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Direct Control vs. Autonomous Assistance

Direct teleoperation offers a high degree of flexibility

Requires special operator interfaces, good data connection, extensive operator
training, and induces high cognitive load on the operator

Not all DoFs can be mapped directly

vels of control!
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Allocentric 3D Mapping

Registration of egocentric
maps by graph optimization

[Droeschel et al., Robotics and
Autonomous Systems 2017]
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DLR SpaceBot Cup 2015

Mobile manipulation in rough
terrain

[Schwarz et al., Frontiers on
Robotlcs and AI 2016]







Autonomous Mission Execution

3D mapping,
localization,
mission and
navigation
planning

3D object
perception
and grasping




Navigation
Planning

= Costs from local height
differences

= A* path planning

[Schwarz et al., Frontiers
in Robotics and Al 2016]
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Considering Robot
Footprint

u

= Costs for individual wheel
pairs from height differences

=

Wheel costs

H..

[Klamt and Behnke, IROS 2017] Base costs Combined
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3D Driving Planning (x, y, 0): A*

16 driving directions

~
| wmEs

Costs
Orientation changes ~
B Bl N B
Height
=> Obstacle between wheels [Klamt and Behnke, IROS 2017]
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Making Steps

12

If non-drivable obstacle in front
of a wheel

Step landing must be drivable

Support leg positions must be
drivable

[Klamt and Behnke: IROS 2017]
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Planning for a Challenging Scenario

[Klamt and Behnke: IROS 2017]



Centauro Robot

CENTAURO

Serial elastic actuators
42 main DoFs

Schunk hand

3D laser

RGB-D camera

Color cameras

Two GPU PCs

| [Tsagarakis et al., IT 2017]
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Hybrid Driving-Stepping Locomotion Planning: Abstraction

Planning in the here and now

Far-away details are abstracted away

oooooooooo
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Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level Map Resolution Map Features Robot Representation Action Semantics
e 25cm e Height e Individual
e 64 orient. Foot Actions
e 50cm e Height e Foot Pair
e 32 orient. e Height Difference Actions
e 10cm e Height e Whole Robot
e 16 orient. e Height Difference Actions
e Terrain Class

[Klamt and Behnke,
IROS 2017, ICRA 2018]
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Learning Cost Functions of Abstract Representations

Planning problem

[Klamt and Behnke, ICRA 2019]



Abstraction CNN

Predict feasibility and costs of local detailed planning

Training data
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generated with random obstacles, walls, staircases

costs and feasibility from detailed A*-planner
+ ~250.000 tasks

[Klamt and Behnke, ICRA 2019]
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Learned Cost Function: Abstraction Quality

CNN predicts feasibility and costs better than manually tuned geometric
heuristics —

=3 = P

mndom simulated real

feasibility correct, man.tuned | 79.27%  65.35% 69.77%
Error(C, man.tuned) 0.057 0.021 0.103
feasibility correct, CNN 95.04%  96.69% 92.62%
Error(C, cnN) 0.027 0.013 0.081

[Klamt and Behnke, ICRA 2019] ﬂ@



Experiments — Planning Performance

Learned heuristics accelerates planning,
without increasing path costs much
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CENTAURO Evaluation @ KHG: Locomotion Tasks

[Klamt et al. RAM 2019]



Object Detection

Adapted DenseCap approach for image-based object detection

Image:
3xWxH

Conv features:

CxW xH
22

Region features:

Conv features: BxCxXxY  Region Codes:

/,
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[Johnson et al. CVPR 2016]
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Region features:
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CENTAURO Tools Data Set

A

Open Directory

https://www.centauro-project.eu/data_multimedia/tools_data
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Detection Examples
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Semantic Segmentation

Adapted RefineNet approach [Lin et al. CVPR 2017]

Synthesis of training images by capturing object views on turn table and
inserting them into complex scenes




6D Object Pose Estimation

Cutting out individual object < ;
- q)(

segments R %
. ) s Ow

Pose estimation by neural network g

26 [Periyasamy et al. IROS 2018]




The Data Problem

Deep Learning in robotics (still) suffers from shortage of available examples
We address this problem in two ways:

Generating data:
Automatic data capture,
online mesh databases,
scene synthesis

Improving generalization:
Object-centered models, \ g
deformable registration, =y
transfer learning,
semi-supervised learning
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Transfer of Manipulation Skills

Knowledge
Transfer

)




Learning a Latent Shape Space

Non-rigid registration of instances and canonical model

Principal component analysis of deformations

Training
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Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]



Shape-aware Non-rigid Registration
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Shape-aware Registration for Grasp Transfer

Full point cloud
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Collision-aware Motion Generation

Constrained Trajectory Optimization:
Collision avoidance
Joint limits
Time minimization

Torque optimization

w4,

UNIVERSITAT @



Grasping an Unknown Power Drill and Fastening Screws
e - ‘




CENTAURO: Complex Manipulation Tasks

[Klamt et al. RAM 2019]
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Direct functional grasps not always feasible

Regrasping for Functional Grasp

Pick up object with support hand, such that it can be grasped in a functional way

[Semantic Segmentation)
and Pose Estimation
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[Pavlichenko et al. Humanoids 2019]
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Regrasping Experiments

[Pavlichenko et al. Humanoids 2019]



Part-based Non-rigid Object Registration

Objects consist of parts t

Learn shape spaces of parts individually

" o o o
) g g 4

Captures object shapes better #*

'l': %
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e er. . . o SR SN,
and initial pose misalignment s sl

38 [Rodriguez et al. VISAPP 2022]
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Dense Convolutional 6D Object Pose Estimation

Extension of PoseCNN [Xiang et al. RSS 2018]
Dense prediction of object center and orientation, without cutting out

. . . .
| €= Feature Extraction ===————ple=Embedding=—] €= Classification / Regression = !

m
!
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-
result quaternion
39 [Capellen et al., VISAPP 2020]
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From Turntable Captures to Textured Meshes

Fused & textured result

UNIVERSITAT @



Self-Supervised Surface Descriptor Learning

Feature descriptor should be constant under different transformations,
viewing angles, and environmental effects such as lighting changes

Descriptor should be unique to facilitate matching across different frames
or representations

Learn dense features using a contrastive loss

Known correspondences Learned features

41 [Periyasamy, Schwarz, Behnke Humanoids 2019] UWERW"@



Descriptors as Texture on Object Surfaces

Learned feature channels used as textures for 3D object models

@3 A
lllU:A

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Used for 6D object pose estimation
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Abstract Object Registration

Compare rendered and actual scene in feature space
Adapt model pose by gradient descent

Feature-Annotated
Mesh Database Mesh Database

. -1 Abstraction . ’
A ' Module A .

Pose P Abstract Scene Ag

Differentiable
Renderer
Abstraction | —

Module

[Periyasamy, Schwarz,
Behnke Humanoids 2019]

Observed Scene I

Abstract Scene Ay

Loss L
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Registration Examples

[Periyasamy, Schwarz, Behnke Humanoids 2019]
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Learning from Synthetic Scenes

Cluttered arrangements from 3D meshes

Photorealistic scenes with randomized
material and lighting including ground truth

For online learning & render-and-compare
Semantic segmentation on YCB Video Dataset
Close to real-data accuracy
Improves segmentation of real data

Generated Ground Truth Channels

Depth

[Schwarz and Behnke, ICRA 2020]
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SynPick: A Dataset for Dynamic Bin Picking Scene Understanding

Object arrangement and manipulation simulation using NVIDIA PhysX
Untargeted and targeted picking actions, as well as random moving

[Periyasamy et al. CASE 2021]



T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

Extends DETR: End-to-end object detection with transformers [carion et al.

ECCV 2020]
End-to-end differentiable pipeline for 6D object pose estimation
HxW 2048x L x ¥ 256x( L 2) = P MR (Q).""""::—" g pl st ()
= Transformer E
| _)III_) %nCO((iier— _>=
; ecodaer
0/
Set of predictions Ground truth
CNN features

Encoder self-attention Object detecti and decoder attention

47 [Amini et al. GCPR 2021]



YoloPose: Multi-Object 6D Pose Estimation using Keypoint Regression

translation,
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Attention Maps

Encoder self-attention

---E [Amini et al. 15 2022]  PAS)



Micro Aerial Vehicles: Hierarchical Navigation

User

Request

Operator station
Semantic

map

Allocentric

4

Mission planning L

<0.02Hz|, Observation ppses

map

Onboard computer.
Egocentric

Allocentric planning L
\\

\

0.2Hz | Allocentr. plan

map

Obstacle

4

Egocentric planning

™
2Hz |, Trajectory \,'

map

/

Obstacle avoidance

20Hz | Speed
v
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Copter
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[Droeschel et al. JFR 2016]
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InventAlIRy: Autonomous Navigation in a Warehouse

Y-Position (m)
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[Beul et al

. RA-L 2018]
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InventAIRy: Detected Tags in Shelf

[Beul et al. RA-L 2018]
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Label Propagation for 3D Semantic Mapping

Image-based semantic categorization, trained with Mapillary data set

3D fusion in semantic texture &//ﬁ\\ﬁ A l A &/%\A
. . . Car B é 4 Car Car B v 4 Car Car b v 4 Car
Backprojection of labels to other views = . = .0
initial fusion feedback improved interpretation

Mesh
reconstructlon

Retra n RGB textured mesh
Semantic Segmentat ion

Ph *
L..fz "”1 “Wl‘

LIS
> [Rosu et al., IJCV 2019] ‘
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3D Semantic Mapping

N ‘!“Uf""f',
mn’!a “4

[Rosu et al., JCV 2019]



German Rescue Robotics Center NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Initial demonstrator Current demonstrator

e Basis: DJI Matrice 600 Pro e Basis: DJI Matrice 210 v2
* Sensors: Velodyne VLP 16, FLIR Boson, 2x FLIR BlackFly S * Sensors: Ouster 0S-0, FLIR AGX, 2x Intel RealSense D455
 Tiltable sensor head * |P43 water resistance



Modeling the Brandhaus Dortmund NDRZ

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

[Rosu et al. SSRR 2019]



Real-time LiDAR Odometry with Continuous-time Trajectory RDRZ
O pt i m i Za t i 0 n DEUTSCHES RETTUNGSROBOTIK ZENTRUM

Simultaneous registration of multiple
multiresolution surfel maps using Gaussian mixture
models and temporally continuous B-spline

Accelerated by sparse permutohedral voxel grids
and adaptive choice
of resolution

Real-time onboard
processing 16-20 Hz

Open-Source

https://github.com/
AIS-Bonn/lidar_mars_registration

[Quenzel and Behnke, IROS 2021]
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3D LiDAR Mapping

DRZ Living Lab

UNIVERSITAT



Semantic Perception: LIDAR Segmentation

Ground truth
LatticeNet
TangentConv

SplatNet

LatticeNet segmentation of 3D point clouds based on sparse permutohedral grid
Hierarchical information aggregation through U-Net architecture

LatticeNet is real-time capable and achieves excellent results in benchmarks

UNIVERSITAT @
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Semantic Fusion: 3D LiDAR Mapping

Minimax-Viking fire house

Categories:
* Building
* Floor
* Persons
* Vehicles
Semantic multiresolution surfel map e Fence

* Vegetation

UNIVERSITAT @

Segmented point cloud



Semantic Fusion: Temporal LatticeNet

Semantic segmentation of sequences of 3D point clouds
Integration of recurrent connections

Trained on three scans of SemanticKITTI

Distinguishing moving from parking vehicles

Input t

e v

Distribute

PointNet

ResNet Block ResNet Block

ResNet Block ResNet Block

ResNet Block

ResNet Block

—— - -
S d e
$ ;) Temp. Fusion

ResNet Block
DeformSlice
Linear

* Moving Vehicle

5/ Categories:

/////, * Street

S T
"
-("u ‘
\?{:

- 724y * Parking Vehicle

[Rosu et al. Autonomous Robots 2021]

* Vegetation
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Onboard Multimodal Semantic Fusion

Real-time semantic segmentation and object
detection (=9Hz) with EdgeTPU / iGPU

SalsaNext for LiDAR
DeeplLabv3 for RGB images
SSD MobileDet for Thermal/RGB

Onboard Computer

RGB-D Image [RGB Segmentation | Segmentation

Camera 30Hz and Detection Detections ] W
Thermal Image Thermal Detections [ =‘_Fui'°" Image

Camera 9Hz Detection

Scan

LiDAR Poses
Odometry v

—*( Pointcloud | Semantic

Late-fusion for COAR ) Seqmentation Fusion | Goud
Point cloud Segmentation
Image segmentation
background

sky
building
barrier
road
sidewalk
person
rider
vegetation
water
hydrant
bicycle
train
vehicle
other object

Bultmann et al. ECMR 2021
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LiDAR-based Obstacle Avoidance

= Fast analytical collision check with 3D point cloud
= Planning of alternative trajectories if original trajectory causes collision
= Selection and execution of a collision-free alternative trajectory

Collision check Generation of alternative Selection based on distance to
trajectories target and previous trajectory

[Beul and Behnke, SSRR 2020] u@
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Dynamic 3D Navigation Planning

Positions and
velocities in
sparse local
multiresolution
grid
Adaptation of
movement
primitives to
grid
Optimization of
flight time and
control costs

1 Hz replanning

ISR
st SN

N\ \

of'{
Ay, )
é"‘f!’l' a4V

BEENEEE

[Schleich and Behnke, ICRA 2021]




Planning with Visibility Constraints

Extra costs for flight through
unmapped volumes

Consideration of sensor frustum:

Coupling of vertical and horizontal
motion

Preferred forward flight with limited
rotational speed

Initial trajectory Optimized trajectory




Observation Pose Planning

= Planning of observation poses with line of sight to the target object despite
occlusions

= Target objects are defined by position,
line of sight and distance

= Optimization of observation poses with regard
to visibility quality and accessibility

Initial observation pose Optimized path Top-down view

LIS
UNIVERSITAT ERITTI




Autonomous Flight without GNSS

Segmentation  Image Front  Thermal Front
(G 1mage Down

DRZ Dortmund




Exploration

Definition of target
area w.r.t. sattelite
images or steet

Simple exploration
patterns (spirals,
meanders, ...)

Collision check

TSP to determine
segment sequence

Continous
replanning

Campus Poppelsdorf

UNIVERSITAT @



Autonomous Exploration

DRZ Dortmund



Terrain Classification for Traversability

Based on voxel-
filtered aggragated
point cloud

Terrain classification
based on local height
differences in the
robot ground robot ated colored point cloud
footprints i K e

ok 10

Categories: drivable,
walkable, unpassable

Reachability analysis

[Schleich et al., ICUAS 2021]
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Conclusions

Developed capable robotic

systems for disaster-response
Centaur-like ground robots
Micro aerial vehicles

Challenges include
4D semantic perception
High-dimensional motion planning
Promising approaches
Prior knowledge (inductive bias)
Data generation (rendering, simulation)
Shared experience (fleet learning)
Shared autonomy (human-robot)




Challenges are HUGE, see Flooding in Erftstadt, Germany July 2021




