A Neuromuscular Model of Human Locomotion and its Applications to Robotic Devices

The 10th Workshop on Humanoid Soccer Robots at 15th IEEE-RAS International Conference on Humanoid Robots Nov 3, 2015

Seungmoon Song Robotics Institute Carnegie Mellon University

smsong@cs.cmu.edu http://www.cs.cmu.edu/~smsong

W911NR-11-1-0098

EEC 0540865

1R01HD075492

How does human walk?

S Song, Y Ryoo, and D Hong, Development of an omnidirectional walking engine for full-sized lightweight humanoid robots, *ASME IDETC*, 2011.

Geyer Group

Robotic Limbs with human-li Behavior and Dexterity

Content

Background

Neuromuscular model of human locomotion

Using the model to control bipedal robots

Current understanding of human locomotion control

Human locomotion is well described at the behavioral level

Kinematics, dynamics, muscle activations, ...

Not much is understood at the neural circuit level

Spinal and supraspinal control layers Central pattern generators (CPGs), reflexes, ...

Simulation studies may provide better understanding

model	mechanics	strategy	control reflex delay	world frame	locomotion behaviors	robustness	EMG correlation
Taga et al. (1991-1998)	2D, 7 seg 6 torques	CPG + reflex	0	all segments	walk (run, obst)	25 Ns BW push, +15 kg at pelvis	n/a
Hase et al. (1998-2011)	3D 14 seg 60 muscles	CPG + reflex	0 (5 ms)	all segments	walk, run	± 0.5 cm GND (± 2 cm GND)	not reported
Ogihara et al. (2001-2012)	2D 7 seg 18 muscles	CPG + reflex	0	none	walk	-	not quantified (not good)
Günther et al. (2003)	2D 11 seg 28 muscles	reflex $(\lambda$ -model)	0	trunk	stand \rightarrow walk	2° slopes, $0.07 \sim 3 \times \text{gravity}$	not quantified (not good)
Jo et al. (2004-2008)	2D 7seg 18muscles	mSyn +reflex	realistic	trunk	stand→walk (kick, obst)	15 Ns pushes +15 kg at trunk	not quantified (not bad)
Geyer et al. (2010)	2D 7 seg 14 muscles	reflex	realistic	trunk	walk	ground: ±4cm	51%-99%

- + robust 3D locomotion
- + diverse locomotion behaviors
- + predictive model

pros

cons

Background

Neuromuscular model of human locomotion

S Song and H Geyer, A neural circuitry that emphasizes spinal feedback generates diverse behaviors of human locomotion, *The Journal of Physiology*, 2015.

Using the model to control bipedal robots

Musculoskeletal system

7 segments 8 DOFs 22 MTUs

Neurophysiological transmission delays are modeled

Neural transmission delay

Other sources of system delay

muscle dynamics

excitation-contraction coupling (ECC): ~35 ms

10 + 15 + 15 + 10 = 50 ms

Spinal control consists of reflex modules that embed key functions essential for legged locomotion

leg2

leg1

leg1

realizes walking and running

[Geyer EA, 2003]

Positive force feedback generates compliant leg behavior

$$S_m = S_0 + GF_m \left(t - \Delta t
ight)$$

[Geyer EA, 2006]

[Desai EA, 2012&2013; Song EA 2013]

Energy optimal control parameters generates human-like walking

The neural control is plausible The neural control *predicts* normal human locomotion

Energy optimal walking shows human-like muscle activation

Model R=0.73 R=0.32 R=0.86 R=0.89 R=0.49 R=0.76 R=0.85 R=0.82 R=0.97 R=0.90 R=0.81

The differences come from ...

- simplified musculoskeletal model
- energy optimal control parameters

The model can generate diverse locomotion behaviors

Robust walking (±10 cm)

Slope ascend and descend

The model can generate diverse locomotion behaviors

Speed change

 $0.8 \text{ ms}^{-1} \Rightarrow 1.8 \text{ ms}^{-1}$ $1.8 \text{ ms}^{-1} \Rightarrow 0.8 \text{ ms}^{-1}$

Direction change

Obstacle avoidance

S Song and H Geyer, A neural circuitry that emphasizes spinal feedback generates diverse behaviors of human locomotion, *The Journal of Physiology*, 2015.

The proposed model can generate human-like robust walking and diverse locomotion behaviors

The motor patterns of many human locomotion behaviors can be generated by chains of reflexes in the lower layer controller

The model is implemented in MATLAB Simulink

The model can be downloaded from: http://www.cs.cmu.edu/~smsong/nmsModel/nmsModel.html

Our neuromuscular model has been used in different studies

Controllers for prosthetic legs and bipedal robots

BionX (BiOM) [Eilenberg EA, 2010]

EPFL (COMAN) [van der Noot EA, 2015]

GeyerGroup [Schepelmann EA, 2015]

GeyerGroup [Thatte EA, 2015]

Controllers for graphical characters

Simulation testbeds for assistive devices

Delft Univ.

[van Dijk EA, 2013]

Samsung [Seo EA, 2015]

GeyerGroup [Thatte EA, 2015]

Stanford Univ. [Wang EA, 2012]

Utrecht Univ. [Geijtenbeek EA, 2013]

Background

Neuromuscular model of human locomotion

Using the model to control bipedal robots

Z Batts, S Song, and H Geyer, Toward a virtual neuromuscular control for robust walking in bipedal robots, *IEEE IROS*, 2015.

Current robot walking controllers have not yet reached the robustness of human locomotion control

Centralized controllers

[Urata EA, 2012]

[Feng EA, 2014]

Heuristic policy-based controllers

[Raibert EA, 2008]

[Nelson EA, 2012]

The reflex-based neuromuscular control may provide an alternative controller

Virtual neuromuscular control (VNMC)

virtual neuromuscular controller

ATRIAS robot

- human size
- trunk mass: 58 kg, leg mass: 2 kg (x 2)
- no foot
- series elastic actuators (SEA)

With VNMC, ATRIAS can walk on a terrain with height changes of ±20 cm in a 2D simulation environment

The stance leg control is tested on hardware

Other Applications

Nitish Thatte

- Controller and simulation testbed for prosthetic legs

N Thatte and H Geyer, Toward balance recovery with leg prostheses using neuromuscular model control, *IEEE Transactions on Biomedical Engineering*, 2015.

vs. impedance control [Sup EA 2008]

Other Applications

- Simulation testbed for studying foot biomechanics

S Song and H Geyer, The energetic cost of adaptive feet in walking, *IEEE ROBIO*, 2011.

S Song, C LaMontagna, SH Collins, and H Geyer, The effect of foot compliance encoded in the windlass mechanism on the energetics of human walking, *IEEE EMBC*, 2013.

The model can be downloaded from: http://www.cs.cmu.edu/~smsong/nmsModel/nmsModel.html

smsong@cs.cmu.edu