From Domestic Service Robots to Industrial Mobile Manipulators

Sven Behnke

Computer Science Institute VI Autonomous Intelligent Systems

Robot Competitions

- Provide common test bed for benchmarking
- Foster robotics research

DARPA Urban Challenge

RoboCup Humanoid Soccer

DLR SpaceBot Cup

DARPA Robotics Challenge

RoboCup@Home

Since 2006

- Focus on applications in domestic environments and on human-robot interaction
- Goal: Develop robots that support humans in everyday tasks

Competition:

- Predefined tests
 - Follow a person
 - Find and put away objects
 - Fetch drinks
 - Understand complex speech commands
- Open demonstrations
- Bar is raised every year

Requirements for Domestic Service Robots

Robust navigation in indoor environments

- Map of the home
- Navigational sensors
- Not too large mobile base (narrow passages)

Object manipulation

- Dexterous arm(s)
- Grippers that can handle the payload of common household objects
- Sensors to detect and recognize objects

Intuitive communication with the users

- Appropriate communication height for face-to-face interaction
- Multiple modalities, such as speech, gestures, mimics, and body language

When we started, most available domestic robot systems supported only one or two of the above skills.

Our Domestic Service Robots

Dynamaid

Cosero

- Size: 100-180 cm, weight: 30-35 kg
- 36 articulated joints
- PC, laser scanners, Kinect, microphone, ...

RoboCup 2013 Eindhoven

Analysis of Table-top Scenes and Grasp Planning

- Detection of clusters above horizontal plane
- Two grasps (top, side)

Flexible grasping of many unknown objects

[Stückler, Steffens, Holz, Behnke, Robotics and Autonomous Systems 2012]

Mapping the Environment

Path Planning

- Global planning tries to keep away from obstacles
- Obstacle avoidance using two lasers, ultrasound
- Robot alignment in narrow passages
- Plan revision when path blocked

Continuous Person Awareness

- Detect persons using LRFs at two heights
- Visual person verification and identification
- Natural gaze strategies
- Face recognition

Leg detections at 30cm height Hip detections at 1m height

Adaptive Person Model

- Model: geometric primitives, connected by joints
- Registration through articulated ICP
- Adaptation of primitive parameters to body proportions

[Droeschel, Behnke: ICIRA 2011] 11

Gesture Recognition using a ToF Camera

- Find and track face in amplitude image
- Find body by region growing
- Segment torso and arms
- Identify elbow and hand

Estimating Pointing Direction

Head-Hand-Vector: ~9° angular error
GPR function approximator: ~3° error

[Dröschel, Stückler, Behnke: HRI'11]

Picking-up Objects from the Floor

Showing Gesture

Visual Object Recognition

- Detect objects with laser
- Map them to image plane
- Recognize them using color and SURF features
- Kalman filter for objects

Object Class Detection in RGB-D

- Hough forests make not only object class decision, but describe object center
- RGB-D objects data set
- Color and depth features
- Training with rendered scenes
- Detection of object position and orientation

Depth helps a lot

[Badami, Stückler, Behnke: SPME 2013]

Object Recognition and Pose Estimation

Rendering canonical views

Pretrained convolutional neural network

<u>'906 68086300</u>

		Category Accuracy (%)			Instance Accuracy (%)			
Method		RGB	R	RGB-D		B F	RGB-D 73.9	
Lai et al. (8)	74.	3 ± 3.3	$3.3 81.9 \pm 2.8$		59.3			
Bo <i>et al.</i> (10)	82.	4 ± 3.1	87.9	5 ± 2.9	92.	1	92.8	
Ours	83 .	1 ± 2.0) 89.4	4 ± 1.3	92.	0	94.1	
Work		MedPose	MedPose(C)	MedPose(I)	AvePose	AvePose(C)	AvePose(I)	
Lai et al. (9)		62.6	51.5	30.2	83.7	77.7	57.1	
Bo et al. (10)		20.0	18.7	18.0	53.6	47.5	44.8	
Ours - instance level pose regression		20.4	20.4	18.7	51.0	50.4	42.8	
Ours - category level pose regr	ession	19.2	19.1	18.9	45.0	44.5	43.7	

Angular error in °

[Schwarz, Schulz, Behnke, ICRA 2015]

000

3D-Mapping with Surfels

3D-Mapping with Surfels

3D-Mapping and Localization

- Registration of 3D laser scans
- Representation of point distributions in voxels
- Drivability assessment trough region growing
- Robust localization using 2D laser scans

[Kläß, Stückler, Behnke: Robotik 2012]

3D Mapping by RGB-D SLAM

- Modelling of shape and color distributions in voxels
- Local multiresolution
- Efficient registration of views on CPU
- Global optimization

[Stückler, Behnke: Journal of Visual Communication and Image Representation 2013]

Multi-camera SLAM

[Stoucken, Diplomarbeit 2013]

5cm

2,5cm

Learning and Tracking Object Models

Modeling of objects by RGB-D-SLAM

Real-time registration with current RGB-D image

Deformable RGB-D-Registration

- Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]
- Multiresolution Surfel Map allows real-time registration

[Stückler, Behnke, ICRA2014]

Transformation of Poses on Object

Derived from the deformation field

Grasp & Motion Skill Transfer

Demonstration at RoboCup 2013

Tool use: Bottle Opener

- Tool tip perception
- Extension of arm kinematics
- Perception of crown cap
- Motion adaptation

Picking Sausage, Bimanual Transport

- Perception of tool tip and sausage
- Alignment with main axis of sausage

 Our team NimbRo won the RoboCup@Home League in three consecutive years

Hierarchical Object Discovery trough Motion Segmentation

- Motion is strong segmentation cue
- Both camera and object motion

Segment-wise registration of a sequence

Inference of a segment hierarchy

Semantic Mapping

- Pixel-wise classification of RGB-D images by random forests
- Inner nodes compare color / depth of regions
- Size normalization
- Training and recall on GPU
- 3D fusion through RGB-D SLAM
- Evaluation on own data set and NYU depth v2

Ø Pixels

58.6

64,5

68.1

70,6

Ø Classes

59.6

63.5

65.0

66,8

Accuracy in %

Silberman et al. 2012

Couprie et al. 2013

Random forest

3D-Fusion

Ground truth

Segmentation

Learning Depth-sensitive CRFs

- SLIC+depth super pixels
- Unary features: random forest
- Height feature

- Pairwise features
 - Color contrast
 - Vertical alignment
 - Depth difference
 - Normal differences
- Results:

Random forest

CRF prediction

Ground truth

3D Point Cloud

normals

CKF Fledict

Pairwise Features

similarity between superpixel

	class average	pixel average
RF	65.0	68.3
RF + SP	65.7	70.1
RF + SP + SVM	70.4	70.3
RF + SP + CRF	71.9	72.3
Silberman <i>et al</i> .	59.6	58.6
Couprie <i>et al</i> .	63.5	64.5

[Müller and Behnke, ICRA 2014]

Bin Picking

 Known objects in transport box

Matching of graphs of 2D and 3D shape primitives

Grasp and motion planning

Offline

Online

[Nieuwenhuisen et al.: ICRA 2013]

Learning of Object Models

- Scan multiple objects in different poses
- Find support plane and remove it
- Segment views
- Register views using ICP
- Recognize geometric primitives

Registered views

Surface reconstruction

Detected primitives

Active Object Perception

 Efficient exploration of the part arrangement in the transport boxes to handle occlusions

Active Object Perception

 Efficient exploration of the part arrangement in the transport boxes to handle occlusions

Active Object Perception

 Efficient exploration of the part arrangement in the transport boxes to handle occlusions

Use-case: Kitting of Automotive Parts

- Many car variants
- Collect the parts needed for the assembly of a particular car in a kit
- Parts in different variants are available in a supermarket
- Robot needs to
 - navigate to the transport boxes,
 - grasp the parts, and
 - place them in the kit

Sustainable and Reliable Robotics for Part Handling in Manufacturing Automation

Realized Lab Demonstrator

Object Candidate Detection

- Using work space RGB-D camera
- Initial pose of transport box roughly known
- Detect dominant horizontal plane above ground
- Cluster points above support plane
- Estimate main axes

Object View Registration

- Wrist RGB-D camera moved above innermost object candidate
- Object views are represented as Multiresolution Surfel Map
- Registration of object view with current measurements using soft assignments
- Verification based on registration quality

Registered Object Model

Registration yields the object pose

Grasp Definition

 GUI for object model acquisition and grasp definition, relative to object model

Grasps are selected according to object pose

45

Part Detection and Grasping

We detect potential object candidates using the workspace camera.

Motion Planning

- Use ROS Movelt for motion planning and execution
- Predefined
 poses (initial,
 placement) and
 grid of poses
 above the objects
- Preplanned paths
- Only short trajectories must be planned online

Concatenation of Motion Segments

Interpolation for smooth segment transitions

First Test Sprint Results

Fast Pipeline for Object Detection, Localization & Verification

- Initial segmentation of the pallet's support surface and object candidates (in real-time, <30 ms) using the workspace camera
- 2. Moving the arm to the object candidate closest to the pallet center
- 3. Registration using multi-resolution surfel mapping against a known object model (roughly 500 ms) using the wrist camera

Depalletizing of Starters

Depalletizing Results: 10 Runs

Total time

Component	Mean	Std	Min	Max
Object detection and grasping	$13.84\mathrm{s}$	$1.89\mathrm{s}$	$10.42\mathrm{s}$	$23.81\mathrm{s}$
Full cycle (incl. release and returning to initial pose)	$34.57\mathrm{s}$	$3.01\mathrm{s}$	$29.53\mathrm{s}$	$49.52\mathrm{s}$

Component times and success rates

Component	Mean	Std	Min	Max	Success Rate
Initial object detection	26.3 ms	10.3 ms	0.02 ms	$38.5\mathrm{ms}$	100%
Detecting that the pallet is empty					100%
Object localization & verification	$532.7\mathrm{ms}$	$98.2\mathrm{ms}$	$297.0\mathrm{ms}$	800.1 ms	100%
Identifying wrong objects					100%
Grasping a found object	7.80 s	$0.56\mathrm{s}$	6.90 s	$10.12\mathrm{s}$	99%

Part Verification Results

Parts used for verification

Detection confidences

Object	Mean	Std	Min	Max
Correct object ("cross clamp")	0.901	0.024	0.853	0.951
Similar cross clamp (pose 1)	0	0	0	0
Similar cross clamp (pose 2)	0.407	0.034	0.299	0.452
Small starter	0	0	0	0
Large starter	0.505	0.055	0.398	0.581
Smaller cross clamp	0	0	0	0

Different Lighting Conditions

Artificial light and day light

Only daylight

Low light

In all cases, the palette was successfully cleared.

Integrated Mobile Manipulation Robot

•tomino 2nd Test Sprint, 05/2015

Challenges EuRoC Challenge 2: **Challenges** Shop-floor logistics and manipulation

- Addresses scenarios Logistics and Robotic Co-Workers
- Mobile manipulators as logistic carriers and dexterous manipulators
- Platform: Kuka miiwa
- Common benchmarking tasks
 - Pick and place, simple pre-assembly
 - Limited workspace, fast adaptation
- KittingBot project: NimbRo Logistics
 + PSA Peugeot Citroën
 - Freestyle: Depalletizing
 - Show-case: Sequencing
 - Pilot: Collaborative kitting

[EuRoC Challenge 2]

[PSA Supermarket]

Conclusion

- Developed methods for environment perception, navigation, manipulation, and human-robot interaction in domestic service domain
- Methods applicable to industrial settings
- Challenges
 - Autonomy in semi-structured environments
 - Reliability of operation
 - Safety in human-robot collaboration
 - Speed of navigation and manipulation
- Need for further research
 - Robot construction
 - Perception
 - Behavior control
 - Learning
- Easier: mobile manipulators in smart environments

Thanks for your attention!

Questions?

Calibration of the Hand-Eye Kinematics

- Kinematic model
- Sample observations in various poses
- Estimate model parameters

[Hubert et al., Humanoids 2012]