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Many New Application Areas for Robots

Self-driving cars
Logistics

Agriculture, mining
Collaborative production
Personal assistance
Space, search & rescue

Healthcare

Toys

Need more cognitive abilities!



Sensory—motor Loop

Environment perception
Behavior generation

Affecting the environment

Agent

| Sensors ——= Control |—{ Actuators

[Environment}

LIS



Some of our Cognitive Robots

Equipped with numerous sensors and actuators

Complex demonstration scenarios

omaro

Soccer Domestic service Mabile manipulation Bin picking Aerial inspection
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Some more of our Cognitive Robots

Equipped with numerous sensors and actuators

Complex demonstration scenarios

Phenotyping Human-robot collaboration




Soccer Robot NimbRo-OP2X

135cm, 19 kg
18 DoF

5 per leg (parallel kinematics)
3 perarm
2 in the neck

34 Dynamixel XH540 actuators
Mini-ITX PC

Nvidia SFF GPU

Fisheye camera

LiPo battery (14.8V, 8 Ah)

[Ficht et al. JHR 2020]




RoboCup 2023 Humanoid AdultSize Final
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Visual Perception for Soccer

Object detection, semantic segmentation, robot pose estimation
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[Pavlichenko et al. RoboCup 2023]
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Winning Team NimbRo @ RoboCup 2023
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Deep Learning

Learning
layered
represen-
tations

Compositionality

[Schulz;
Behnke,
Kl 2012]
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labels

Penguin

Kangaroo

increasingly
complex features
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unsupervised learning
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Neural Abstraction Pyramid

A

12

Abstract features

- Data-driven - Model-driven
- Analysis SRR - Synthesis
- Feature extraction [ e R - Feature expansion

e I

<4—P - Grouping - Competition - Completion

= Images

[Behnke, Rojas, IICNN 1998] [Behnke, LNCS 2766, 2003] L/ L
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Iterative Image Interpretation

Interpret most obvious parts first

Use partial interpretation as context to iteratively resolve local ambiguities

et
L0

[Behnke, Rojas, IJCNN 1998] [Behnke, LNCS 2766, 2003]
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Neural Abstraction Pyramid for Semantic Segmentation of RGB-D
Video

Recursive computation is efficient for temporal integration

P >

l H(0,0) H H(1,0)
t t

lPreprocess‘ IPreprocess| [---]
t t

Input(0) Input(1) Input(t) Input(t+T)
’ Output(t) s

[Pavel, Schulz, Behnke, Neural Networks 2017]
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The Data Problem

Deep Learning in robotics (still) suffers from shortage of available examples

We address this problem in three ways:

Transfer learning:
Pre-training on large related data,
self-supervised learning

Generating data:
Online mesh databases,
scene synthesis

Inductive biases:

3D projective geometry,
camera motion, canonical frames,
object relations, compositionality, ...

UNIVERSITAT



RGB-D Object Recognition and Pose Estimation

Transfer learning from large-scale data sets

Color

16

Masked color

Colorized depth

Pre-trained CNN

Pre-trained CNN

—

HE BTE

llsvm

Category

“SVM

Instance

“SVR

Pose

[Schwarz, Schulz, Behnke, ICRA2015]

LIS
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Canonical View, Colorization

Objects viewed from different elevation

Render canonical view

Colorization based on distance from center vertical

n

[Schwarz, Schulz, Behnke, ICRA2015]




Pretrained Features Disentangle Data

w t-SNE
embedding

[Schwarz, Schulz,
Behnke ICRA2015]
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classes (CNN)

classes (PHOW)

|/
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Recognition Accuracy

Improved both category and instance recognition

Category Accuracy (%)

Instance Accuracy (%)

Method RGB RGB-D RGB RGB-D
Lai et al. [1] 74.3+3.3 81.9+28 59.3
Bo et al. [2] 824 1+ 3.1 87.b129 92.1
PHOWI3] 80.2+1.8 — 62.8
Ours 831+20 88.3+15 92.0
Ours 831+20 894+13 92.0
Confusion: 50
z 0s 1: pitcher / coffe mug

Category

[§9)
W

25 50
Prediction

0.6

0.4

0.2

0

[Schwarz, Schulz, Behnke, ICRA2015]
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Amazon Robotics Challenge 0

amazon robotIcs

Storing and picking of items LENGE

Dual-arm robotic system

Sensor setup

Vacuum cleaner

6 DOF UR5 arm

3 DOF endeffector

Storage system

Industrial scales : _ .
Belt drive Suction hose

Bendable finger 2 DOF
[Schwarz et al. ICRA 2018] pinch finger ]
- [Amazon]

Suction cup

20 L u@
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Object Capture and Scene Rendering

Turntable + DLSR camera Insertion in complex annotated scenes

[Schwarz et al. ICRA 2018]



Semantic Segmentation and Grasp Pose Estimation

Semantic segmentation using RefineNet [Lin et al. CVPR 2017]

Grasp positions in segment centers

bronze_wire_cup

irish_spring_soap
conf: 0.811500

playing_cards

w_aquarium_gravel
crayons

reynolds_wrap
conf: 0.836467

paper_towels
conf: 0.903645

white_facecloth
conf: 0.895212

hand_weight

robots_everywhere
conf: 0.930464

22 [Schwarz et al. ICRA 2018]

conf: 0.749401

& conf: 0.813761

conf: 0.891001

conf: 0.422604 .

conf: 0.928119 I i

mouse_traps

—~conf: 0.921731

windex
conf: 0.861246

q—tips_500
conf: 0.475015

fiskars_scissors
conf: 0.831069

ice_cube_tray
conf: 0.976856

UNIVERSITAT m



Amazon Robotics Challenge Finals




Dense Convolutional 6D Object Pose Estimation

Extension of PoseCNN [Xiang et al. RSS 2018]
Dense prediction of object center and orientation

. . . .
} &= Feature Extraction ==———plg=Embedding=—] === Classification / Regression  memp |

Segmentation
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24 [Capellen et al., VISAPP 2020]
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Stillleben: Learning from Synthetic Scenes

Cluttered arrangements from 3D meshes

Photorealistic scenes with randomized
material and lighting including ground truth

For online learning & render-and-compare
Semantic segmentation on YCB Video Dataset
Close to real-data accuracy
Improves segmentation of real data

Generated Ground Truth Channels
Depth

[Schwarz and Behnke, ICRA 2020]




Learning from SAM: Sim2Real Domain Adaptation through Segment VI-
Regularization

Learns from synthetic scenes and

Semantic
Synthetic segmentation Ground truth

@ @]
unannotated real images < .. <
Supervised training of semantic « - -loss_ _ i)
segmentation for synthetic scenes -

]

Segment Anything Model (SAM)
used to generate many

Invariance loss

overlapping segments for real =) 2

images — | §

. =

Dense features from shared : =

backbone -
. Segment
Contrastive loss for segments features

Features within a segment are
trained to have low variance
Features for different segments
trained to have high variance [Bonani et al. arXiv:2309.15562] ﬂ@

Unsupervised
segmentation |




Learning from SAM: Sim2Real Domain Adaptation through Segment VI-
Regularization

Learned dense features correspond well to objects, are stable under camera
motion, and label sub-parts

HomebrewedDB

YCB-Video

Real

Dense features

[Bonani et al. arXiv:2309.15562]

27 1|
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Learning from SAM: Sim2Real Domain Adaptation through Segment VI-
Regularization

Qualitative Results on the YCB-Video Dataset

Good results on real images without need for real
labels

Better than training with real labels on VCB-Video

YCB-Video HomebrewedDB

i R R ~" ~" “p Ground truth Full model Learned features
-~ ~ =~ - - Mean IoU
Method YCB-Video [19] HomebrewedDB [20]
g# S .\.. .‘.' Imbusch er al. [4]
- real labels 0.770 0.737
f - synthetic only 0.701 0.481!
- 1
-‘ n u ’ " " full 0.763 0.558
a t @ A - Ours
- real labels 0.839 0.883
5 - synthetic only 0.807 0.748
& k ‘*Q '*Q - CUT [4] only? 0.814 -
) e - full 0.853 0.787°
i ’ * . ‘» Note: “real labels™ is a baseline which has access to real supervision.
‘v Q ! Using Stillleben [2] synthetic data, where we use Blender-
ﬁ ' Proc4BOP.
2 Training our backbone on CUT-refined synthetic data.

Input image a) Synthetic-only b) Full model Ground truth Input image a) Synthetic-only b) Full model Ground truth

[Bonani et al. arXiv:2309.15562]

28 1|
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3 Model was trained for only 200k epochs.



MSPred: Video Prediction at Multiple Spatio-Temporal Scales

Coarser, more abstract predictions for longer time horizons in higher layers

Predict image itself, human pose joint keypoints, and human body position

— Feature maps flow
= =LSTM states

@ Channelwise concat

2 [Villar-Corrales et al., BMVC 2022] o



MSPred: Video Prediction at Multiple Spatio-Temporal Scales

= Coarser, more abstract predictions for longer time horizons in higher layers

= Predict image itself, human pose joint keypoints, and human body position

Frame 1 Frame 1 Frame 1

30 [Villar-Corrales et al., BMVC 2022]
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Hierarchical Planning in the Now

= Use predicted state on different layers of abstraction for planning

= Coarse-to-fine planning makes actions more concrete as they come closer to
execution

= Plan consists of few steps on each layer

abstract actions

L;
Lirrirrr 2
L TTTTTTT
L, - concrete actions

time

NOW




Centauro Robot

CENTAURO

Serial elastic actuators
42 main DoFs

Schunk hand

3D laser

RGB-D camera

Color cameras

Two GPU PCs

| [Tsagarakis et al., IT 2017]
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Hybrid Driving-Stepping Locomotion Planning: Abstraction

Planning in the here and now

Far-away details are abstracted away

-------

[Klamt and Behnke, IROS 2017, ICRA 2018]



Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level Map Resolution Map Features Robot Representation Action Semantics
e 25cm e Height e Individual
e 64 orient. Foot Actions
e 50cm e Height e Foot Pair
e 32 orient. e Height Difference Actions
e 10cm e Height e Whole Robot
e 16 orient. e Height Difference Actions
e Terrain Class

4 [Klamt and Behnke, IROS 2017, ICRA 2018] WRW"@



CENTAURO Evaluation @ KHG: Locomotion Tasks

[Klamt et al. RAM 2019]
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Transfer of Manipulation Skills

Knowledge
Transfer

[Rodriguez and Behnke ICRA 2018]

UNIVERSITAT




Learning a Latent Shape Space

Non-rigid registration of instances and canonical model

Principal component analysis of deformations

Traini
Sla?:;lrz Calculate Latent (shape) Space
Defromations
w T =C+GW; Design Matrix
Canonical _
Model Y = E‘ a
[ ] =
T =C+GW, \ wy 2
! S
Wy | rpcaem  ©
E
| —»
m Ti=C+GW, ; £
=]
/ g
") 3
¢ N
Tr=C+GWr C-
First Principal Component
37 [Rodriguez and Behnke ICRA 2018]



Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]



Shape-aware Non-rigid Registration

m Partial view of novel instance

o m Deformed canonical model
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[Rodriguez and Behnke ICRA 2018] u@



Shape-aware Registration for Grasp Transfer

Full point cloud
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40 [Rodriguez and Behnke ICRA 2018]
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Collision-aware Motion Generation

Constrained Trajectory Optimization:
Collision avoidance
Joint limits
Time minimization

Torque optimization

[Pavlichenko et al., IROS 2017]

UNIVERSITAT @



Grasping an Unknown Power Drill and Fastening Screws
e - ‘




CENTAURO: Complex Manipulation Tasks

[Klamt et al. RAM 2019]

1N
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Direct functional grasps not always feasible

Regrasping for Functional Grasp

Pick up object with support hand, such that it can be grasped in a functional way

([Semantic Segmentation)
and Pose Estimation

?l ¢
ooy
| AN

\_ — J

A 4

é Non-Rigid R

( Handover Motion
Planing

~\

(View Pose Generation )
and Execution

[ In-Hand Object Pose )
Refinement

Reqistration

R -
#2

Grasp Sampling

[Pavlichenko et al. Humanoids 2019]

Grasp
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Regrasping Experiments

[Pavlichenko et al. Humanoids 2019]




ANA Avatar XPRIZE Competition

Organized by XPRIZE Foundation
Sponsored by All Nippon Airways (ANA)

Objective: Create a robotic avatar system that
can transport human senses, actions, and
presence to a remote location in real time

Expanding human connection

Transferring skills

Exploring dangerous or |nacce55|ble pIaces

Panel of 22 expert judges
Launched 03/2018
Prize purse of S10M

99 teams registered by .! J m "f'" @n
09/2019 2 :ﬁgnm

Fms HM&’?

[XPRIZE]



. . Y i .
Finals 11/2022 in Long Beach, CA, USA avarar X PRIZE

17 teams from 10 countries: Leading research groups and companies

Mission on a distant planet, 10 tasks in a given order
Qualification day, two test days with down-selection of teams

gt et
UNIST i-Botics Tangible

iCub Cyberselves NimbRo Northeastern

AVATRINA Pollen Janus
Last Mile Dragon Tree Labs

e [Behnke et al. Robotics and Automation Magazine 2023]

AvaDynamics
Inbiodroid  Avatar-Hubo SNU AlterEgo
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Finals Tasks

Three domains:

Connectivity
Exploration
Skill transfer

Incl. judging object
weight and remote
feeling of texture

One point per task
Operator experience:
3 points

Recipient exp.: 2 pts
Trial time to break ties

[XPRIZE]




NimbRo Avatar System

A

OPERATOR (WiFi Antennas )

SITE

AVATAR
SITE

Head-mou nted\
Display

@ :
kStereo Mlcrophone)

Stereo Cameras]

7 DoF Arm
Exoskeleton

6 DoF Neck Arm)

: - Head Display '
8 &
> 7 DoF Arm

Speaker

Force/Torque
Sensor

t

(Hand Exoskeleton

(Extenda ble Wheels

3D Rudder }

[Height Adjustment

b/

_ ‘o 5-Finger Hand &
\ ‘ orce/Torque Sensor

Vertical Actuator)

4—[Computers & Batteryj
4—(Ho|onomic Base)

Ground LEDs

Pedal

o
g
g 6 g =

49 [Lenz et al. International Journal of Social Robotics 2023] ﬂ@






51

Operator Face Animation

Recording of the operator before putting on the head-mounted display (HMD)
Live animation using video of eyes in HMD and mouth region

e

Generator G

L\

_ | Keypoint
Waer o
4

Warped
Mouth Area

Y

Src Img 1 Src KP 1

Construct

—> Driving

Frame

AA

Eye Coord. Warp
Lower Face KP I i j[(u\f/:;.flﬁﬂjl
VR KP Wy ping
Query
¢ Imae
B G|V g 5 )
BE B Remeval Fehe Kyr(Ip) A Attention Values a g
. . o . . _____ Expressional Source
. . ik . . KPs+Imgs . ]
\*/ I\ VR (ISI- )

I

Imaginary Motion
DrivKP Ip Network M

Y

gate m ¢
Eq. (11)

[Rochow et al. IROS 2023]

Avtar Display



Face Animation @ ANA Avatar XPRIZE Finals
Team UNIST Ours (NimbRo0) Team AVATRINA [13]
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ANA Avatar XPRIZE Finals Results

Rank Team name

O 00 N O U B W N -

[ S
N B O

NimbRo (DE)

Pollen Robotics (FR)
Team Northeastern (US)
AVATRINA (US)
i-Botics (NL)

Team UNIST (KR)
Inbiodroid (MX)

Team SNU (KR)
AlterEgo (IT)

Dragon Tree Labs (SG)
Avatar Hubo (US)

Last Mile (JP)

ANAS
AVATAR

Time Task score Judged score Total

5:50
10:50
21:09
24:47
25:00
25:00
25:00
25:00
25:00
25:00
25:00
25:00

10
10
10
10

A N 00 0 00 WV

5
[XPRIZE]

5
5
4.5
4.5
5
4.5
5
4.5
4.5
4
3.5
4

15
15
14.5
14.5
14
13.5
13
12.5
12.5
11
9.5
9

XPRIZE




Motivation for Autonomy

Longer latencies require less direct control

Use autonomous skills, such as grasping an object or
navigating to a waypoint

Shared autonomy where the operator controls high-
level behavior and autonomy fills-in the low-level
details (horse metaphor, Flemisch 2003)

Operator might not always be available

1:1 control often too costly
=> one operator must supervise many robots

Issues of privacy and of being in operator’s dept

Al: Understanding intelligence by creating
intelligent artefacts

55




Unmatched Human Operators

' 7/ " = Humans can solve many tasks by teleoperation
Can cope with novel situations, quickly learn new tasks
Recognize and mitigate errors

Far beyond the capabilities of autonomous robots

6 Team NibRo Semifinal Submission g eae X’png'



Human Cognitive System

Cognitive architecture of the human mind has evolved to continuously interact
with changing environments and self-monitor

System 2 : N
_ Planning Self-monitoring
- slow, serial

- flexible

. C1 Global C2 Meta-
- conscious Lt .

availability cognition
System 1 CO Unconscious processing
- fast, parallel
- habitual Perception Control
- unconscious
{ Environment ]4

Cognitive functions according to Kahneman (2011) and Dehaene (2017)
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My Objective

Develop methods for learning
perception and planning for
service robots, which go beyond
unconscious routine tasks by
incorporating conscious
processing to cope with novel
situations and self-monitor

N

lur _{.}
- ,vi'q " .. (’;l "\r‘
- =~

= M_d““fr‘plﬁ""'

Tesmer

' 4

U
3




Overall Approach

Equip service robots with key elements of human cognitive architecture

Bottom-up approach ensures grounding of conscious processing

System 2 : L
, Planning Self-monitoring
- slow, serial

- flexible

. C1 Global C2 Meta-
- conscious L .

availability cognition
System 1 CO Unconscious processing
- fast, parallel
- habitual Perception Control
- unconscious
{ Environment ]4

Cognitive functions according to Kahneman (2011) and Dehaene (2017) W L
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Unconscious Perception & Tracking felations
ObJectsI E ‘% g‘%

1. Learning hierarchical representations

2. Learning 3D multimodal scene models ~ Mu-F

3. Learning object models & relations

4. Learning prediction and tracking EQEEEKE

Haptics

Scene compositionality RGB :
Objects and scenes described by their constituent parts and thelr relatlons
Infinite variants from a finite set of building blocks

Exploit inductive biases like canonical frames, 3D projective geometry,

camera motion, object relations, compositional structure, hierarchical
categorization, ...



Object-centric Video Prediction Decoupling Dynamics and Interaction

( R Scene parsing into object

slots

Video synthesis from objects
and masks

Predictor decouples tempo-
ral and relational attention

Object
| Centric
\ Predictor

Sci+1r-1 \m—

——

\ )Sc+T
61 [Villar-Corrales et al. ICIP 2023]




Object-centric Video Prediction: Scene Segmentation

Objects are represented in different slots
=» Unsupervised scene segmentation

Ground Truth Prediction Object Predictions Segmentation

' '

[Villar-Corrales et al. ICIP 2023] Ju@




YOLOPose: Multi-Object 6D Pose Estimation using Keypoint Regression

Prediction Heads

translation,

keypoints

"

Object Queries

N RotEst = R

Positional
Encoding

H i
i | |
| l !
I
i ! } class, box
| ! : translation,
E : : keypoints — RotEst R
1 1 \ 1 |
| i Layer 6 i 1 class, box | |
! ! ! i translation, | |
: ! T ! ! Keypoints m ) RotEst R
1
! \ T b o | i
! | 1 | object !
i b Layer 1 Y |
I I
: ! i i | class, box :
! 1 1
| i ! : i
[ 1 T
| N Lo |

Keypoints

Object pose

(o))
w

[Amini et al. IAS 2022, Best Paper Award] u@
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YOLOPose: Multi-Object 6D Pose Estimation using Keypoint Regression

Encoder self-attention

Attention Maps Scene

[Am|n|et al. 1AS 2022, Best Paper Award] . uﬁ



MOTPose: Attention-based Temporal Fusion for Multi-object 6D Pose

Estimation

Propagating object embeddings, object descriptors, and poses

RGB

Positional Encoding

t m_’|::l—e-§—| Encoder|—§_.| Decoderl =
0 E_I

Object
Embedding
: FFPN
¥
uli
Object @“

Queries

=

(o] — =[]

Object i
20 ket [EFPN} (6D Posd~
Cla H
B FFPN
FFPN | T :
FPN [6D Posdr-

v
H

S
o] H
~— Ny
A
!
[

.

t
11

—_— - - 0]
e T
== ¥
eci

65

[Periyasamyn
and Behnke,
ICRA 2024]
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Unconscious Prediction and Control

/“(’m\\»
1. Learning action-conditioned prediction KN =
xo-fin
2. Learning to control in the now rse-to
3. Learning reusable skills .
time

now

4. Learning from imitation and real-robot experience

Action compositionality

Open
e e, . . A cabine
Activities consists of sequence of actions, ﬂ@ :
which can be decomposed into
movement primitives

Exploiting inductive biases like f”lLLAppmach

hierarchical structure, object binding L = =
. . )/ ) m : , _ o
planning in the now, ... pre-grasp ZQ ﬁt AR

66
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Learning Interactive Functional Grasping

Generalization of a single demonstration Interactive operation of unseen tools

[Mosbach and Behnke CASE 2023, Best Paper Award] Uu@



Learning Pre-grasp Manipulation for Human-like Functional Grasping

—_—— e e o — — — —— — —— — — — — — — — — — — — - —_——— — — — — — — — ——— — —— —— — — — — — — — — — =

¢,

\

|
Policy Gaaeaa st s e N e N :
———————— ) ! : : Reach grasp : | : : [ 0!
[ p— O] | | L position L Reach object | Manipulability | | |
p pose | I |

| : I | [Reachgrasp | ! ! | I penalty '

= action rotation | 1 | | Hold object | | | l
Grasp joints | | o [ !
1 | | I | |Grasp reached |
1 I 1| Reachgrasp | ! Orient object | 1 I
————————— i 1| hand joints 1| e __ |
r—i Environmentl—-l \ - _____ e I

|
/' N /,

e o e o e e e e e e e = = e = = = = e = = = = = = = = e e e e e e e e o = = o = = e = e = = = = = = = = = =

Dense multi-component reward function

encodes desired functional grasp

Learns to reposition and reorient objects
to achieve functional grasps

o [Pavlichenko and Behnke CASE 2023] uwsmu@



Grasp Anything: Augmenting Reinforcement Learning with Instance
Segmentation to Grasp Arbitrary Objects

Teacher training Real-world deployment of

_________

, promptable grasping policy
: image target prompt
- ['PG (¢) ° ° tomato
7 o soup can

privileged state s} policy 7} actions a} l < T

t
.
. . . Segment Anything Model
Teacher-guided sensorimotor learning [

linitialize
af

% stop gradient

ey ARG

@—» actions a; —> LFG(0)

sensory state s¢ policy 7g

S/

tracking

rollout

69 [Mosbach and Behnke ICRA 2024]
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Grasp Anything: Augmenting Reinforcement Learning with Instance
Segmentation to Grasp Arbitrary Objects

Learned policy with improved object visibility is real-world deployable

[Mosbach and Behnke ICRA 2024] Uu@



. . . . Graspi
Conscious Prediction and Planning rasping

Placing
1. Learning a working memory

2. Learning working memory predictions
3. Learning conscious planning
4. Learning new conscious concepts

Systematic generalization

Reuse task knowledge in infinitely many novel situations in which irrelevant
items change

Working memory as communication bottleneck

Focus on few items, ignore all others which are irrelevant for the task

Must combine multiple lower-level items to larger, composite items

AL
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Conscious Self-monitoring

1. Representing uncertainty

2. Predicting multiple plausible futures
3. Error detection and mitigation

4. Interactive learning

Self-aware
Being aware of own capabilities and limitations, dangers, etc.
Systematically model and use uncertainty

Collect more information when needed
Avoid dangerous situations

Detect System 1 errors and mitigate them



Potential Impact

Consciousness is not a bug,
but a feature!

Will bring service robots to the next level

Systematically generalize skills and
cope with novel situations

Self-monitor: obtain more information
when needed, avoid risks, detect errors,
and mitigate them

Applicable to a large variety of open-
ended domains

Will enable personal service robots
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[XPRIZE]




NimbRo@Home RoboCup 2023 in Bordeaux, France
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LLM Integration

Utilization of Function
Calling Models (GPT /
Mistral)

Map available robot
functionalities to user
commands

Given Information:

Environment info
Callable robot
functionalities

Can request and query
additional image data
(counting, descriptions, ...)

User: Please bring me a sponge from the kitchen.

System: Briefly summarize the next steps to accomplish the
task in text form.

Assistant:

1. Drive to the kitchen.

2. Search for a sponge in the kitchen.

3. Grasp the sponge.

4. Drive back to the parlor.

5. Hand over the sponge to the user.

6. Call the exit function to complete the interaction.
System: From now on only use function calls to execute the
task.

Assistant: drive to location: {"location": "kitchen"}

You successfully arrived in the new location
kitchen.

Assistant: find object: {"object name list": ["sponge"]}
The following items were found in the kitchen: 3
Sponges
Assistant: grasp object: {"object name": "sponge"}
You successfully grasped the object sponge.
Assistant: drive to location: {"location": "parlor"}
You successfully arrived in the new location
parlor.
Assistant: place object: {"object name": "sponge"}

You successfully placed the object sponge.

Assistant: exit: {} >
AR



Cooking Advice

Q: Please describe the content of this image. Focus your description on food
items, drinks, and ingredients that could be used for cooking.

A: The image shows a variety of food items and drinks arranged on a white
surface. There is a can of SPAM, which is a type of canned cooked pork product.
. Nexttoitisan open can of Campbell’s Tomato Soup... LS



Cooking Advice

Q: How can | cook dinner from these ingredients? <PROMPT>

A: You can create a simple and creative meal using these ingredients. Here's a
suggestion:

SPAM and Orange Glaze: Slice the SPAM into thin pieces and fry them in a pan
until they are crispy on both sides. Create a glaze by squeezing the juice of the
orange into a small saucepan, adding a bit of the Coca-Cola Zero Sugar for
sweetness, and reducing it over medium heat until it thickens. Pour the glaze
over the fried SPAM slices.

Tomato Soup Enhancement: Warm the Campbell’s Tomato Soup on the stove.
To add more depth to the flavor, you could mix in a small amount of the
orange juice and a pinch of the JELL-O powder for a hint of sweetness and
tanginess.

LS



Conclusions
Developed capable robotic systems for challenging scenarios
Soccer
Bin picking
Disaster response, telepresence
Domestic service

Challenges include
4D semantic perception
High-dimensional motion planning
Human-robot interaction

Promising approaches
Prior knowledge (pretrained models,
inductive bias, LLMs)
Shared experience (fleet learning)
Shared autonomy (human-robot)
78 Instrumented environments LS




