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How does human walk?

S Song, Y Ryoo, and D Hong, Development of an omnidirectional walking engine for
full-sized lightweight humanoid robots, ASME IDETC, 2011.
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Current understanding of human locomotion control

Human locomotion is well described at the behavioral level

Kinematics, dynamics, muscle activations, ...

Not much is understood at the neural circuit level

Spinal and supraspinal control layers
Central pattern generators (CPGs), reflexes, ...
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Simulation studies may provide better understanding

control locomotion EMG
model mechanics robustness
strategy  reflex delay world frame behaviors correlation
Taga et al. 2D, 7 seg CPG 0 all walk 25 Ns BW push, o/
) - - fed
(1991-1998) 6 torques + reflex segments (run, obst) +15 kg at pelvis
Hase et al. 3D 14 seg CPG 0 all +0.5 cm GND
alk, run not reported
(1998-2011) 60 muscles + reflex (5 ms) segments W 4 (+2 cm GND) p
Ogihara et al. 2D 7 seg CPG not quantified
0 none walk -
(2001-2012) I8 muscles + reflex (not good)
Giinther et al. 2D 11 seg reflex slopes, not quantified
0 trunk stand —walk
(2003) 28 muscles | (A-model) 0.07~3 x gravity (not good)
Jo et al. 2D Tseg mSyn stand —walk 15 Ns pushes not quantified
realistic trunk
(2004-2008) 18muscles +reflex (kick, obst) +15 kg at trunk (not bad)
Geyer et al. 2D 7 seg -
reflex realistic trunk walk ground: +=4cm 51%-99%
(2010) 14 muscles
+ robust 3D locomotion
pros cons

+ diverse locomotion behaviors
+ predictive model
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Background

Neuromuscular model of human locomotion

S Song and H Geyer, A neural circuitry that emphasizes spinal feedback generates
diverse behaviors of human locomotion, The Journal of Physiology, 2015.

Using the model to control bipedal robots



Musculoskeletal system
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SE: series elasticity
PE: parallel elasticity
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Neurophysiological transmission delays are modeled

Neural transmission delay Other sources of system delay
15 ms i}. ECC A_m\
| SE 4@—|
F—W—

2.5 ms muscle dynamics

excitation-contraction coupling (ECC): ~35 ms

5 ms

10 ms

10+ 15+15+10=50 ms
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Spinal control consists of reflex modules that embed key

functions essential for legged locomotion

Stance Stance - Swing Swing
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Compliant leg behavior
realizes walking and running

;
:

[Geyer EA, 2003]

Positive force feedback [Desai EA, 2012&2013; Song EA 2013]

generates compliant leg
behavior

Sm —

[Geyer EA, 2006]

Qgt = g — Cgd — Cyv

ds d!
sagittal plane frontal plane

LIPM [Kajita EA, 2001]
SIMBICON [Yin EA, 2007]
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Energy optimal control parameters generates
human-like walking

I -

The neural control is plausible
The neural control predicts normal human locomotion
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Energy optimal walking shows human-like muscle activation

Human Model
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The differences come from ...
- simplified musculoskeletal model

- energy optimal control parameters
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The model can generate diverse locomotion behaviors

Robust walking (+10 cm)

Slope ascend and descend
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The model can generate diverse locomotion behaviors

Speed change
0.8 ms! = 1.8 ms?! 1.8 ms?! = 0.8 ms!
Direction change Obstacle avoidance

A 75cm
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S Song and H Geyer, A neural circuitry that emphasizes spinal feedback generates
diverse behaviors of human locomotion, The Journal of Physiology, 2015.

The proposed model can generate human-like robust walking
and diverse locomotion behaviors

The motor patterns of many human locomotion behaviors can
be generated by chains of reflexes in the lower layer controller

The model is implemented in MATLAB Simulink

The model can be downloaded from:
http://www.cs.cmu.edu/~smsong/nmsModel/nmsModel.html 11/19



Our neuromuscular model has been used in different studies

Controllers for prosthetic legs and bipedal robots

BionX (BiOM) EPFL (COMAN) GeyerGroup GeyerGroup
[Eilenberg EA, 2010] [van der Noot EA, 2015] [Schepelmann EA, 2015] [Thatte EA, 2015]
Simulation testbeds for assistive devices Controllers for graphical characters

\J

- ’ -
Delft Univ. Samsung GeyerGroup Stanford Univ. Utrecht Univ.
[van Dijk EA, 2013] [Seo EA, 2015] [Thatte EA, 2015] [Wang EA, 2012] [Geijtenbeek EA, 2013]
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Background

Neuromuscular model of human locomotion

Using the model to control bipedal robots

Z Batts, S Song, and H Geyer, Toward a virtual neuromuscular control for robust
walking in bipedal robots, IEEE IROS, 2015.



Current robot walking controllers have not yet reached
the robustness of human locomotion control

Centralized controllers Heuristic policy-based controllers

ool L

[Urata EA, 2012] [Feng EA, 2014] [Raibert EA, 2008] [Nelson EA, 2012]
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The reflex-based neuromuscular control may provide
an alternative controller

Virtual neuromuscular control (VNMC)
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ATRIAS

virtual neuromuscular controller

ATRIAS robot
- human size
- trunk mass: 58 kg, leg mass: 2 kg (x 2)
- no foot
- series elastic actuators (SEA)
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With VNMC, ATRIAS can walk on a terrain with
height changes of £20 cm in a 2D simulation environment
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The stance leg control is tested on hardware
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Other Applications

Nitish Thatte

— Controller and simulation testbed for prosthetic legs

N Thatte and H Geyer, Toward balance recovery with leg prostheses using neuromuscular
model control, IEEE Transactions on Biomedical Engineering, 2015.

vs. impedance control [Sup EA 2008]

18/19



Other Applications

— Simulation testbed for studying foot biomechanics

S Song and H Geyer, The energetic cost of adaptive feet in walking, IEEE ROBIO, 2011.

S Song, C LaMontagna, SH Collins, and H Geyer, The effect of foot compliance encoded in
the windlass mechanism on the energetics of human walking, IEEE EMBC, 2013.

PTEX
Arch
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Controller for robotic platforms

The model can be downloaded from:
http://www.cs.cmu.edu/~smsong/nmsModel/nmsModel.html smsong@cs.cmu.edu
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