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Many New Application Areas for Robots

Self-driving cars
Logistics

Agriculture, mining
Collaborative production
Personal assistance
Space, search & rescue

Healthcare

Toys

Need more cognitive abilities!



Some of our Cognitive Robots

Equipped with numerous sensors and actuators

Complex demonstration scenarios

Domestic service

3 UNIVERS TATu@



Some more of our Cognitive Robots

Equipped with numerous sensors and actuators

Complex demonstration scenarios

Phenotyping Human-robot collaboration



Computer Vision

3D Scene
2D Image

\ /

Pixel Matrix Computer Vision
- Objects, surfaces

217 191 252 255 239
1e o4 a1 121 13 - Geometry, 3D pose, shape
179 106 136 85 41
115 129 83 112 67 - Appearance, material properties
94 114 105 111 89

- Semantics
Computer Vision is an ill-posed inverse problem:

Many 3D scenes yield the same 2D image

=> Additional constraints (knowledge about world) required (Geiger] u@



Multi-view Plant Reconstruction vy

PHENOROB

14x Nikon Z7 DSLR
camera

45 MP
64—-25600 I1SO
24-70 mm Lens




Multi-view Plant Reconstruction @ ﬂ ﬂ m

Recovered camera poses
and semi-dense point
cloud through Multi-
View-Stereo

UNIVERSITAT m

[Rosu 2022]



Multi-view Plant Reconstruction L T

Geometry represented as Signed Distance Field (SDF)
Color represented as a direction-dependent color field
Transform SDF into radiance [1] and train similar to NeRF

Geometry Color at the zero level-set of the SDF

[ROSU 2022] [1] Wang et al. NeuS: Learning Neural Implicit Surfaces by Volume u@
Rendering for Multi-View Reconstruction, NeurlPS 2021. UNIVERSITAT



Multi-view Plant Reconstruction L T

= InstantNGP with a
Multiresolution Hash
Encoding [2]

= Small MLPs for SDF
and color

w 25 M parameters

= 1 htraining on Nvidia
RTX 3090 GPU

[2] Miller et al. Instant Neural Graphics
Primitives with a Multiresolution Hash
Encoding ACM Transactions on Graphics
(SIGGRAPH 2022)

Surface
normals

UNIVERSITAT I8 @

[Rosu 2022]
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Multi-view Plant Reconstruction

InstantNGP with a
Multiresolution Hash
Encoding [2]

Small MLPs for SDF
and color

25 M parameters

1 h training on Nvidia
RTX 3090 GPU

[2] Miller et al. Instant Neural Graphics
Primitives with a Multiresolution Hash
Encoding ACM Transactions on Graphics
(SIGGRAPH 2022)

Surface | .

normals -
[Rosu 2022]

PHENOROB



Multi-view Plant Reconstruction vy

PHENOROB

Rendered novel views

UNIVERSITAT @

H [Rosu 2022]



Plant Reconstruction over Multiple Days XY E—

Volumetric renders through
SDF + color

v [Rosu 2022] L




Plant Reconstruction over Multiple Days F

W,

PHENOROB

>

Predicted depth

13 [Rosu 2022] u@



High Geometric and Texture Detail L -

= Marching cubes on the SDF to recover mesh
= Learnable texture to match color images
= Rendering in real time

Textured mesh Mesh normal vector

14 [Rosu 2022] UNIVERSITAT% ‘NS ‘




Reconstruction of Plant Structure

Identify individual plants PhenodD data set
Segment plant organ instances
Model the plant as a structural graph

Establishes a plant coordinate system )/
Associate instances over growth stages (
Model appearance, material properties, etc.

This creates a Digital Twin of the plant X )

Basis for plant-science research

Basis for targeted interaction with the plant, e.g. contact measurements or
harvesting => we must track it in real time while interacting with the plant

B [Schunck et al. PLoS ONE 16(8): €0256340, 2021] u@



Deep Learning

Learning
layered
represen-
tations

Compositionality

[Schulz;
Behnke,
Kl 2012]
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labels

Penguin

Kangaroo

increasingly
complex features

> =)
®

[ " —
®

unsupervised learning

supervised learning




Neural Abstraction Pyramid

A

17

Abstract features

- Data-driven - Model-driven
- Analysis - Synthesis
- Feature extraction oo - Feature expansion

Signals

<4—P - Grouping - Competition - Completion

[Behnke, Rojas, IICNN 1998] [Behnke, LNCS 2766, 2003]

LIS
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Iterative Image Interpretation

Interpret most obvious parts first

Use partial interpretation as context to iteratively resolve local ambiguities

et
L0

[Behnke, Rojas, IJCNN 1998] [Behnke, LNCS 2766, 2003]



Neural Abstraction Pyramid for
Object-class Segmentation of RGB-D Video

Recursive computation is efficient for temporal integration

Neural Abstraction Pyramid

P >

l H(0,0) H H(1,0)
t t

lPreprocess‘ IPreprocess| [---]
t t

Input(0) Input(1) Input(t) Input(t+T)
’ Output(t) s

19 [Pavel, Schulz, Behnke, Neural Networks 2017]



The Data Problem

Deep Learning in robotics (still) suffers from shortage of available examples
We address this problem in two ways:

Generating data:
Automatic data capture,
online mesh databases,
scene synthesis

Improving generalization:
Object-centered models, \ g
deformable registration, =y
transfer learning,
semi-supervised learning




RGB-D Object Recognition and Pose Estimation

Transfer learning from large-scale data sets

Color

21

Masked color

Colorized depth

Pre-trained CNN

Pre-trained CNN

—

HE BTE

llsvm

Category

“SVM

Instance

“SVR

Pose

[Schwarz, Schulz, Behnke, ICRA2015]

LIS
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Canonical View, Colorization

Objects viewed from different elevation

Render canonical view

Colorization based on distance from center vertical

n

[Schwarz, Schulz, Behnke, ICRA2015]




Pretrained Features Disentangle Data

w t-SNE
embedding

[Schwarz, Schulz,
Behnke ICRA2015]

23

classes (CNN)

classes (PHOW)

|/

UNIVERSITAT I8

v
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Recognition Accuracy

Improved both category and instance recognition

Category Accuracy (%)

Instance Accuracy (%)

Method RGB RGB-D RGB RGB-D
Lai et al. [1] 74.3+3.3 81.9+28 59.3
Bo et al. [2] 824 1+ 3.1 87.b129 92.1
PHOWI3] 80.2+1.8 — 62.8
Ours 831+20 88.3+15 92.0
Ours 831+20 894+13 92.0
Confusion: 50
z 0s 1: pitcher / coffe mug

Category

[§9)
W

25 50
Prediction

0.6

0.4

0.2

0

[Schwarz, Schulz, Behnke, ICRA2015]

/ sponge
———
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Amazon Robotics Challenge 0

amazon robotIcs

Storing and picking of items LENGE

Dual-arm robotic system

Sensor setup

Vacuum cleaner

6 DOF UR5 arm

3 DOF endeffector

Storage system

Industrial scales : _ .
Belt drive Suction hose

Bendable finger 2 DOF
[Schwarz et al. ICRA 2018] pinch finger I
0 [Amazon]

Suction cup

25 L u@
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Object Capture and Scene Rendering

Turntable + DLSR camera Insertion in complex annotated scenes

[Schwarz et al. ICRA 2018]




Semantic Segmentation and Grasp Pose Estimation

Semantic segmentation using RefineNet [Lin et al. CVPR 2017]

Grasp positions in segment centers

bronze_wire_cup

irish_spring_soap
conf: 0.811500

playing_cards

w_aquarium_gravel
crayons

reynolds_wrap
conf: 0.836467

paper_towels
conf: 0.903645

white_facecloth
conf: 0.895212

hand_weight

robots_everywhere
conf: 0.930464

27 [Schwarz et al. ICRA 2018]

conf: 0.749401

& conf: 0.813761

conf: 0.891001

conf: 0.422604 .

conf: 0.928119 I i

mouse_traps

—~conf: 0.921731

windex
conf: 0.861246

q—tips_500
conf: 0.475015

fiskars_scissors
conf: 0.831069

ice_cube_tray
conf: 0.976856

UNIVERSITAT m
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Object Pose Estimation

. Normalization

Cut out individual
segments

Use upper layer of
RefineNet as input

Predict pose
coordinates

Predicted pose

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018]



Dense Convolutional 6D Object Pose Estimation

Extension of PoseCNN [Xiang et al. RSS 2018]
Dense prediction of object center and orientation, without cutting out

. . . .
} &= Feature Extraction ==———plg=Embedding=—] === Classification / Regression  memp |

Segmentation

m
Center
direction X  direction Y distance

64 #classes

A RGB Image

sy

Convolution
' Max Pooling | +RelU
Convolution
Deconvolution
‘ Addition ' Hough Voting

Tk w " V'l
Center s 4
‘ l
\ o Translation
.
»
—  ROtaETION 5
] Prediction error
selection of a
Orlenuloninorm

- result quaternion

4-dim quaternion for each object
prediction

56
256 #classes

30 [Capellen et al., VISAPP 2020]



Self-supervised Learning

Special case of unsupervised learning
Learning to represent the world in a non task-specific way

Learning predictive models for planning and control

Define a pretext task without labels that needs some understanding of the data,

e.g.
Predict the future from the past
Fill-in the gaps %

Contrastive methods

Use learned representation
to quickly learn downstream task

Input: Unlabled images

Supervised learning
. . Downstream task
Reinforcement learning LIS
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Self-Supervised Surface Descriptor Learning

Feature descriptor should be constant under different transformations, viewing
angles, and environmental effects such as lighting changes

Descriptor should be unique to facilitate matching across different frames or
representations

Learn dense features using a contrastive loss

Known correspondences Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019] wwsmu@



Descriptors as Texture on Object Surfaces

Learned feature channels used as textures for 3D object models

@3 A
lllU:A

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Used for 6D object pose estimation

UNIVERSITAT
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Abstract Object Registration

Compare rendered and actual scene in feature space
Adapt model pose by gradient descent

Feature-Annotated
Mesh Database Mesh Database

. -1 Abstraction . ’
A ' Module A .

Pose P Abstract Scene Ag

Differentiable
Renderer
Abstraction | —

Module

[Periyasamy, Schwarz,
Behnke Humanoids 2019]

Observed Scene I

Abstract Scene Ay

Loss L

UNIVERSITAT @
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Registration Examples

[Periyasamy, Schwarz, Behnke Humanoids 2019]
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Learning from Synthetic Scenes

Cluttered arrangements from 3D meshes

Photorealistic scenes with randomized
material and lighting including ground truth

For online learning & render-and-compare
Semantic segmentation on YCB Video Dataset
Close to real-data accuracy
Improves segmentation of real data

Generated Ground Truth Channels

Depth

[Schwarz and Behnke, ICRA 2020]




T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

Extends DETR: End-to-end object detection with transformers [carion et al. ECCV 2020]
End-to-end differentiable pipeline for 6D object pose estimation

HxW H W H W
S 2048X 35X 35 256X ( 32*32)
Transformer
)I|| > encoder-
decoder
CNN features

Encoder self-attention Object detections and decoder attention

= s
| G

37 [Amini et al. GCPR 2021] o



Multi-Object 6D Pose Estimation using Keypoint Regression

translation,

keypoints

"

Object Queries

N

RotEst =2 R

Positional
Encoding

1
1 i ! i
| Backbone : i i Predicti !
ediction Heads i
i H x W 256 ( i i i i
—— I
: Tt ! : : fr]gsgia?i%)il, :
: ! ! : keypoints wd : RotEst R
! 1 1 | 1 [
i i i Layer 6 i i class, box i
! i ! ! 1 translation, | |
e ] E ! T ! d keypoints —-‘—)l. RotEst I—)I R |
| | AN i
i \i T AN o | i
! : ! ! object !
i . Layer 1 Y |
I
i i i i | class, box | |
! Il 1 ! !
Pl ! i T
! N . !




RoboCup 2022 in Bangkok




Transfer Learning for Visual Perception

Encoder_decoder network e

Two outputs 3 % é
Object detection 0 3 3
Semantic segmentation 5 T BT N7

Location-dependent bias iz |

location-dependent bias

Width/4 x Height/4

5
=
=]
(o]
Hﬁ E Segmentation Head
=

Detects objects that are hard to
recognize for humans

Robust to lighting changes

40 [Rodriguez et al. RoboCup 2019] u@



Learning Omnidirectional Gait from Scratch

State includes joint positions and velocities, robot orientation, robot speed
Actions are increments of joint positions
Simple reward structure

Velocity tracking

Pose regularization
Not falling

Stat Pol Y TPD

= otate olicy Actions argets PD
I,.1 — »( + »

Yp S o %) O

qd Controllers

[Rodriguez and Behnke, ICRA 2021]
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Learning Curriculum

= Start with small velocities

= Increase range of sampled velocities

[Rodriguez and Behnke, ICRA 2021]

v

UNIVERSITAT I8
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Learned Omnidirectional Gait

= Target velocity can be changed continuously

Our locomotion controller is able to:
Walk Forward

Uy = 0.6im/s
vy = 0.0m/s
w, = 0.0rad/s

[Rodriguez and Behnke, ICRA 2021]

LIS
UNIVERSITAT EIITI



Learning Mapless Humanoid Navigation

= Visual (RGB images) and nonvisual observations to learn a control policy and an
environment dynamics model

= Anticipate terminal states of success and failure

Training Inference
-0
O¢ O¢

-1 @
~-l-@ \Y
e L=

44 [Brandenburger et al. IROS 2021]

at

% L Ot+1
Zt+1

> W1
—

LIS
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Learning Mapless Humanoid Navigation

[Brandenburger et al. IROS 2021]



Learning of Hierarchical Representations for Prediction

Local learning module

f

Spatio-
temporal

AN

Hidden
representation
H

pooling

Transformation T

=\

-+
[y
-+
=3
+

=

t-

t Jt+1

-- Contents S

= 1
Relational

autoencoder /<>* /\‘

c

o
Input I -—_g o —

5
t-1 t t+1 t t

Autoencoder

Reconstruction

_'L_



Learning of Hierarchical Representations for Prediction

Coarser, more abstract predictions for longer time horizons in higher layers

Layer 2

Layer 1

Layer O —_—
time
Past Future




MSPred: Video Prediction at Multiple Spatio-Temporal Scales

Coarser, more abstract predictions for longer time horizons in higher layers

Predict image itself, human pose joint keypoints, and human body position

— Feature maps flow
= =LSTM states

@ Channelwise concat

48 [Villar-Corrales et al., BMVC 2022] o



MSPred: Video Prediction at Multiple Spatio-Temporal Scales

= Coarser, more abstract predictions for longer time horizons in higher layers

= Predict image itself, human pose joint keypoints, and human body position

Frame 1 Frame 1 Frame 1

49 [Villar-Corrales et al., BMVC 2022]

_'_-m-__
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Depth-layered Models for Prediction

Modelling occlusions

T > >>>>>> > >
BaCkground S e e e e e e e e e e ot

T <— &< <
Foreground | S EiSiSis

Alphi? - v v v v
Occlusion-aware 1 _ a(FG) + (1 — a)BG
projection ' ' + + "
Image B T

<«— Spatial dimension —
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Local Frequency Domain Transformer Networks: Motion Segmentation

pnase Dift - | ocal Phase difference in frequency domain

|miLFT- modified inverse Local Fast Fourier Transform

\ ® Hadamard product
Phaseiddd » Local Entry-wise complex product
[ ' e Element-wise subtraction
69 Element-wise addiction
Gain
/ N\ @ Sigmoid-like nonlinearity
F e Update> T Model LFt - Local Fast Fourier Transform

4

[Farazi et al.,

IJCNN2021] ﬂ@




Local Frequency Domain Transformer Networks: Motion Segmentation

Unsupervised foreground/background segmentation

-
el
-
oooo
-
-

Motion estimation and prediction for foreground

TN i;‘&‘a»'s‘q N "f"'*"* &:\ s9| Segsl 3gsofieTs s [iets o i
f I ’.'l!' M'-'\ M Y\“ V\."Mf‘";v{‘\'.‘g."‘.\':‘g“'v‘
A o N N N
‘\: ;\‘; \\'7 = ;\‘-7 = \".7 = \".7 = == ;\3.7' ;\'.7 S ;\-f
BG e | ==
LT on FG 2% e —————

Prediction 3
Prediction using previous network output § =

Correction [

52 [Farazi et al., JCNN2021]
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Hierarchical Object Discovery trough Motion Segmentation

Slmultaneous obJect modeling and motion segmentatlon

!zllh _.4

Inference of a
segment
hierarchy

= [ left chair &
backgi: und

right chair &
background

o container &
background

left back- right
chair ground  chair
¥y

[Stickler, Behnke: |JCAI 201 3]




Fourier-based Video Prediction through Relational Object Motion

Model relative object movement
— (5] |

fﬁ 1) ri] '

Observed system Graph of object Motion
relations primitives
; i
Star, planet, moon data set AR |
Infer object relation graph
Results
® = 2 =« e =
- - -
e o o
GT ours GRU Object relation graph
[Mosbach and Behnke, ESANN 2021] UNIVE
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Hierarchical Planning in the Now

= Use predicted state on different layers of abstraction for planning

= Coarse-to-fine planning makes actions more concrete as they come closer to
execution

= Plan consists of few steps on each layer

abstract actions

L;
Lirrirrr 2
L TTTTTTT
L, - concrete actions

time

NOW




Centauro Robot

CENTAURO

Serial elastic actuators
42 main DoFs

Schunk hand

3D laser

RGB-D camera

Color cameras

Two GPU PCs

| [Tsagarakis et al., IT 2017]

. * s g -
) " > - k) Sl ) < = o
- P ) - [ ST x RN Z NS = _—
| f ! - = = N ——
" = i . .
2 . i) 2 i - x S N Lo ]
UNIVERSITAT @




Hybrid Driving-Stepping Locomotion Planning: Abstraction

Planning in the here and now

Far-away details are abstracted away

-------

[Klamt and Behnke, IROS 2017, ICRA 2018]



Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level Map Resolution Map Features Robot Representation Action Semantics
e 25cm e Height e Individual
e 64 orient. Foot Actions
e 50cm e Height e Foot Pair
e 32 orient. e Height Difference Actions
e 10cm e Height e Whole Robot
e 16 orient. e Height Difference Actions
e Terrain Class

o8 [Klamt and Behnke, IROS 2017, ICRA 2018] WRW"@
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Learning Cost Functions of Abstract Representations

Planning problem

[Klamt and Behnke, ICRA 2019]



Abstraction CNN

Predict feasibility and costs of local detailed planning

3@ 36@ 40@  1960+3
1@ 2828 11%11 7x7 500
7272 72 x 72 72 X 72 28@ 34@ 38@ 150
59x59 13x13 9x9 50 costs
° XX,
E BN N I
~ ~_ A T \_/"
Conv 1 Conv 2 Conv 3 Conv.4 Conv.5 © ~ ©
3x3 7x7 14x14  4x4  38x3 2R 29 29
|| EE B Padding=1  Padding=3 +max  +max 8 o 3 8° D
Xgoal pooling pooling ° \/ X
Pocsl feasibility
goal

Training data

» generated with random obstacles, walls, staircases

costs and feasibility from detailed A*-planner
+ ~250.000 tasks

[Klamt and Behnke, ICRA 2019] e "@



Learned Cost Function: Abstraction Quality

CNN predicts feasibility and costs better than manually tuned geometric

heuristics

61

S

r_';>

=

mndom simulated real
feasibility correct, man.tuned | 79.27%  65.35% 69.77%
Error(C, man.tuned) 0.057 0.021 0.103
feasibility correct, CNN 95.04%  96.69% 92.62%
Error(C, cnN) 0.027 0.013 0.081

[Klamt and Behnke, ICRA 2019]



Experiments - Planning Performance

Learned heuristics accelerates planning,

: : . Ceometric heuristi
without increasing path costs much eometric heuristic

10% :

E 140
5 T oL - 120
- o g 100
Vi) v) 4 E F
> 10 F \
£ N
o
g5 wo|
o S
V) g | 10 1
1.0 1.25 2.0
VI W
Abstract representation
iy - heuristic
10° £ :
1 B — 140
=g | 120
Iy Iy -+ _ué = 100
& 10 L
e £ =
C
& 1001
8 g
| | 10 1|

1.0 1.25 2.0

Heuristic preprocessing: 239 sec

H Path costs [%)]

B Path costs [%]

62 [Klamt and Behnke, ICRA 2019] P



CENTAURO Evaluation @ KHG: Locomotion Tasks

[Klamt et al. RAM 2019]
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Transfer of Manipulation Skills

Knowledge
Transfer

[Rodriguez and Behnke ICRA 2018]

UNIVERSITAT




Learning a Latent Shape Space

Non-rigid registration of instances and canonical model

Principal component analysis of deformations

Traini
Sla?:;lrz Calculate Latent (shape) Space
Defromations
w T =C+GW; Design Matrix
Canonical _
Model Y = E‘ a
[ ] =
T =C+GW, \ wy 2
! S
Wy | rpcaem  ©
E
| —»
m Ti=C+GW, ; £
=]
/ g
") 3
¢ N
Tr=C+GWr C-
First Principal Component
65 [Rodriguez and Behnke ICRA 2018]



Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]



Shape-aware Non-rigid Registration

m Partial view of novel instance

o m Deformed canonical model
::.:_'_:.'ll-h LR -J‘.'.'.: .g:':' am®
" N Ao
-_l' : . w see v, e - a"-‘.._-_-: .
s e AR ) Ve
[ ] Ir e P — “!g',‘.:;l -
'..'."‘.‘.".\';:5,_ '-"-:“-_-::1 %+
Erc T e s SR
S i S
T Bea | Ta
NN T 6

[Rodriguez and Behnke ICRA 2018] u@



Shape-aware Registration for Grasp Transfer

Full point cloud

....... .-.? ..* Tl
r:.'.“ ~.'. .‘ :. ."
< . 2u " 5 as .-.J
S ... ..- ... o -~ .
o .. .ﬂ.'. - }
.- :".l; -
ve e
Gty
l.. L]

Partial view

P
ﬂ:‘!'m:'1 e

piaiae,

]
1

68 [Rodriguez and Behnke ICRA 2018]
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Collision-aware Motion Generation

Constrained Trajectory Optimization:
Collision avoidance
Joint limits
Time minimization

Torque optimization

[Pavlichenko et al., IROS 2017]

UNIVERSITAT @



Grasping an Unknown Power Drill and Fastening Screws
e - ‘




CENTAURO: Complex Manipulation Tasks

[Klamt et al. RAM 2019]

1N
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Direct functional grasps not always feasible

Regrasping for Functional Grasp

Pick up object with support hand, such that it can be grasped in a functional way

([Semantic Segmentation)
and Pose Estimation

?l ¢
ooy
| AN

\_ — J

A 4

é Non-Rigid R

( Handover Motion
Planing

~\

(View Pose Generation )
and Execution

[ In-Hand Object Pose )
Refinement

Reqistration

R -
#2

Grasp Sampling

[Pavlichenko et al. Humanoids 2019]

Grasp
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Regrasping Experiments

[Pavlichenko et al. Humanoids 2019]



Micro Aerial Vehicles: Hierarchical Navigation

User

Request

Operator station
Semantic

map

Allocentric

4

Mission planning L

<0.02Hz|, Observation ppses

map

Onboard computer.

Allocentric planning L
\\

\

0.2Hz | Allocentr. plan

Mission plan

Allocentric planning

Egocentric E ic olanni ! ] ]
map gocentric planning - Egocentric planning
\
2Hz |, Trajectory \,'
Obstacle ) ¢
Obstacle avoidance
map
>0tz | Speed PIIIAAAAIALY
z 1IN .
y P R Obstacle avoidance
I

74 [Droeschel et al. JFR 2016] onvers u@
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InventAlIRy: Autonomous Navigation in a Warehouse

Y-Position (m)

18
15
14
412
1
os
.20 06
> % 04
H
.25 4
£ 4
-
%
: 02
-30 L

- b

°©

] 5
X-Position (m)

Velocity (m/s)

[Beul et al

. RA-L 2018]

UNIVERSITAT @
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InventAIRy: Detected Tags in Shelf

[Beul et al. RA-L 2018]

e
AP AR




German Rescue Robotics Center

Initial demonstrator

* Basis: DJI Matrice 600 Pro
* Sensors: Velodyne VLP 16, FLIR Boson, 2x FLIR BlackFly S
* Tiltable sensor head

77

O
rrT

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Current demonstrator

e Basis: DJI Matrice 210 v2
* Sensors: Ouster 0S-0, FLIR AGX, 2x Intel RealSense D455
* |P43 water resistance



Modeling the Brandhaus Dortmund NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM
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Real-time LiDAR Odometry with Continuous-time Trajectory RDRZ
O pt i m i Za t i 0 n DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Simultaneous registration of multiple
multiresolution surfel maps using Gaussian mixture
models and temporally continuous B-spline

Accelerated by sparse permutohedral voxel grids
and adaptive choice
of resolution

Real-time onboard
processing 16-20 Hz

Open-Source

https://github.com/AIS-Bonn/
lidar_mars_registration

[Quenzel and Behnke, IROS 2021]
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3D LiDAR Mapping

DRZ Living Lab

[Quenzel and Behnke, IROS 2021]

NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

UNIVERSITAT



Semantic Perception: LiDAR Segmentation NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Ground truth
LatticeNet
TangentConv

SplatNet

LatticeNet segmentation of 3D point clouds based on sparse permutohedral grid
Hierarchical information aggregation through U-Net architecture

LatticeNet is real-time capable and achieves excellent results in benchmarks

81 [Rosu et al., RSS 2020] ugu@



Semantic Fusion: 3D LiDAR Mapping NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Minimax-Viking fire house

Categories:
* Building
* Floor
* Persons
* Vehicles
Semantic multiresolution surfel map e Fence

* Vegetation

82 ﬂ(gﬂ
UNIVERSITAT

Segmented point cloud



Semantic Fusion: Temporal LatticeNet NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Semantic segmentation of sequences of 3D point clouds

Integration of recurrent connections

ResNet Block ResNet Block

Trained on three scans of SemanticKITTI

ResNet Block ResNet Block

Distinguishing moving from parking vehicles

ResNet Block ResNet Block

| npie mple
?—>

ResNet Block

DeformSlice

Linear

77, Categories:

il /ﬁ . Strget

7= * Moving Vehicle
& ° Parking Vehicle
* Vegetation

[Rosu et al. Autonomous Robots 2021] u@




Onboard Multimodal Semantic Fusion

Real-time semantic segmentation and object onveard computer

detection (=9Hz) with EdgeTPU / iGPU
SalsaNext for LiDAR
DeeplLabv3 for RGB images
SSD MobileDet for Thermal/RGB

Late-fusion for
Point cloud
Image segmentation

84 [Bultmann et al

NDRZ
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RGB-D Image [RGB Segmentatio
Camera 30Hz and Detection

Thermal Image
Camera 9Hz

Scan

LiDAR

Segmentation Fusion

n ] Segmentation
Detections ¢ Image Semantic
Thermal Detections [ [\ Fuilon Image
Detection
LIDAR Poses
Odometry v
—* Pointcloud

Semantic
Cloud

Segmentation

. ECMR 2021, RAS 2022]

background
sky

building
barrier

road
sidewalk
person
rider
vegetation
water
hydrant
bicycle
train
vehicle
other object
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Predictive Angular Potential Field-based Obstacle Avoidance NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Aggregate LiDAR scans in range image Aggregated scan
Adjust direction using angular potential field
Predict trajectory and range image

Scale velocity based on time-to-contact

(0] a9

[M-DF o] [-W |

A

Obstacle 1 Obstacle 2
R b A

Angular Potential Field

[Schleich and Behnke, IROS 2022] v L



Dynamic 3D Navigation Planning

Positions and
velocities in
sparse local
multiresolution
grid
Adaptation of
movement
primitives to
grid
Optimization of
flight time and
control costs

1 Hz replanning

86
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[Schleich and Behnke, ICRA 2021]
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Planning with Visibility Constraints NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM
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Extra costs for flight through
unmapped volumes

-

s
» '

Consideration of sensor frustum:

Coupling of vertical and horizontal
motion

Preferred forward flight with limited
rotational speed

3 : » —

.J'*

Initial trajectory Optimized trajectory
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Observation Pose Planning EDRZ

= Planning of observation poses with line of sight to the target object despite
occlusions

= Target objects are defined by position,
line of sight and distance

= Optimization of observation poses with regard
to visibility quality and accessibility

Initial observation pose Optimized path Top-down view

LIS
UNIVERSITAT ERITTI




Autonomous Flight without GNSS NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Segmentation  Image Front  Thermal Front
(G 1mage Down

DRZ Dortmund




Exploration NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Definition of target
area w.r.t. satellite
images or maps

Simple exploration
patterns (spirals,
meanders, ...)

Collision check

TSP to determine
segment sequence

Continuous
replanning

Campus Poppelsdorf

UNIVERSITAT @



Autonomous Exploration NDRZ
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Real-Time Multi-View 3D Human Pose Estimation using Semantic

Feedback to Smart Edge Sensors

Triangulation and skeleton model to recover 3D pose

Semantic feedback channel for bidirectional communication

between backend and sensors

Smart Edge Sensor 1
¥
RGB

Image

;_,

Smart Edge Sel‘lS(.Jr N
RGB

Image

a

92

2D Pose Backend
2D Pose , Bone-Length
Estimation ﬁ . Prior
I _: Multi-View | 3D Skeleton
»| Triangulation| ~|  Model
2D Pose /l[
Estimation
T “«--=--=-- Reprojection [«— Prediction

Semantic Feedback

—

[Bultmann and Behnke,

RSS 2021]

3D Pose
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Real-Time Multi-View 3D Human Pose Estimation using Semantic
Feedback to Smart Edge Sensors

Feedback heatmap is rendered from feedback skeleton and fused with
detection on sensors

Feedback heatmap helps
to recover from incorrect
or imprecise 2D joint
detections

Examples:

Occluded left wrist
(rows 1 and 2)

Confusion of left and
right elbow (row 3)

(a) ground-truth  (b) detected (c) feedback (d) fused

[Bultmann and Behnke, RSS 2021]
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Semantic Perception with Smart Edge Sensor Network

Object detection and

semantic segmentation

of RGB images

Person detection in IR
images

Semantic labelling of
RGB-D point clouds
Pose estimation for

(c) RGB and (d) thermal detections, (e) semantic segmentation

[Bultmann and Behnke: IAS 2022]

ceiling
window

person

box

trashbin

computer / TV
other

(a) Smart Edge Sensor with Jetson NX (b) 3D semantic scene model,

UNIVERSITAT @



3D Human Pose Estimation with Occlusion Feedback

Backend

Heavy occlusion causes the

Semantic Cloud Spatio-Temporal Semantic Map

pose estlmatlo.n to collapse [Smm Easart] oo = o Asgregaton
to the visible side only ety
. . . 1_ »
With occlusion feedback = —p| Multi View
. . Smart Edge Sensor | 2D Pose [ —p Triangulation Model
occluded joint detections [ EdgeTPU [2] } L
. : an D Semantic Scene Mode
can be discarded and the - RE e ik T e
R T T I Ray-Tracing to
local model is completed ==~ | check Oclusions

With occlusion feedback  W/o occlusion feedback Unoccluded reference Fully occluded

> [Bultmann and Behnke: IAS 2022] u@



Evaluation in Real-World Multi-Person Scenes
20 smart edge sensors (4 Jetson NX, 16 Edge TPU), covering 12x22 m area

Experiments with 8 persons moving through the scene

The sensor network provides a complete 3D semantic scene view
and estimates dynamic 3D poses of multiple persons in real time.

%* [Bultmann and Behnke: IAS 2022] anmu@
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ANA Avatar XPRIZE Competition

ANAS
AVATAR

Requires mobility, manipulation, human-human interaction

4—-*[—-

Focuses on the
immersion in

the remote
environment

and the presence
of the remote
operator

XPRIZE

—




NimbRo Avatar ~ awa# )(’p RIZE

Two-armed avatar robot designed for teleoperation with immersive visualization
& force feedback

Operator station with HMD, exoskeleton and locomotion interface

Omni-
directional

Base ‘ ] (6 DoF F/T Sensors) (Schunk SVH Hand)

o8 [Schwarz et al. IROS 2021] | N
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[Schwarz et al. IROS 2021]

Team NimbRo Semifinal Submission
avarae XPRIZE
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Team NimbRo
Semifinal Team Video

ANAS N
avarae X PRIZE

Tasks

4. Measure blood pressure

[Schwarz et al. IROS 2021]



NimbRo Avatar: Immersive Visualization

@
Y

[Spherical Renderin

A

4K wide-angle stereo video stream
6D neck allows full head movement

Head Pose ‘

O3PIA M X2

Very immersive

Spherical rendering technique hides
movement latencies

=/

Head Pose
@
w
SMaIA 943

4 \ . [y
* | Robot with 6D Head |

: Assumes constant depth

D

Exact for pure rotations Distortions for translations

Stereoscopic VR System

1ot [Schwarz and Behnke Humanoids 2021] ﬂ@




NimbRo Avatar: Operator Face Animation

Operator images without HMD
Capture mouth and eyes

Estimate gaze direction
and facial keypoints

, i 7

Left Eye Mouth " Right Eye
Generate animated operator face using a warping neural network

49 N Generator G

> E
@ Construct Warp Deformed
il m Driving — Source
Frame

Srclmg Src KP ' Driving KP Motion
imaginar Network M
Eye Coord.

;-}a k. Lower Face KP

YVYVF

Warp  Deformed
Expression

BEE HEB Image
° BE BE Retrieval
t\ m HH R EH } v Expression :
KP+I -
B8 a8 e Avatar Display

102 [Rochow et al. IROS 2022] S



NimbRo Avatar: Operator Face Animation

Gaze A Output
Direction
>
Mouth Cam

10 [Rochow et al. IROS 2022]
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FaDIV-Syn: Fast Depth-Independent View Synthesis

Two input views

Generate novel view from different
pose

Does not require depth

Handles occlusions, transparency,
reflectance, moving objects, ...

...........................................................

[Rochow et al. RSS 2022]




FaDIV-Syn: Fast Depth-Independent View Synthesis

Robot Teleoperation

D™
[Rochow et al. RSS 2022]




Conclusions

Developed capable robotic systems for challenging scenarios
Plant reconstruction
Bin picking
Humanoid soccer
Disaster response (UGV, UAV)

Challenges include
4D semantic perception
High-dimensional motion planning

Promising approaches
Prior knowledge (inductive bias)
Shared experience (fleet learning)
Shared autonomy (human-robot)

Instrumented environments
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