# Multi-contact Locomotion and Perception on the Humanoid Robot HRP-2

J. Carpentier C. Quang-Pham A. Del Prete M. Kudruss N. Mansard M. Naveau O Stasse S. Tonneau

Gepetto, LAAS-CNRS, Toulouse, France



Int. Conf. on Humanoid Robotics, 10th Workshop on Humanoid Soccer Robots Seoul, Korea, November 3*rd*, 2015





### Presentation overview

#### 1 Motivations

- Applications
- Results

### 2 Uncertainity, planning and control

- Motion generation
- Planning complex contact sequences
- Noise in the contact surfaces
- Noise in the localization
- Control and underactuation



### Table of Contents



2 Uncertainity, planning and control



### Humanoids in Factory like environment





Motivations •••• Results Uncertainity, planning and control

Conclusions

### Humanoid robot HRP-2 evolving on stairs



[Kudruss, Humanoids 2015] [Carpentier, ICRA 2016 submitted]

> Previous work [Luo, ICRA 2014] [Vaillant, Humanoids 2014] [Noda, ICRA 2014]



10th WS on Humanoid Soccer Robots - 5/16

N. Mansard and O. Stasse

Uncertainity, planning and control

Conclusions

#### Results

### Humanoid robot HRP-2 stepping down



#### [Cuong, IEEE Trans. on Mechatronics 2014]



10th WS on Humanoid Soccer Robots - 6/16

N. Mansard and O. Stasse

## Table of Contents



- **2** Uncertainity, planning and control
  - Motion generation
  - Planning complex contact sequences
  - Noise in the contact surfaces
  - Noise in the localization
  - Control and underactuation



## Motion generation: the general problem

$$\begin{aligned} \min f(\mathbf{u}(t),\mathbf{v}(t)) \\ \mathbf{g}(\mathbf{u}(t),\mathbf{v}(t)) &< 0 \\ \mathbf{h}(\mathbf{u}(t),\mathbf{v}(t)) &= 0 \end{aligned}$$



with  $\mathbf{u}(t)$  the control and  $\mathbf{v}(t)$  the environment model

Which  $\mathbf{v}(t)$  for multicontact control ?



Planning complex contact sequences

### Planning complex contact sequences

- Fast conctact planner from environment CAD (near real-time) [Tonneau, ISRR2015]
- Evident need of dense mapping as input
- Preparing force control using robust balance



#### [Del Prete, ICRA 2016 Submitted]



Noise in the contact surfaces

### Problems with the environment model



Online adaptation to unknown terrain





Noise in the contact surfaces

### Problems with the environment model



Online adaptation to unknown terrain



Torque control for some humanoid robots (HRP-2) is difficult to achieve

10th WS on Humanoid Soccer Robots - 10/16

N. Mansard and O. Stasse

Motivations

## Torque control

- Torque control on a stiff-actuation robot
- Using end-effector force-torque sensors + IMU + encoders
- Efficient reconstruction of the motor torques
- Feedforward on the reconstructed torques (= friction compensation)
- Feedback on the force sensors
  (= perfect contact tracking)



[Del Prete, IJHR 2015]



#### Noise in the localization

## Problems with the environment model

#### Noise in the localization

- Rigid robot are good to localize *locally*
- SLAM in large environment and use for planning is a challenge
- In general geometric environment are simple for planning
- Direct use of geometric models is sometimes preferable
- Noise due to foot landing and robot
- Replanning and fast control are necessary



NRS

Control and underactuation

## Contact and underactuation



#### Challenges in Multi-contacts locomotion

- The general template model includes Quadratic Constraint which can be concave
- The problem is NP-Hard with **c** or **f** as free variables
- Are the real problems that hard ?
- Open problem : real-time computation with p<sub>i</sub> also free variables ?

Control and underactuation

## Model-predictive control for 3D locomotion

- Fast optimal control for central-dynamics pattern generation
- Near real-time ( 80ms per cycle), ready for MPC
- Optimize the COM trajectory while keeping the angular momentum low
- On-going connection with the IMU+force sensor
- Submitted to ICRA 2016



### Table of Contents



2 Uncertainity, planning and control





## Conclusions and Perspectives

- Human environments are still very challenging due to symmetries, lack of textures, occlusion.
- Including a-priori knowledge helps.
- Real-time multi-contact based motion generation is difficult
- Choosing from scratch new contact might be difficult unless candidates are already known.
- Perspectives
  - Efficient formulation might be found
  - Stochastique approach of control

