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Many New Application Areas for Robots

Self-driving cars

Logistics

Agriculture, mining
Collaborative automation
Personal assistance
Space, search & rescue
Healthcare

Toys

Need more cognitive abilities!



Some of our Cognitive Robots

Equipped with numerous sensors and actuators

Complex demonstration scenarios

omaro &

Soccer Domestic service Mobile manipulation
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RoboCup 2019 in Sydney




Visual Perception

Encoder-decoder network
Two outputs

Object detection
Semantic segmentation
Location-dependent bias

Width x Height

3x3 convBlock, 128, /2
3x3 convBlock, 512, 12

Width/4 x Height/4

on-dependent bias

locati

Segmentation Hea d

—

Width/4 x Height/4

[ 1x1 location-dependent Conv, 3 | [1x1 locatio

Detects objects that are hard to
recognize for humans

Robust to lighting changes

[Rodriguez et al., 2019] S
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Dynamaid

Size: 100-180 cm, weight: 30-35 kg
36 articulated joints
PC, laser scanners, Kinect, microphone, ...

Cosero

[Stlickler et al.:
Frontiers in Robotics
and Al 2016]



Cognitive Service Robot Cosero

{




[Stlckler, Behnke:

3D Mapping by RGB‘D SLAM Journal of Visual Communication

and Image Representation 20131

Modelling of shape and color distributions in voxels

Local multiresolution

Efficient registration
of views on CPU

Global
optimization

Multi-camera SLAM

[Stoucken]



Learning and Tracking Object Models

Modeling of objects by RGB-D-SLAM




Deformable RGB-D-Registration

Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]

Multiresolution Surfel Map allows real-time registration
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Transformation of Poses on Object

Derived from the deformation field

[Stlckler, Behnke, ICRA2014]
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Grasp & Motion Skill Transfer

[Stlckler,
Behnke,
ICRA2014]
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Tool use: Bottle Opener

= Tool tip perception

= Extension of arm kinematics
= Perception of crown cap
= Motion adaptation

[Stlckler, Behnke, Humanoids 2014]




Picking Sausage, Bimanual Transport

Perception of tool tip
and sausage

Alignment with main
axis of sausage
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Our team NimbRo won the
RoboCup@Home League in three
consecutive years
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Bin Picking

Known objects in
transport box

Grasp and motion planning

Offline Online
15 [Nieuwenhuisen et al.: ICRA 2013]
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Hierarchical Object Discovery trough Motion Segmentation

Simultaneous object modeling and motion segmentation

i

Inference of a
segment
hierarchy

o container &
background

ceait r:::m‘ r;\%' backgro nd e o container
U e drawer
. ¥
[Stuckler, Behnke: 1JCAI 2013] ‘““ d
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Semantic Mapping

Pixel-wise classification of RGB-D images
by random forests

Compare color / depth of regions
Size normalization

3D fusion through RGB-D SLAM
Evaluation on NYU depth v2

B ground structure s furniture [ props

Ground truth

Silberman et al. 2012

59,6

58,6

Segmentation

Couprie et al. 2013 63,5 64,5
Random forest 65,0 68,1
3D-Fusion 66,8

[Stlckler,

Biresev,
Behnke:
IROS 2012]
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Deep Learning

Learning
layered
represen-
tations

[Schulz;
Behnke,
Kl 2012]
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labels

Penguin

Kangaroo

increasingly
complex features

unsupervised learning

supervised learning




Neural Abstraction Pyramid

T

[Behnke, Rojas, IJCNN 1998]
[Behnke, LNCS 2766, 2003]

. Abstract features

- Model-driven

Vq n - Synthesis
[ ] v Feature expansion
pa } ﬂ\

Signals

A .

- Data-driven

- Analysis

- Feature extraction
<4+

19

- Grouping - Competition - Completion

L
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Iterative Image Interpretation

= Interpret most obvious parts first

= Use partial interpretation as context to resolve local ambiguities

b
L0
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Neural Abstraction Pyramid for
RGB-D Video Object-class Segmentation

Recursive computation is efficient for temporal integration

NeuralAbstractin Pyramid

- - -
,4‘,“

B e
t t

lPreprocess‘ IPreprocess| [---]
t t

Input(0) Input(1) Input(t) Input(t+T)
’ Output(t) s

[Pavel, Schulz, Behnke, Neural Networks 2017]
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The Data Problem

Deep Learning in robotics (still) suffers from shortage of available examples

We address this problem in two ways:

Generating data:
Automatic data capture,
online mesh databases,
scene synthesis

Improving generalization:
Object-centered models,
deformable registration,
transfer learning,
semi-supervised learning



Geometric and Semantic Features for RGB-D Object-class
Segmentation

New geometric feature:
distance from wall

Semantic features pretrained
from ImageNet

Both help significantly

[Husain et al. RA-L 2017] RGB Truth  DistWall OutWO OutWithDistWall
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RGB-D Object Recognition and Pose Estimation

Color Masked color Pre-trained CNN

llsvm
Category

LSVM

Colorized depth Pre-trained CNN — |nstance

% §$ “SVR
= Pose

[Schwarz, Schulz, Behnke, ICRA2015]
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Canonical View, Colorization

Objects viewed from different elevation

Render canonical view

Colorization based on distance from center vertical

n

[Schwarz, Schulz, Behnke, ICRA2015]




Pretrained Features Disentangle Data

w t-SNE
embedding

[Schwarz, Schulz,
Behnke ICRA2015]
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classes (CNN)

classes (PHOW)

|/
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Recognition Accuracy

Improved both category and instance recognition

Category Accuracy (%)

Instance Accuracy (%)

Method RGB RGB-D RGB RGB-D

Lai et al. [1] 4371 33 81.9+2.8 59.3 73.9
Bo et al. [2] 624 £+ 3.1 8r.b+29 92.1 02.8
PHOWI[3] 80.2 + 1.8 — 62.8 .

Ours 831+20 86.3+1b 92.0 94.1
Ours 831+t20 894+13 92.0 924.1

Confusion: 50
2 e 08 1: pitcher / coffe mug 2: peach / sponge

[Schwarz, Schulz,
Behnke, ICRA2015]

Category

(8]
wn

25 50
Prediction
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Object Capture and Scene Rendering

Turntable + DLSR camera Renered scenes

[Schwarz et al. ICRA 2018]
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RefineNet for Semantic Segmentation

Scene represented as
feature hierarchy

Corse-to-fine semantic
segmentation

Combine higher-level
features with missing

details

Multi-path input

~" | chained Residual Pooling

Prediction

Chained Residual
Pooling

r I I

Sum

[Lin et al. CVPR 2017]
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Semantic Segmentation Example

[Schwarz et al. ICRA 2018]

bronze_wire_cup

conf: 0.749401

irish_spring_soap
conf: 0.811500

playing_cards

conf: 0.813761

w_aquarium_gravel

conf: 0.891001

crayons

conf: 0.422604

reynolds_wrap
conf: 0.836467

paper_towels
conf: 0.903645

white_facecloth
conf: 0.895212

hand_weight

conf: 0.928119°

robots_everywhere

conf: 0,.930464

mouse_traps

~"conf: 0.921731

windex
conf: 0.861246

q—tips_500
conf: 0.475015

fiskars_scissors
conf: 0.831069

ice_cube_tray

‘conf: 0.976856
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Object Pose Estimation

@ Normalization

indivi 256x80x80 256x80x80 256x40x40 256x10x10
Cut out individual \ x80x x40x40 256x10x10 »

segments

Use upper layer of
RefineNet as input

Predict pose
coordinates

Predicted pose

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018]



From Turntable Captures to Textured Meshes
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Self-Supervised Surface Descriptor Learning

Feature descriptor should be constant under different transformations, viewing
angles, and environmental effects such as lighting changes

Descriptor should be unique to facilitate matching across different frames or
representations

Learn dense features using a contrastive loss

Known correspondences Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019] ﬂ@
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Descriptors as Texture on Object Surfaces

Learned feature channels used as textures for 3D object models

Used for 6D object pose estimation




Abstract Object Registration

Compare rendered and actual scene in feature space

Adapt model pose by gradient descent

Feature-Annotated
Mesh Database Mesh Database

. Abstract|on . ’
A . Module A .

Pose P Abstract Scene Ag

L

Differentiable
Renderer -‘ L Gsi,
Abstraction | —
Module

Abstract Scene Ay

Observed Scene I

36 L
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Registration Examples
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Learning from Synthetic Scenes

Cluttered arrangements from 3D meshes

Photorealistic scenes with randomized
material and lighting including ground truth

For online learning & render-and-compare
Semantic segmentation on YCB Video Dataset
Close to real-data accuracy
Improves segmentation of real data

Generated Ground Truth Channels

Depth

[Schwarz et al. 2020 (submitted)]
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<: 3D laser scanner

Mobile Manipulation
Robot Momaro

Cameras —"§

\ 8 DOF gripper

Four compliant legs ending in

pairs of steerable wheels 5 P &

A A 'S

™N
A

7 DOF arm

Anthropomorphic upper body

&= [Base with CPU
and battery

I . WiFi router
Sensor head il

3D laser scanner
4 DOF leg —

IMU, cameras

2 DOF wheels

[Schwarz et al. Journal of Field Robotics 2017]



DARPA Robotics Challenge
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Allocentric 3D Mapping

Registration of egocentric maps
by graph optimization

[Droeschel et al., Robotics and
Autonomous Systems 2017]

. s
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DLR SpaceBot Cup 2015

Mobile manipulation in rough terrain

[Schwarz et al., Frontiers on
Robotlcs and AI 2016]
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Autonomous Mission Execution

3D mapping, - — 3D object
localization, Yoy o - perception
mission and and grasping
navigation

planning

[Schwarz et al. Frontiers 2016]




Navigation
Planning

= Costs from local height
differences

= A* path planning

[Schwarz et al., Frontiers
in Robotics and Al 2016]

45
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Considering Robot
Footprint

= Costs for individual wheel pairs
from height differences

= Base costs

= Non-linear combination yields
3D (x, y, 0) cost map

[Klamt and Behnke, IROS 2017]

Base costs

Wheel costs

=

Combined




3D Driving Planning (x, v, 0): A*

16 driving directions

A |

Vi \

Orientation changes

=> Obstacle between wheels

a7

[Klamt and Behnke, IROS 2017]

Height

o



Making Steps

48

If not drivable obstacle in front of
a wheel

Step landing must be drivable

Support leg positions must be
drivable

[Klamt and Behnke: IROS 2017]

0.1 m

V]




Planning for Challenging Scenarios

[Klamt and Behnke: IROS 2017]




Centauro Robot

CENTAURO

Serial elastic actuators
42 main DoFs

Schunk hand

3D laser

RGB-D camera

Color cameras

Two GPU PCs

S [Tsagarakis et al., IIT 2017]
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Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level Map Resolution Map Features Robot Representation Action Semantics
e 25cm e Height e Individual
e 64 orient. Foot Actions
e 50cm e Height e Foot Pair
e 32 orient. e Height Difference Actions
e 10cm e Height e Whole Robot
e 16 orient. e Height Difference Actions
e Terrain Class

[Klamt and Behnke,
IROS 2017, ICRA 2018]

51 L
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Evaluation @ KHG: Locomotion Tasks

[Klamt et al. RAM 2019]
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Transfer of Manipulation Skills

Knowledge
Transfer




Learning a Latent Shape Space

Non-rigid registration of instances and canonical model

Principal component analysis of deformations

Training
Samples

Canonical

54

Ti=C+GW; Design Matrix

T.=C+GW;
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Interpolation in Shape Space

qlDﬁ

[Rodriguez and Behnke ICRA 2018]



Shape-aware Non-rigid Registration

m Partial view of novel instance

e m Deformed canonical model
:"" A et w
e e
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[Rodriguez and Behnke ICRA 2018] S



Shape-aware Registration for Grasp Transfer

Full point cloud

#... ... n £.? ..*‘ "
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Partial view
""".-‘ m T oas e
“f --.... n
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Collision-aware Motion Generation

Constrained Trajectory Optimization:
Collision avoidance
Joint limits
Time minimization

Torque optimization

UNIVERSITAT @



Grasping an Unknown Power Drill and Fastening Screws




Complex Manipulation Tasks

[Klamt et al. RAM 2019]
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Regrasping

Direct functional grasps not always feasible

Pick up object with support hand, such that it can be grasped in a functional way

[Semantic Segmentation)
and Pose Estimation

7

Handover Motion
Planing

N\

[ View Pose Gen.eration‘
and Execution

[ In-Hand Object Pose )
Refinement

)

v

é Non-Rigid )

Grasp Sampling

Reqistration

e -
- !
#2

[Pavlichenko et al. Humanoids 2019]

Grasp
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Regrasping

Robot Experiments




Autonomous Flight Near Obstacles

MUItimOdaI ObstaCIe detection Ultrasonic sensors ~ GPS
3D laser scanner =

Stereo cameras  PX4FLOW Onboard computer 3D laser scanner

D

r A
E?I [Droeschel et al.: Journal of Field Robotics, 2015]

S
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Allocentric 3D Map

Registration of egocentric maps

Global optimization of registration error by GraphSLAM

o SR

% Rt TR et g_\_‘\-- ~
D - LT T
TN X

[Droeschel et al. JFR 2016]




Hierarchical Navigation

User

Request

Operator station
Semantic

map

Allocentric

/

Mission planning L

<0.02Hz |, Observation pbses

map

Onboard.computer
Egocentric

Allocentric planning L
\\

\

0.2Hz | Allocentr. plan

map

Obstacle

4

Egocentric planning

™
2Hz |, Trajectory \,'

map

/7

Obstacle avoidance

20Hz | Speed

65

Copter

b2 22202220

rrr2r 27 \'

Mission plan

Allocentric planning

Egocentric planning

Obstacle avoidance



Mapping on Demand

Autonomous Flight to Planned View Poses






DJI Matrice 600 with Velodyne Puck & Cameras

_N TR
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InventAlRy: Autonomous Navigation in a Warehouse

Y-Position (m)

=30

XL

Velocity (m/s)

{ SO VR

0 5
X-Position (m)

°
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InventAlRy: Detected Tags in Shelf
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Navigation Planning with Visibility Constraints

Velodyne Puck has limited vertical field-of-view (30°)
Must be considered in navigation planning

Only fly in directions that can be measured

Lidar field-of-view Fastest path

[Nieuwenhuisen and Behnke, ICRA 2019]

Safe path
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Lidar-based SLAM from MAV

I
UNIVERSITAT EIEINYI

[Droeschel & Behnke, ICRA 2018]
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Supporting Fire Fighters (A-DRZ2)
Added thermal camera

Flight at Brandhaus Dortmund

[Rosu et al. SSRR 2019]
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Mesh-based 3D Modeling + Textures

Model 3D geometry with mesh

Appearance and temperature as high-resolution texture

Mesh geometry RGB texture

Mapping from 3D mesh to 2D texture

Texture mapping

[Rosu et al. SSRR 2019]




Modeling the Brandhaus Dortmund

Y

[Rosu et al. SSRR 2019]



3D Semantic Mapping

Image-based semantic categorization, trained with Mapillary data set

3D fusion in semantic texture &//ﬁ\\A A l A &/’%\A
- . - Car b é d Car Car B v d Car Car b é d Car
Backprojection of labels to other views = .1 =
initial fusion feedback improved interpretation

Mesh ‘ | 5
_reconstruction
!P! . .— ?@

RGB textured mesh

Semantic ng ntatio

E-i ¢

S -
. -E <
> Pseudo ground truth

LIS
7 [Rosu et al., IJCV 2019] J
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3D Semantic Mapping

[Rosu et al., JCV 2019]
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3D Semantic Map

. | i
[Rosu et al., under review] e ‘



Fast Point Cloud Segmentation Using Permutohedral Lattices

Point cloud embedded into
sparse permutohedral lattice

Low memory footprint

Fast 3D convolutions
U-net semantic segmentation

Good results on three data sets

ScanNet

SemanticKITTI ;ﬁ [Rosu et al. 2020 (submitted) |
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Conclusions

Developed capable robotic systems for challenging scenarios
Humanoid soccer
Domestic service
Bin picking
Disaster response
Aerial inspection

Challenges include
Capable and affordable robot platforms
4D semantic perception
High-dimensional motion planning

Promising approaches
Shared autonomy

Instrumented environments
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