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Direct Control vs. Autonomous Assistance 
■ Direct teleoperation offers a high degree of flexibility
■ Requires special operator interfaces, good data connection, extensive operator 

training, and induces high cognitive load on the operator
■ Not all DoFs can be mapped directly
■ => Use autonomous assistance functions on all levels of control!
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[Klamt et al., Journal of Field Robotics 2020]



Mobile Manipulation 
Robot Momaro

■ Four compliant legs ending 
in pairs of steerable wheels

■ Anthropomorphic upper 
body

■ Sensor head

● 3D laser scanner

● IMU, cameras
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[Schwarz et al. Journal of  Field Robotics 2017]



DARPA Robotics Challenge
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Allocentric 3D Mapping

■ Registration of egocentric 
maps by graph optimization

5

[Droeschel et al., Robotics and 

Autonomous Systems 2017]



DLR SpaceBot Cup 2015

■ Mobile manipulation in rough 
terrain

6

[Schwarz et al., Frontiers on  

Robotics and AI 2016]



DLR SpaceBot Camp 2015
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Autonomous Mission Execution

■ 3D mapping, 
localization,
mission and
navigation 
planning

8
[Schwarz et al. Frontiers 2016]

■3D object 
perception 
and grasping



Navigation
Planning

■ Costs from local height 
differences

■ A* path planning

9

[Schwarz et al., Frontiers 

in Robotics and AI 2016]



Considering Robot 
Footprint

■ Costs for individual wheel 
pairs from height differences

■ Base costs

■ Non-linear combination 
yields 3D (x, y, θ) cost map
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Scene                                 Wheel costs

Base costs                           Combined[Klamt and Behnke, IROS 2017]



3D Driving Planning (x, y, θ): A*

■ 16 driving directions

■ Orientation changes

=> Obstacle between wheels
11

Costs

Height

[Klamt and Behnke, IROS 2017]



Making Steps

■ If non-drivable obstacle in front 
of a wheel

■ Step landing must be drivable

■ Support leg positions must be 
drivable

12

[Klamt and Behnke: IROS 2017]



13Sven Behnke: Semantic Environment Perception[Klamt and Behnke: IROS 2017]

Planning for a Challenging Scenario



Centauro Robot

14

[Tsagarakis et al., IIT 2017]

▪ Serial elastic actuators

▪ 42 main DoFs

▪ Schunk hand

▪ 3D laser

▪ RGB-D camera

▪ Color cameras

▪ Two GPU PCs



Hybrid Driving-Stepping Locomotion Planning: Abstraction

■ Planning in the here and now

■ Far-away details are abstracted away



Hybrid Driving-Stepping Locomotion Planning: Abstraction
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[Klamt and Behnke, 
IROS 2017, ICRA 2018]



Learning Cost Functions of Abstract Representations

Cost function

[Klamt and Behnke,  ICRA 2019]



Abstraction CNN

■ Predict feasibility and costs of local detailed planning

/ x

xx.yy

Training data

• generated with random obstacles, walls, staircases

• costs and feasibility from detailed A*-planner
• ~250.000 tasks

[Klamt and Behnke,  ICRA 2019]



Learned Cost Function: Abstraction Quality

■ CNN predicts feasibility and costs better than manually tuned geometric 
heuristics 

[Klamt and Behnke,  ICRA 2019]



Experiments – Planning Performance

■ Learned heuristics accelerates planning, 
without increasing path costs much

Heuristic preprocessing: 239 sec

Geometric heuristic

Abstract representation

heuristic

[Klamt and Behnke,  ICRA 2019]



CENTAURO Evaluation @ KHG: Locomotion Tasks

21 [Klamt et al. RAM 2019]



Object Detection

■ Adapted DenseCap approach for image-based object detection 

22 [Johnson et al. CVPR 2016]



CENTAURO Tools Data Set
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https://www.centauro-project.eu/data_multimedia/tools_data



Detection Examples
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Semantic Segmentation

■ Adapted RefineNet approach [Lin et al. CVPR 2017]

■ Synthesis of training images by capturing object views on turn table and 
inserting them into complex scenes
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6D Object Pose Estimation

■ Cutting out individual object 
segments

■ Pose estimation by neural network

26 [Periyasamy et al. IROS 2018]



The Data Problem

■ Deep Learning in robotics (still) suffers from shortage of available examples

■ We address this problem in two ways:

1. Generating data:
Automatic data capture, 
online mesh databases, 
scene synthesis

2. Improving generalization:
Object-centered models,
deformable registration,
transfer learning, 
semi-supervised learning
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Transfer of Manipulation Skills

28

Knowledge 
Transfer



Learning a Latent Shape Space

■ Non-rigid registration of instances and canonical model

■ Principal component analysis of deformations 
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Interpolation in Shape Space

30 [Rodriguez and Behnke ICRA 2018]



Shape-aware Non-rigid Registration

31

■ Partial view of novel instance
■ Deformed canonical model

[Rodriguez and Behnke ICRA 2018]



Shape-aware Registration for Grasp Transfer
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■ Full point cloud ■ Partial view 



Constrained Trajectory Optimization:

■ Collision avoidance

■ Joint limits

■ Time minimization

■ Torque optimization

Collision-aware Motion Generation

33 [Pavlichenko et al., IROS 2017]



Grasping an Unknown Power Drill and Fastening Screws
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CENTAURO: Complex Manipulation Tasks

35 [Klamt et al. RAM 2019]



Regrasping for Functional Grasp

■ Direct functional grasps not always feasible
■ Pick up object with support hand, such that it can be grasped in a functional way

36 [Pavlichenko et al. Humanoids 2019]



37 [Pavlichenko et al. Humanoids 2019]

Regrasping Experiments



Part-based Non-rigid Object Registration 

■ Objects consist of parts

■ Learn shape spaces of parts individually

■ Captures object shapes better 

■ Robust against outliers, noise 
and initial pose misalignment

38 [Rodriguez et al. VISAPP 2022]

Drill 
wholistic 

Drill top part



Dense Convolutional 6D Object Pose Estimation

■ Extension of PoseCNN [Xiang et al. RSS 2018]

■ Dense prediction of object center and orientation, without cutting out

39 [Capellen et al., VISAPP 2020]

Predictiion error

Orientation norm



From Turntable Captures to Textured Meshes

40
Fused & textured result



Self-Supervised Surface Descriptor Learning

■ Feature descriptor should be constant under different transformations, 
viewing angles, and environmental effects such as lighting changes

■ Descriptor should be unique to facilitate matching across different frames 
or representations

■ Learn dense features using a contrastive loss

41

Known correspondences Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019]



Descriptors as Texture on Object Surfaces 

■ Learned feature channels used as textures for 3D object models

■ Used for 6D object pose estimation

42 [Periyasamy, Schwarz, Behnke Humanoids 2019]



Abstract Object Registration

■ Compare rendered and actual scene in feature space

■ Adapt model pose by gradient descent 

43

[Periyasamy, Schwarz, 
Behnke Humanoids 2019]
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Registration Examples

[Periyasamy, Schwarz, Behnke Humanoids 2019]



Learning from Synthetic Scenes

■ Cluttered arrangements from 3D meshes

■ Photorealistic scenes with randomized 
material and lighting including ground truth

■ For online learning & render-and-compare

■ Semantic segmentation on YCB Video Dataset

● Close to real-data accuracy

● Improves segmentation of real data

45

[Schwarz and Behnke, ICRA 2020]



SynPick: A Dataset for Dynamic Bin Picking Scene Understanding

■ Object arrangement and manipulation simulation using NVIDIA PhysX

■ Untargeted and targeted picking actions, as well as random moving 
actions

46 [Periyasamy et al. CASE 2021]         



T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

■ Extends DETR: End-to-end object detection with transformers [Carion et al. 

ECCV 2020]

■ End-to-end differentiable pipeline for 6D object pose estimation

47 [Amini et al. GCPR 2021]

Encoder self-attention Object detections and decoder attention



YoloPose: Multi-Object 6D Pose Estimation using Keypoint Regression

48 [Amini et al. IAS 2022]



Attention Maps

■ Encoder self-attention

■ Decoder cross-attention

49 [Amini et al. IAS 2022]



Micro Aerial Vehicles: Hierarchical Navigation
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[Droeschel et al. JFR 2016]



InventAIRy: Autonomous Navigation in a Warehouse

51 [Beul et al. RA-L 2018]



InventAIRy: Detected Tags in Shelf

52 [Beul et al. RA-L 2018]



Label Propagation for 3D Semantic Mapping

■ Image-based semantic categorization, trained with Mapillary data set 

■ 3D fusion in semantic texture

■ Backprojection of labels to other views

53
[Rosu et al., IJCV 2019]

initial fusion feedback improved interpretation



3D Semantic Mapping

54
[Rosu et al., IJCV 2019]



German Rescue Robotics Center

• Basis: DJI Matrice 600 Pro
• Sensors: Velodyne VLP 16, FLIR Boson, 2x FLIR BlackFly S
• Tiltable sensor head

Current demonstrator

• Basis: DJI Matrice 210 v2
• Sensors: Ouster OS-0, FLIR AGX, 2× Intel RealSense D455
• IP43 water resistance

Initial demonstrator



Modeling the Brandhaus Dortmund

56 [Rosu et al. SSRR 2019]



Real-time LiDAR Odometry with Continuous-time Trajectory 
Optimization

■ Simultaneous registration of multiple 
multiresolution surfel maps using Gaussian mixture 
models and temporally continuous B-spline

■ Accelerated by sparse permutohedral voxel grids 
and adaptive choice 
of resolution

■ Real-time onboard
processing 16-20 Hz

■ Open-Source 
https://github.com/
AIS-Bonn/lidar_mars_registration

[Quenzel and Behnke, IROS 2021]



3D LiDAR Mapping

58

DRZ Living Lab



Semantic Perception: LiDAR Segmentation

■ LatticeNet segmentation of 3D point clouds based on sparse permutohedral grid

■ Hierarchical information aggregation through U-Net architecture

■ LatticeNet is real-time capable and achieves excellent results in benchmarks

[Rosu et al., RSS 2020]



Semantic Fusion: 3D LiDAR Mapping

Segmented point cloud

Categories:
• Building
• Floor
• Persons
• Vehicles
• Fence
• Vegetation

Minimax-Viking fire house

Semantic multiresolution surfel map



Semantic Fusion: Temporal LatticeNet

■ Semantic segmentation of sequences of 3D point clouds

■ Integration of recurrent connections

■ Trained on three scans of SemanticKITTI

■ Distinguishing moving from parking vehicles

Semantic multiresolution surfel map

[Rosu et al. Autonomous Robots 2021]

Categories:
• Street
• Moving Vehicle
• Parking Vehicle
• Vegetation



Onboard Multimodal Semantic Fusion

■ Real-time semantic segmentation and object
detection (≈9Hz) with EdgeTPU / iGPU
● SalsaNext for LiDAR
● DeepLabv3 for RGB images
● SSD MobileDet for Thermal/RGB

■ Late-fusion for
● Point cloud
● Image segmentation

62
[Bultmann et al. ECMR 2021]



LiDAR-based Obstacle Avoidance

■ Fast analytical collision check with 3D point cloud

■ Planning of alternative trajectories if original trajectory causes collision

■ Selection and execution of a collision-free alternative trajectory

[Beul and Behnke, SSRR 2020]

Collision check Generation of alternative 
trajectories

Selection based on distance to 
target and previous trajectory



Dynamic 3D Navigation Planning

■ Positions and 
velocities in 
sparse local 
multiresolution
grid

■ Adaptation of
movement 
primitives to 
grid

■ Optimization of
flight time and 
control costs

■ 1 Hz replanning 
[Schleich and Behnke, ICRA 2021]



Planning with Visibility Constraints

■ Extra costs for flight through 
unmapped volumes

■ Consideration of sensor frustum:
● Coupling of vertical and horizontal 

motion

● Preferred forward flight with limited 
rotational speed

Obstacle map

Initial trajectory Optimized trajectory



Observation Pose Planning

■ Planning of observation poses with line of sight to the target object despite 
occlusions

■ Target objects are defined by position, 
line of sight and distance

■ Optimization of observation poses with regard 
to visibility quality and accessibility

Initial observation pose Optimized path Top-down view



Autonomous Flight without GNSS

DRZ Dortmund



Exploration

■ Definition of target 
area w.r.t. sattelite
images or steet

■ Simple exploration 
patterns (spirals, 
meanders, …)

■ Collision check

■ TSP to determine 
segment sequence

■ Continous
replanning

Campus Poppelsdorf



Autonomous Exploration

DRZ Dortmund



Terrain Classification for Traversability

■ Based on voxel-
filtered aggragated
point cloud

■ Terrain classification
based on local height
differences in the
robot ground robot 
footprints

■ Categories: drivable, 
walkable, unpassable

■ Reachability analysis

[Schleich et al., ICUAS 2021]
Terrain category Reachability

Local height differencesAggregated colored point cloud



Conclusions

■ Developed capable robotic 
systems for disaster-response
● Centaur-like ground robots
● Micro aerial vehicles

■ Challenges include
● 4D semantic perception
● High-dimensional motion planning

■ Promising approaches

● Prior knowledge (inductive bias)

● Data generation (rendering, simulation)

● Shared experience (fleet learning)

● Shared autonomy (human-robot)
71



Challenges are HUGE, see Flooding in Erftstadt, Germany July 2021
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