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Abstract— Following obstacle free paths towards the ball and
avoiding opponents while dribbling are key skills to win soccer
games. These tasks are challenging as the robot’s environment
in soccer games is highly dynamic. Thus, exact plans will
likely become invalid in the future and continuous replanning
is necessary. The robots of the RoboCup Standard Platform
League are equipped with limited computational resources, but
have to perform many parallel tasks with real-time requirements.
Consequently, path planning algorithms have to be fast.

In this paper, we compare two approaches to reduce the
planning time by using a multiresolutional representation or a
log-polar representation of the environment. Both approaches
combine a detailed representation of the vicinity of the robot with
a reasonably short planning time. We evaluated both methods in
different simulated and real-robot tests and compared them to a
uniform grid. Our experiments show that, while multiresolutional
approaches provide paths of similar quality, the computational
efficiency increases immensely.

I. INTRODUCTION

A basic skill for autonomous robots is the ability to plan
collision-free paths. In the humanoid soccer domain, a com-
mon approach is to determine a gait target vector, which
controls the direction and velocity of the robot’s motion,
by incorporating the target position and the position of ob-
stacles. Hence, perceptions are directly mapped to actions.
The mapping may depend on additional factors, like the role
assigned to the robot or the game state, but it does not consider
the (foreseeable) future. This can lead to inefficient obstacle
avoidance, e. g., the robot passes an obstacle on the side closer
to its target just to be blocked by the next obstacle in the same
direction. Fig. 1 shows a typical game situation.

On mobile robot platforms, the computational resources
are often limited due to weight and power constraints. Ac-
cordingly, exact planning even of relatively small problem
instances is not possible in real-time. Moreover, performing
time-consuming planning and committing to a long-term plan
is no option in highly dynamic domains like soccer. Because
of the limited capabilities of the robot’s sensors, it is not
possible to estimate precise obstacle positions. Therefore, the
environment is not only dynamic, but path planning has to
deal with uncertainties.

Thus, we propose to use approximate path planning with
replanning every time a new state of the environment is
perceived. With increasing time since the last perception,
the prediction of the world state becomes more uncertain.
Consequently, planning steps in the far future should be more

Fig. 1. Reactive obstacle avoidance can produce dribbling trajectories close
to opponent field players. Prior planning can reduce the risk of losing ball
possession.

approximative than planning steps that have to be executed
immediately, as the former will likely be invalid at the time
they are executed. In order to reduce the complexity of the
plan representations, we employ multiresolutional approaches,
namely, a local multiresolutional grid and a log-polar grid. In
both representations, the resolution decreases with increasing
distance to the robot.

After discussing work related to ours, we describe the robot
hardware in Sec. III. In Sec. IV we detail the representations
that we compare. We present simulated and real-robot exper-
iments that we performed to evaluate the representations in
Sec.V.

II. RELATED WORK

Our humanoid soccer team NimbRo uses a hierarchical
reactive approach to control the robot’s motion [1]. In con-
trast, our novel approach is based on planning. It considers
the foreseeable future to determine obstacle-free robot paths.
Continuous replanning allows for always considering the most
recent sensory information and for quickly reacting to changes
in the environment.

Many planning-based systems exist in the literature. The
key challenge is the computational complexity of real-time
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planning and execution. Kaelbling and Lozano-Pérez reduce
the complexity of task planning by top-down hierarchical
planning [2]. In their approach, an agent commits to a high-
level plan. The refinement of abstract actions is performed
at the moment an agent reaches them during plan execution.
We follow the same assumption that there is likely a valid
refinement at the time an abstract action has to be concretized,
and that every plan can be reversed without huge costs in case
that there is no such refinement.

A method for resource-saving path planning is the local
multiresolution Cartesian grid [3]. It employs multiple robot-
centered grids with different resolutions, and nests them hier-
archically while connecting them through adjacencies. This
representation resembles our approach to approximate plan
steps with increasing distance to the robot. In addition, it was
designed for soccer robots and, consequently, considers the
present circumstances.

Apart from Cartesian occupancy grid maps [4], polar coor-
dinate based grids can be found for egocentric robot motion
planning in the literature. In this approach, the environment
close to the robot has a high Cartesian resolution that decreases
with the distance, due to the fixed angular resolution. Polar
grids with hyperbolic distance functions are used to represent
infinite radii within a finite number of grid cells. This property
is used to plan long-distance paths in outdoor environments
[5].

Another kind of polar grids are log-polar grids [6]. Like the
local multiresolution grid, this approach emphasizes a more
precise path planning in the robot’s vicinity. Furthermore,
polar grids have the advantage of an easy integration of
obstacles perceived by ultrasonic sensors and cameras.

III. ROBOT PLATFORM

In the RoboCup Standard Platform League (SPL), Nao
robots from Aldebaran Robotics are used [7]. The Nao V3+
edition, used in recent RoboCup competitions, has 21 degrees
of freedom. The environment is perceived by two cameras,
from which only one can be used at a time, and two ultrasonic
sensors. In our system, we continuously switch between the
two cameras, which results in a frame rate of approx. 14 Hz.
The ultrasonic sensors are located at the robot’s chest covering
an angle of approx. 110◦ in front of the robot. The detection
range is from 300mm to 700mm [8].

The ultrasonic sensors measure the distance towards an
obstacle, but not its precise angular position. In contrast, both
cameras provide the exact direction towards an obstacle, but
no precise distance. This leads to uncertainties which have to
be taken into account.

The Nao robot is equipped with a x86 AMD Geode LX 800
CPU running at 500MHz. It has 256MB of RAM and 2GB
of persistent flash memory [9]. The built-in processor has the
advantage of low power consumption, with the tradeoff of low
computational power. Compared to state-of-the-art computer
systems, the resources are rather limited. Hence, a low system
load is an important requirement for the development of new
software components.
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Fig. 3. Obstacles C are modeled as their own radius rO and the radius of
the robot rR with maximum costs and a safety margin rS with decreasing
costs.

Our software is based on the framework of the German
SPL-team B-Human [10]. The framework consists of several
modules executing different tasks. In addition to modules
for, e. g., perception or behavior control, a simulator called
SimRobot is provided. For our tests, we integrated a new path
planning module into the framework.

IV. PATH PLANNING REPRESENTATIONS

At RoboCup 2010, we used reactive target selection and
obstacle avoidance behaviors. Thus, a gait target vector
(vx, vy, vθ), which determines the walking speed in forward,
lateral, and rotational direction, respectively, is determined
merely by direct perceptions and active behaviors. Typical
behaviors are go to ball or avoid obstacle. Going to the ball
leads to a gait target vector towards the estimated ball posi-
tion. Obstacles can be seen as repulsive forces affecting the
direction of the gait target vector in this notion.

Our approach to planning a path to a target introduces a
planning layer between abstract behaviors and motion control.
Waypoints provided by this layer are used to determine the
needed velocities. The abstract behaviors configure the plan-
ner and perceptions are integrated into the planner’s world
representation.

In our implementation, we use the A*-algorithm with a
closed list. We implemented our planner with three different
types of representations: a uniform, a local multiresolution and
a log-polar grid. All representations have in common that their
coordinate system is egocentric, i. e., they are translated and
rotated according to the robot’s pose. In the following section,
we describe our uniform grid representation and detail the two
non-uniform grid representations.

A. Uniform Grid

A commonly used representation of the environment are
uniform grid maps. These discretize the environment into
equally-sized cells. Cells marked as occupied correspond to
obstacles. The perceived obstacles are initialized with their
own radius. The approximate robot radius and a safety margin
with linear decreasing costs are added to the obstacle, before it
is inserted into the map. This simplifies the planning problem
to finding a path for a robot that is reduced to a point and
allows to plan paths through robots standing close to each
other, but avoids the vicinity of obstacles if this is possible
without huge costs. Our obstacle model is depicted in Fig. 3.
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(a) Local multiresolution grid with five levels and 8× 8 cells on each level. (b) Log-polar grid with 16 discrete steps for angle and distance respectively.

Fig. 2. Non-uniform grids allow to cover a given area with multiple orders of magnitude less cells than uniform ones. Depicted are planned paths on a
soccer field (red dots and lines) starting from the robot position in the center of the grid to the ball 3m in front of it. The robot faces towards the positive
x-axis. Occupied cells are marked by black dots.

The center of a grid cell can be interpreted as a node
of a graph with edges to the eight neighboring cell centers.
Therefore, it is possible to use standard graph searches as the
A*-algorithm (cf. [11]).

Due to the simple structure of the grid, there is no need
to explicitly model the cell connectivity. Furthermore, the
cost calculation per step is reduced to two cases: Diagonal
or straight steps. Because of the simplicity, it can be easily
implemented, and arbitrary environments can be represented
equally accurate, up to a freely chosen resolution. This makes
uniform grids a good choice for many applications. A major
disadvantage is the computational complexity, which does not
scale well with increasing grid size. Especially in environ-
ments with special characteristics, like a soccer field, more
efficient representations are possible.

B. Local Multiresolution Grid

An efficient path planning algorithm is local multiresolution
path planning [3]. Besides the computational advantages of
multiresolution, the uncertainty of local sensing and of the
own and the opponent’s movements are implicitly taken into
account with an increasing cell size.

The grid consists of multiple robot-centered grids with
different resolutions embedded into each other. With increas-
ing distance to the robot, the grid resolution decreases. This
models the uncertainties caused by local sensing with only
relative precision and by the dynamic environment. Local mul-
tiresolution planning utilizes the fact that the world changes
continuously while the agents of the own and the opponent
team move. Hence, it is not worthwhile to make detailed plans
for the far-future.

More formally, the environment is discretized into a square
M ×M grid. Recursively, a grid is embedded into the inner
part

[
M
4 : 3M

4

]
×
[
M
4 : 3M

4

]
of the grid at the next coarser

level. The cell area of the inner grid is a quarter of the cell
area of the outer grid. In order to cover the same area as

a uniform N × N grid, only (log2(N/M) + 1)M2 cells are
necessary.

Fig. 2a shows an 8 × 8 local multiresolution grid with a
minimum cell size of 10 cm that covers an area of 163.84m2

with 256 cells using five grid levels. In contrast, a uniform
grid covering the same area consists of 16,384 cells.

The neighborhood of an inner grid cell consists of eight
neighbors, similar to the neighborhood of the uniform grid.
However, the cells at the border to the lower-level grid have
seven neighbors at the edges and six neighbors at the corner.
Likewise, the grid cells at the border to the higher-level grid
have nine neighbors and eight neighbors, respectively. In our
implementation, the connections between two neighbors are
encoded as edges of a graph.

Incorporating obstacles into the grid is analog to the uniform
grid. But, since the cell size is not uniform, an obstacle in the
lower hierarchy levels may be completely covered by just one
cell or by more than one if it is close to the cell boundary.
In this case, the costs of this obstacle are distributed over the
covered cells. Furthermore, the costs of obstacles in larger
cells are reduced because, presumably, not the complete cell
is blocked by it and for this reason the cell is still partially
traversable.

For path planning with the A*-algorithm, the costs of each
step are calculated by means of the Euclidean distance of the
centers of both cells and the added costs of the target cell.
The employed heuristic is the distance from the current grid
cell to the target.

The advantages of this representation are the low require-
ments on the robot’s memory and on computational power.
Moreover, uncertainties occurring in dynamic environments
are considered by the increasing cell size with increasing
distance from the robot.
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C. Log-Polar Grid
Although our soccer robots are able to walk omnidirec-

tionally, the best speed can be achieved in forward direction.
Furthermore, the robot’s sensing capabilities are designed for
perceiving the environment in front of the robot. Accordingly,
walking in forward direction towards the target, i. e., to the
next waypoint of the plan, is preferred for long distances.
On a soccer field with only smaller obstacles, it is likely
that relatively long straight segments are often part of the
plans. Because of our grid representations being egocentric,
a target in front of the robot is on the positive x-axis. As
this axis is a cell boundary in every resolution, this case is
not well supported by the local multiresolution grid. Due to
imprecise measurements of the target and inaccurate motion
execution, distant targets in a uniform grid presumably change
their respective cells, too.

This leads us to a grid representation that fits the robot’s
motion and sensing characteristics in a more efficient way.
In contrast to the Cartesian grid representations, a polar grid
representation provides a straight path towards targets in front
of the robot if there are no obstacles. Additionally, sensory
information relevant to path planning is initially provided
in polar coordinates on our robots. Ultrasonic measurements
are represented as a distance and an apex angle, and visual
perceptions are estimated distances and directions to obstacles.
Both can be easily incorporated in a grid representation in
polar coordinates.

In polar coordinates, the environment is represented as an
angle θ and a distance ρ with regard to the robot’s pose, written
as a tuple (θ, ρ). In our coordinate system, the robot faces in
the direction of the positive x-axis. We discretize the angular
component θ into T equally sized partitions. The first partition
is chosen in a way that the positive x-axis becomes the angle
bisector of the angle represented by this partition. Hence, small
angular inaccuracies in the perception or gait execution will
not change the grid cell of a waypoint or the target.

To reach the implicit consideration of uncertainties and
computational advantages of the multiresolutional grid, the
cells of our polar grid grow exponentially with the distance.
In order to achieve this, the logarithm of the distance to the
robot is partitioned. To define a minimal cell size and still
achieve a reasonable growth until the maximum radius, we
use a slightly shifted logarithm to avoid the initial strong
slope of the logarithm. The calculations to determine the polar
coordinates (θ, ρ) of a point (x, y) in Cartesian coordinates,
and the corresponding discretized grid cell (r, t) are

ρ = logb

((√
x2 + y2(b− 1)

l

)
+ 1

)
,

θ = arctan(
y

x
),

(r, t) =

(
bρc, b( T

2π
)θ + 0.5c

)
,

where b is the base of the logarithm, l is the minimal cell size
and T the number of angular partitions.

The inverse operation therefore is described by

(x, y) =

(
cos(θ)
sin(θ)

)(
(br+0.5 − 1) ∗ l

b− 1

)
.

In our implementation, we use a base of b = 1.1789 and
a minimal cell size of l = 100mm. With 16 cell rings, we
reach a maximum radius of 7211mm, which is sufficient to
plan paths for any two points within the SPL field boundaries.
We use 16 steps for the angular component as well, leading
to 256 cells in total, the same number of grid cells used in
the local multiresolution grid. The resulting grid is depicted
in Fig. 2b.

In the polar grid representation, the obstacles are treated
analogously to the local multiresolution grid.

The costs of each step are calculated by means of the
Euclidean distance of the centers of both cells, as in the local
multiresolution grid. The heuristic is computed likewise. The
cell distances are precalculated to decrease the computational
complexity. Thus, single node expansions of a planner are not
more costly in this representation than in uniform grids.

D. Implementation Details

In our 2D planning implementation, we neglect the ori-
entation and velocities of the robot for efficiency reasons.
Accordingly, due to the fast replanning, sudden changes of the
gait target vector are possible. To avoid this, we introduce a
virtual obstacle behind the robot, which represents its starting
speed (Fig. 4). The polar grid representation employs a half
circle with cost interpolation between a minimum at the edges
and a maximum at the midway of the circle segment. In
contrast, the Cartesian grid representations use a rectangle
having the same characteristic. When the robot is moving,
this obstacle is opposed to the gait target vector with costs
corresponding to the scalar value of the velocity.

To generate motion commands for a planned path, the
planning module sends the next waypoint on the path to the
motion control in every execution cycle. Replanning is per-
formed if the robot’s movement exceeds a threshold. Between
planning calls, the waypoint is adjusted using odometry data.
The resulting gait target vector is a weighted sum of position
of and angle to the waypoint relative to the robot.

V. EVALUATION

We evaluated our planning algorithms in simulation and on
a Nao robot. In order to evaluate the quality of the different
approaches, we investigated their computing time as well as
the efficiency of the planned paths.

A. Planning Time & Node Expansions

The computing time of the three planners was measured in
the simulator and on a Nao robot with regard to four different
test cases, representing all possible constellations on the soccer
field. Those are, 1. that no obstacle is detected, 2. obstacles
are detected either in the ultrasonic sensor measurements or 3.
through cameras, and 4. obstacles are captured by both, ultra-
sonic sensors and cameras. In every test case, the target was
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Fig. 4. An artificial obstacle leading to preference of paths towards the
robot’s current walking direction to avoid sudden directional changes. Cells
with higher costs are darker. The red arrow is the gait target vector (left:
Cartesian grid, right: polar grid).

Fig. 5. Field configuration used in the timing tests with camera support.
The planning is performed on the red circled robot. The orange ball marks
the target.

3000mm in front of the robot and, according to each test case,
the obstacle positions differ. The field configuration for test
case four, in which obstacles are detected through ultrasonic
sensors and cameras, is depicted in Fig. 5. In order to avoid an
influence of noisy sensor data and for a better reproducibility,
we set the egocentric obstacle positions manually when testing
on the real robot. The measured execution time was averaged
over 1000 runs.

The results of the tests on the Nao robot are shown in
Tab. I. Overall, the multiresolutional approaches outperform
the uniform grid planner clearly. Moreover, there are dif-
ferences between the local multiresolution and the log-polar
grid, as the former has a lower computational complexity. The
results show that we should be able to perform path planning
in real-time, while executing other required software modules.

In addition to measuring the computing time, we counted
the number of node expansions performed by the A*-
algorithm. The node expansions for the four test cases are
shown in Tab. II. As depicted in Fig. 6, the A*-algorithm
expands less nodes in the multiresolutional approaches than in
the uniform approach. Even though fewer nodes are expanded
in the log-polar grid, the planning time is slightly higher

TABLE I
PLANNING TIME (IN MILLISECONDS) ON THE NAO (UG: UNIFORM GRID,

LMG: LOCAL MULTIRESOLUTION GRID, LPG: LOG-POLAR GRID).

test case UG (100%) LMG LPG
no obstacles 3.2 0.1 (3%) 0.3 (9%)

ultrasonic 6.3 1.5 (24%) 1.8 (29%)
camera 7.9 1.6 (20%) 3.0 (38%)

ultrasonic & camera 8.0 2.0 (25%) 3.1 (39%)

TABLE II
NUMBER OF EXPANDED NODES OF AN A?-SEARCH (UG: UNIFORM GRID,

LMG: LOCAL MULTIRESOLUTION GRID, LPG: LOG-POLAR GRID).

test case UG LMG LPG
no obstacles 211 97 75

ultrasonic 1503 241 121
camera 1753 280 153

ultrasonic & camera 1367 239 207

than in the local multiresolution grid. This is caused by the
calculation of the logarithm in the coordinate conversion.

B. Path Efficiency

Resource efficiency is only one important aspect of real-
time path planning. The main aspect is to find a low-cost path
from the start point to a target. To evaluate the quality of
the resulting plan, we let the robot walk from random start
poses to random targets in simulation. Each start and target
pair is used with each of the three planners. The lengths of
the resulting trajectories and the required time to execute the
plan were measured during this experiment. We evaluated the
path efficiency in two test cases, namely without or with static
robot obstacles. In the latter case, the field configuration is
comparable to a SPL soccer match. The measured lengths are
normalized with the length of the corresponding trajectory,
achieved by following a path planned with the uniform grid.
The path lengths for both test cases are shown in Tab. III.

In the test case without obstacles, the observed difference
between the path lengths is not larger than the standard
deviation. The second test with obstacles shows that the
three different representations lead to similar path lengths.
Nevertheless, the log-polar paths are slightly longer and show
a higher deviation.

C. Analysis of Real-Robot Paths

In order to test the applicability of our planning approaches
in soccer matches, we performed 10 test runs with every grid
type on the real robot. The field configuration included four

TABLE III
PATH EFFICIENCY OF THE PATH PLANNING APPROACHES. THE PATH

LENGTHS ARE NORMALIZED TO THE LENGTH OF THE WALKING

TRAJECTORY WHILE USING THE UNIFORM GRID FOR PLANNING.

local multiresolution log-polar
mean sigma mean sigma

no obstacles 0.98 0.03 1.03 0.05
with obstacles 0.99 0.04 1.08 0.11
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(a) Uniform Grid (b) Local Multiresolution Grid (c) Log-polar grid

Fig. 6. Node expansions performed by the A*-algorithm in the three grids (red lines). The search expands many more cells in the uniform grid than in the
non-uniform grids. Occupied cells are marked with blue dots. The target cell is depicted by an orange dot.

robots positioned close to the center line of the soccer field. We
let the robot walk between two target points on opposing sides
of the field. The obstacles were perceived using ultrasonic
sensors and the cameras. During the tests, we measured the
time the robot needed to reach the target points.

As a baseline, the execution time of the straight, obstacle-
free path was measured to be 22 s for all representations. The
average walking time for both multiresolutional representa-
tions was about 37 s. The maximal time measured was 50 s.
Repeated re-decisions of the planner due to noisy perceptions
caused a motion stall in that case.

The uniform grid path planner, though being sufficiently
fast in its average computing time, slowed down the cognition
process immensely in more complex situations. This led to
collisions and localization errors. Thus, no meaningful data
about the paths in the uniform grid could be collected. While
employing the path planning in both non-uniform representa-
tions, we observed no slow down of the computation.

Entailed by the larger cell size in the further distance of
the robot, the resulting paths of the multiresolutional planners
were mostly avoiding the robot obstacles well in advance.
Only in cases where robots were perceived late, paths through
narrow gaps between the robots were planned.

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluated two approaches to path planning
which are applicable to soccer robots with relatively low
computational power. Both approaches make use of properties
found in the soccer domain. An important property is the
lack of static obstacles in the environment of the soccer field.
For this reason, it allows planning at a coarse resolution
for regions which are far from the robot. Furthermore, one
can expect to find a valid plan refinement in order to avoid
dynamic obstacles while approaching them. Consequently, our
grid representations employ a decreasing resolution for distant
parts of the environment.

As virtually all obstacles are dynamic, it is likely that the
situation in distant cells will have changed at the time a plan
refinement will be necessary. Therefore, we are convinced
that approximate planning with continuous and fast replanning

is superior to slower exact planning. Our experiments show
that while multiresolution approaches provide paths of similar
quality to full-resolution planning, the computational effi-
ciency increases immensely. Moreover, with the non-uniform
grid representations, the path planning can be performed two to
four times faster than with a uniform grid, in average. The real-
robot experiments reveal that this speedup facilitates real-time
planning on the Nao. On our website1, we provide modules
of our planning algorithms compatible with the framework
released by the B-Human team after RoboCup 2010.

In future work, we aim at integrating more robust robot
perception. Furthermore, the estimation of possible future
obstacle positions is likely to improve plans with regard to
the need of necessary replanning.
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