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Abstract. This paper describes the state of robots’ software of team Nim-
bRo AdultSize of the Rheinische Friedrich-Wilhelms-Universitdt Bonn,
Germany. This paper aims to serve as qualification material for the com-
petition held in Bordeaux from June 23-29. The design and construction
of our robots were developed entirely by our team members. This paper
focuses mainly on the software components that played a key role in
winning the Humanoid League 2019 in Sydney. These components include:
behavior design, robot perception, and gait optimization.

1 Introduction

Each year, the competition rules are adapted to resemble more real soccer
scenarios and to be more compliant with FIFA rules. This enforces the teams
participating in the Humanoid League to improve drastically both the hardware
and software capabilities of their platforms. In 2019, for example, the number of

Fig. 1. The NimbRo team at RoboCup 2019 in Sydney, Australia.


behnke
Schreibmaschine
RoboCup 2020 Humanoid League Team Descriptions, Bordeaux, France, June 2020.


2 Farazi, Ficht, Rodriguez, et.al.

robot players in the AdultSize category has increased together with the dimensions
of the field, which encourages the team to build new robot platforms and to
develop teamplay strategies.

In the Humanoid League, team NimbRo has a long history. From 2009 until
2013, our TeenSize robots won the tournament each year consecutively, also
obtaining the technical challenges trophy in the years 2012 and 2014. In 2015, we
won the RoboCup Design Award. The following year, our team was awarded the
first International HARTING Open Source Prize [3], and won TeenSize league [8].
In 2017, team Nimbro held the title in its last participation in the TeenSize
category [15]. In the same year, the AdultSize category introduced regular one vs.
one games [11], which encouraged team NimbRo to participate in this category,
which resulted in winning the AdultSize tournament, drop-in games and technical
challenges. Additionally, the newly designed NimbRo-OP2 won the RoboCup
Design Award. In 2018, team Nimbro AdultSize received all of the possible awards
by winning the main tournament, drop-in games, technical challenges and finally
the Best Humanoid Award (Fig. 1) In RoboCup 2019 in Sydney, team NimbRo
repeated this feat, and held on to all four possible titles.

For the 2020 competition, we want to exhibit more advanced team play
strategies and demonstrate our improvements made in our open-source ROS
framework, especially in the areas of perception, localization, walking, and soccer
behaviors.

2 Perception

2.1 Computer Vision

Our visual perception pipeline improved significantly since RoboCup 2018. Thanks
to our new unified perception convolutional neural network (NimbRoNet2), we
now can reliably perceive the environment in extremely low and very bright
lighting condition. The visual perception system can recognize soccer-related
objects, including a soccer ball, field boundaries, robots, line segments, and
goalposts through the usage of texture, shape, brightness, and color information.

Our deep-learning-based visual perception system is robust against brightness,
viewing angles, and lens distortions. To achieve this, we designed a unified deep
convolutional neural network to perform object detection and pixel-wise classifica-
tion with one forward pass. After post-processing, we managed to outperform our
previous non-deep learning approach to soccer vision [7] as well as our previous
deep-learning-based model [12]. Our perception system is also able to track [9]
and identify our robots [10].

The system has two output heads; one for object detection, and the other
for pixel-wise segmentation. The detection head gives the location of the ball,
robots, and goalposts. The segmentation head is for line and field detection. Our
model uses an encoder-decoder architecture similar to pixel-wise segmentation
models like SegNet [4], and U-Net [17]. Due to computational limitations and
the necessity of real-time perception, we have made several adaptations, e.g.,
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using a shorter decoder than the encoder. Thus, the number of parameters has
been reduced for the cost of losing fine-grained spatial information which can
be alleviated using sub-pixel post-processing. To minimize annotation efforts,
we utilized transfer-learning. A pre-trained ResNet-18 is chosen as the encoder.
Since ResNet was originally designed for recognition tasks, we removed the
Global Average Pooling (GAP) and the fully connected layers in the model.
Transpose-convolutional layers are used for up-sampling the representations. To
use location-dependent features, we used newly proposed location-dependent
convolutional layer [14]. In order to limit the number of parameters used, a shared
learnable bias between both output heads is implemented. The proposed visual
perception architecture is illustrated in Fig. 2.
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Fig. 2. NimbRoNet2 architecture. Similar to ResNet, each convBlock consists of two
convolutional layers followed by batch-norm and ReLU activations. For simplicity,
residual connections in ResNet are not depicted. Note that instead of a convolutional
layer we used a location-dependent convolution in the last layer.

Different losses were used for different network heads. For detection head,
similar to SweatyNet [18], the mean squared error is employed. The target is
constructed by Gaussian blobs around the ball center and bottom-middle points
of the goalposts and robots. In contrast to last year model, NimbRoNet2 uses
a bigger radius for robots with the intuition that annotating a canonical center
point is more difficult, thus a bigger radius would less penalize the network for not
outputting the exact human labels. In the classification head, we used pixel-wise
Negative Log Likelihood. We also added Total Variation loss to the output of
all result channels except the line segmentation channel. Total Variation loss
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encouraged blob response thus helped to have less false positives, especially in
field detection.

One other difficulty of this year of RoboCup was very thin goalposts which
were hard to detect. However, with many training samples, the network finally
managed to learn it very robustly. After sufficient training, goal posts were
detected even when they were hard to recognize by a human. This might be
explained by inferring their presence from other features of the pitch like field
boundary and lines. One detected hard-to-recognize goal post is shown in the
last row of Fig. 3.

Fig. 3. Object detection results. Upper row: captured images by our robots. Middle
row: the output of the network with balls (cyan), goal posts (magenta), and robots
(yellow). Bottom row: the output of the segmentation branch with lines (white), field
(gray), and background (black).

Despite using Adam optimizer, which has an adaptable per-parameter learning
rate, finding a suitable learning rate is still a challenging prerequisite for training.
To determine an optimal learning rate, we followed the approach presented
by Smith et. al. [19]. Each batch contained only some samples for one of the
output heads. We used progressive image resizing that uses small pictures at
the beginning of training, and step by step increase the dimensions as training
progresses, a method inspired by Brock et. al. [6] and by Yosinski et. al. [20].
In early iterations, the inaccurate randomly initialized model will make fast
progress by learning from large batches of small pictures. Within the initial
fifty epochs, we used downsampled training images, whereas the weights on the
encoder part are frozen. Throughout the following fifty epochs, all parts of the
models are jointly trained. In the last fifty epochs, full-sized pictures are used
to learn fine-grained details. A lower learning rate is employed for the encoder
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Fig. 4. Object detection under various lighting conditions. Left column: captured images
by our robots. Middle column: output of the network indicating balls (cyan), goal posts
(magenta), and robots (yellow). Right column: output of the segmentation branch
showing lines (white), field (gray), and background (black).

part, with the intuition that the pre-trained model needs less training time to
converge. With the described method, the entire training process with around
9k samples takes less than three hours on a single Titan X GPU with 12 GB of
memory. Examples from the test set are pictured in Fig. 3. To annotate more
data as quickly as possible, we designed an annotation tool which automatically
annotates the input based on the previously trained model. The user then only
had to correct those samples which were wrongly classified. This semi-automatic
annotation tool was crucial for us to gather as many samples as possible from
the RoboCup 2019 environment.

The output of the network is of lower resolution and has less spatial information
than the input image. To account for this effect in the detection part, we calculate
sub-pixel level coordinates based on the center of mass of a detected contour.
There was no need to account for lower resolution output in the field and line
segmentation.

After detecting soccer-related objects, we filter them and project each object
location into egocentric world coordinates. Using NimbRoNet2, we can detect
objects which are up to 10 meters away. The complete perception pipeline,
including a forward-pass of the network, takes approximately 36 ms on the robot
hardware. Using a unified network helped both detection and segmentation.
The network learned to exclude the balls which were outside of the field, hence
reducing false detection rate. Outside field object removal was previously done
only after post-processing. In addition, the robot was able to play soccer in pitch
black, and the perception was robust in different lighting conditions, including
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Table 1. Results of the detection branch of our visual perception network.

Type ‘ F1 Accuracy Recall Precision FDR
Ball (NimbRoNet2) 0.998 0.996 0.996 1.0 0.0

Ball (NimbRoNet) 0.997 0.994 1.0 0.994 0.005
Ball (SweatyNet-1 [18]) [0.985 0.973 0.988 0.983 0.016
Goal (NimbRoNet2) 0.981 0.971 0973 0.988 0.011
Goal (NimbRoNet) 0.977 0.967 0.988 0.966 0.033

Goal (SweatyNet-1 [18]) |0.963 0.946 0.966 0.960 0.039

Robot (NimbRoNet2) 0.979 0.973 0.963 0.995 0.004
Robot (NimbRoNet) 0.974 0971 0.957 0.992 0.007
Robot (SweatyNet-1 [18]){ 0.940 0.932 0.957 0.924 0.075

Total (NimbRoNet2) 0.986 0.986 0.977 0.994 0.005
Total (NimbRoNet) 0.983 0.977 0.982 0.984 0.015
Total (SweatyNet-1 [18]) {0.963 0.950 0.970 0.956 0.043

Table 2. Results of the semantic segmentation of our visual perception network.

Type ‘Accuracy 10U
Field 0.986 0.975
Lines 0.881 0.784
Background| 0.993 0.981
Total | 0.953 0.913

direct sunlight and without ambient light (Fig. 4). Unfortunately, this year, all
AdultSize games were played with artificial light, thus we could not test our new
development for lighting conditions during the competition.

Our visual perception pipeline is compared on different soccer-related objects
against SweatyNet [18] and our previous model NimbRoNet [12] (Table. 1).
We also evaluated our segmentation head (Table. 2). We have outperformed
SweatyNet and NimbRoNet, whose results were one of the best-reported in terms
of detecting soccer objects. This achievement was also accompanied by being
approximately two times faster than SweatyNet in training phase. The reduced
training time can be attributed to the progressive image resizing and transfer
learning techniques.

Localization: Localization of the robot on the soccer field—the task of estimat-
ing the 2D pose (z,y,0) of the robot—is performed using the field line, center
circle and goal post detection. Each component of the 2D pose is estimated
independently. To estimate the 8 component, we keep track of initial orientation
and maintain an internal correction term based on the angular deviation between
the expected and detected orientations of the white lines. This approach does
not rely on having an accurate gyroscope output, and in experiments was able
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to correct deviations up to 10° coming from the gyroscope. Using the estimated
0, which is normally quite exact, we can rotate every vision detection to align
with the global field coordinate system. The detected line segments can thereby
be classified as being either horizontal or vertical field lines. In each cycle of the
localization node, we use the perception information and dead-reckoning walking
data to update the previously estimated 2D location. For updating 2D location,
we distinguish  and y component using estimated 6. The y component of the
localization is updated based on the y-components of the detected center circle,
goal posts, and vertical field lines. With the assumption that the robot is always
inside the field lines, the vertical sidelines can easily be differentiated and used
for updates. The x-component of the localization is analogously updated based
on the z-components of the detected center circle, goal posts and horizontal field
lines. The horizontal lines belonging to the goal area are discriminated from the
center line by checking for the presence of a consistent goal post detection, center
circle detection, and/or further horizontal line that is close and parallel. This
approach can easily deal with common localization difficulties, such as sensor
aliasing and robot kidnapping. In contrast to some other proposed localization
methods for soccer fields, this method is relatively easy to implement and very
robust.

To solve the global localization problem, our method relies on having a source
of global yaw rotation of the robot. In our robots, gyro integration is a reliable
source of orientation tracking, but it needs a global reference. In order to set
the initial heading, we could either use manual initialization or automatic initial
orientation estimation. Although manual initialization can be done once before
the start of each game, it can fail during the match. Sometimes restarting the
operating system of the robot is unavoidable, which will force a reinitialization
of the heading. As a result, we reformulated the heading initialization problem
as a classification task.

Fig. 5. Set of predefined positions the robot can start in.

According to the rules, there are a few predefined positions and orientations
that the robot can start in or enter the game from. As shown in Fig. 5, the
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robot can start in four different positions. In two of the spots, it should face
the opponent’s goal—near the center circle and goal area. The other two sets
of locations are at the sideline in the robot’s own half—facing the field. We
employ a multi-hypothesis version of our localization module, which is initialized
with four instances of initial hypothetical locations. During a brief period at
the beginning, the robot tries to find the most probable hypothesis among all
running instances. This stops when either the process times out or the robot
finds the best hypothesis. Finally, the vision module keeps the best instance and
discards the rest. To make sure that the decision is correct, we double-check the
result based on the perceived landmarks like goalposts and the center circle.

Gait Optimization: The gait of our robots is based on an open-loop pattern
generator that calculates joint states based on a gait phase angle, whose rate is
proportional to the desired step frequency [5]. The phase angle is responsible for
generating arm and leg movements such as lifting and swinging. We have built
around this approach and incorporated corrective actions based on fused angle
feedback [1, 2, 13].

We use Bayesian optimization methods to find proper values for the Fused
Feedback controller used by the gait. To minimize hardware wear-off, this opti-
mization does not only take place in the real world, but highly exploits information
gained through the included Gazebo simulator. This approach has been previously
applied to the igus® Humanoid Open Platform robot and is now utilized on the
AdultSize platforms [16].

3 Behavior and Teamplay

Teams participating in the AdultSize class in RoboCup 2019 were composed of a
maximum of two robots. We define dynamic Player Tasks, which are frequently
reassigned during the game. This task tells the robot what it is supposed to do
according to its own state in the field and the state of its teammates. In addition,
we define a task manager which is in charge of the safe assignment of these tasks.

A robot with the Attack task has active interaction with the ball. With
this task, the robot is able: i) to block opposite direct shots, ii) to be ready
for one-vs-one fights, and iii) to get possession of the ball in case the previous
attacker is taken out of the match. In possession of the ball, the robot will try
to score either by kicking directly or by dribbling to get a better position for
kicking the ball. The robot will also reach the ball and search for the ball in case
the robot does not possess it. When searching for the ball, the robot goes first
to the place where the ball was last seen. Reaching the ball means to place the
robot behind the ball so it can kick or dribble.

The defender robot is not supposed to have contact with the ball but to be
ready to change its task and approach the ball if necessary.

The task assignment is based on an asynchronous request-and-response system
that ensures that there is only one robot actively interacting with the ball. This
prohibits, for example, that two robots try to kick the ball simultaneously, which
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could lead to team self-collisions. The request for a task reassignment depends
on the state of the robot and its teammates.

4 Conclusions

We are looking forward to participating in RoboCup 2020 in Bordeaux. We want
to demonstrate advanced team play strategies in 2 vs. 2 games, which are still
under development, and evaluate the performance of our improved deep neural
networks used for detections.

Team Members

Team NimbRo commits to participating in RoboCup 2020 in Bordeaux, France,
and to provide a referee knowledgeable of the rules of the Humanoid League.
Currently, the NimbRo soccer team consists of the following members:

Team leader: Sven Behnke

Team members: Hafez Farazi, Grzegorz Ficht, Diego Rodriguez, Dmytro
Pavlichenko, Mojtaba Hosseini, Oleg Kosenko, and Marcell Missura.
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