: Nominal CoM trajectories are characterized by three
parameters «, §, and w. These can be obtained from the real robot. The time of the
step is determined by the time the CoM reaches the desired support exchange location
between § and w. The lateral footstep location is chosen such that the next step apex
will occur at distance « [5].

unstable
trajectory

For the goalie, we designed a motion sequence that accelerates the diving mo-
tion compared to passive sideways falling from an upright standing posture [6].
The goalie jump decision is based on a support vector machine that was trained
with real ball observations.

At the next higher layer, we abstract from the complex kinematic chain and
model the robot as a simple holonomic point mass that is controlled with a
desired velocity in sagittal, lateral and rotational directions. We are using a
cascade of simple reactive behaviors based on the force field method to generate
ball approach trajectories, ball dribbling sequences, and to implement obstacle
avoidance.

Based on the learned motion model of our robots [8], we developed a new
method to generate ball approach trajectories by planning footstep sequences
offline and training an online policy to meet real-time requirements [9]. Fig. 7
shows the resulting trajectories, compared to the reactive behavior.

We also investigated the local multi resolution methods for path planning
among moving obstacles, which take into account the assumed intentions of
opponent robots [7].
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Fig. 7. Footstep planning: The ball approach is planned offline for many situations
(left); right: paths generated by the learned policy (blue) compared to reactive behavior

(green) [9].

The topmost layer of our framework takes care of team behavior, game tactics
and the implementation of the game states as commanded by the referee box.

5 Conclusion
At the time of writing, January 29", 2012, we made good progress in prepara-
tion for the competition in Mexico. We will continue to improve the system for

RoboCup 2012. The most recent information about our team (including videos)
can be found on our web pages www.NimbRo.net.

Commitment

Team NimbRo commits to participate in RoboCup 2012 in Mexico City and to
provide a referee knowledgeable of the rules of the Humanoid League.
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