
Competitive Neural Trees

for Vector Quantization

Sven Behnke and Nicolaos B. Karayiannis

Department of Mathematics Department of Electrical

and Computer Science and Computer Engineering

Martin-Luther-University Halle-Wittenberg University of Houston

06099 Halle, Germany Houston, Texas 77204-4793, USA

behnke@informatik.uni-halle.d400.de Karayiannis@UH.EDU

ABSTRACT

This paper presents a self-organizing neural architecture for vector quantization, called Com-

petitive Neural Tree (CNeT). At the node level, the CNeT employs unsupervised competitive

learning. The CNeT performs hierarchical clustering of the feature vectors presented to it as

examples, while its growth is controlled by a splitting criterion. Because of the tree structure,

the prototype in the CNeT close to a given example can be determined by searching only a

fraction of the tree. This paper introduces di�erent search methods for the CNeT, which are

utilized for training and recall. The e�ciency of CNeTs is illustrated by their use in codebook

design required for image compression of gray-scale images based on vector quantization.

Keywords: Neural Tree, Competitive Learning, Self-Organization, Vector Quantization,

Hierarchical Clustering, Image Compression.

1. Introduction

The objective of vector quantization (VQ) is the subdivision of a set of vectors x 2 Rn into c subsets, or

clusters, which are represented by a set of prototypes, or codewords, P = fp1;p2; : : : ;pcg � Rn. The �nite

set of prototypes P is often called the codebook. VQ can also be seen as a mapping from an n-dimensional

Euclidean space into a �nite set P � Rn. Given a codebook P , each example x is represented by the

prototype pj = p(x) 2 P . Ideally, the function p(�) computes the closest prototype for every example.

Consequently, each prototype pi represents a cluster of examples Ri (x 2 Ri $ pi = p(x)). These clusters

R1;R2; : : : ;Rc form a partition of the examples X . Vector quantization is widely used in coding and

compression of speech and image data.

Neural tree architectures were recently introduced for pattern classi�cation [2, 6, 7, 8], in an attempt

to combine advantages of neural networks and decision trees. By applying the decision tree methodology,

one di�cult decision is split into a sequence of less di�cult decisions. The �rst decision determines which

decision has to be made next and so on. From all the questions, that are arranged in a tree like structure,

only some are asked in the process of determining the �nal answer. Neural tree architectures are decision

trees with a neural network in each node. These networks perform either feature extraction from the input

or make a decision. A decision must be made at internal nodes regarding the child-node to be visited next.

Terminal nodes give the �nal answer.

Similar to neural trees is the tree structured vector quantization approach [1]. A hierarchical data

structure grows while a codebook is designed. Tree structured vector quantization often utilizes binary

trees. In such a case, example clusters are split in two sub-clusters and access is based on binary search.

This paper is organized as follows: Section 2 introduces the CNeT architecture and presents a generic

learning algorithm. Section 3 discusses several search methods. Splitting and stopping criteria are covered

in section 4. Recall procedures are described in section 5. Section 6 evaluates the performance of the CNeT

in an image compression application. Finally, section 7 summarizes the results and draws conclusions.

asdasd asd
Neural Network World, 6(3):263-277, 1996.

2. CNeT Architecture and Learning

2.1. Architecture

The Competitive Neural Tree has a structured architecture. A hierarchy of identical nodes form an m-ary

tree as shown in Figure 1(a). Figure 1(b) shows a node in detail. Each node contains m slots s1; s2; : : : ; sm
and a counter age that is incremented each time an example is presented to that node. The behavior of

the node changes as the counter age increases. Each slot si stores a prototype pi, a counter count, and a

pointer to a node. The prototypes pi 2 P have the same length as the input vectors x. They are trained

to become centroids of example clusters. The slot counter count is incremented each time the prototype

of that slot is updated to match an example. Finally, the pointer contained in each slot may point to a

child-node assigned to that slot. A NULL pointer indicates that no node was created as a child so far. In

this case, the slot is called terminal slot or leaf. Internal slots are slots with an assigned child-node.

For some splitting criteria it may be necessary to store a
oating point variable radi. This is an estimate

of the squared Euclidean distance between the prototype pi of that slot and the examples for which this

slot has been updated.

2.2. Learning at the Node-Level

In the learning phase, the tree grows starting from a single node, the root. The prototypes of each node

form a minuscule competitive network. All prototypes in a node compete to attract the examples arriving

at this node. These networks are trained by competitive learning. When an example x 2 X arrives at a

node, all of its prototypes p1;p2; : : : ;pm compete to match it. The closest prototype to x is the winner. If

d(x;pj) denotes the distance between x and pj , the prototype pk is the winner if d(x;pk) < d(x;pj)8j 6= k.

The distance measure used in this paper is the squared Euclidean norm, de�ned as

d(x;pj) = kx� pjk
2
: (1)

The competitive learning scheme used at the node level resembles that employed by the (unlabeled data)

learning vector quantization (LVQ), an unsupervised learning algorithm proposed to generate crisp c-

partitions of a set of unlabeled data vectors [4], [5]. According to this scheme, the winner pk is the

only prototype that is attracted by the input x arriving at the node. More speci�cally, the winner pk is

updated according to the equation

p
new

k
= p

old

k
+ � (x� p

old

k
); (2)

where � is the learning rate. The learning rate � decreases exponentially with the age of a node according

to the equation

� = �0 exp(��d age); (3)

where �0 is the initial value of the learning rate and �d determines how fast � decreases. The update

equation (2) will move the winner pk closer to the example x and therefore decrease the distance between

the two. After a sequence of example presentations and updates, the prototypes will respond each to

examples from a particular region of the input space. Each prototype pj attracts a cluster of examples Rj .

The variable radik, which is an estimate of the squared Euclidean distance between the prototype pk
and the examples of its cluster, can be updated according to the equation

radi
new

k
= radi

old

k
+ � (d(x;pk)� radi

old

k
): (4)

The prototypes split the region of the input space that the node sees into subregions. The examples

that are located in a subregion constitute the input for a node on the next level of the tree that may be

created after the node is mature. A new node will be created only if a splitting criterion is TRUE.

2.3. Life Cycle of Nodes

Each node goes through a life cycle. The node is created and ages with the exposure to examples. When a

node is mature, new nodes can be assigned as children to it. A child-node is created by copying properties

of the slot that is split to the slots of the new node. More speci�cally, the child will inherit the prototype

of the parent slot as well as a fraction of its radius. Right after the creation of a node, all its slots are

identical. They will di�erentiate with the exposure to examples. As soon as a child is assigned to a node,

that node is frozen. Its prototypes are no longer updated in order to keep the partition of the input space

for the child-nodes constant. A node may be destroyed after all of its children have been destroyed.

2.4. Training Procedure

The generic training procedure is described below:

Do while stopping criterion is FALSE:

� Select randomly an example x.

� Traverse the tree starting from the root to �nd a terminal prototype pk that is close to x. Let n` and

sk be the node and the slot that pk belongs to, respectively.

� If the node n` is not frozen, then update the prototype pk according to equation (2).

� If a splitting criterion for slot sk is TRUE, then assign a new node as child to sk and freeze node n`.

� Increment the counter count in slot sk and the counter age in node n`.

� Update radik in slot sk according to equation (4).

Depending on how the search in the second step is implemented, various learning algorithms can be

developed. Di�erent search methods are described in the next section. The search is the only operation in

the learning algorithm that depends on the size of the tree. Hence, the computational complexity of the

search method determines the speed of the learning process.

3. Search Methods

The search method determines the speed of learning and recall as well as the performance of the CNeT. A

feature vector x constitutes the input for the search. The search method shall return a terminal prototype

pk that is close to the input x. Ideally, it returns the closest terminal prototype. During learning, any

terminal prototype pj 2 P is a candidate to be selected for return. In contrast, only the prototypes that

responded during learning to at least one example are candidates to be selected in the recall phase. Figure 2

shows which nodes are visited in a complete binary tree according to the search methods described in this

section.

In the following, Dtree represents the depth of the tree, that is, the maximum number of edges on the

path from a terminal node to the root. Ntree represents the number of terminal prototypes of the tree.

3.1. Full Search Method

The full search method is based on conservative exhaustive search. To guarantee that the prototype pk
with the minimum distance to a given feature vector x is returned, it is necessary to compute the distances

d(x;pj) between the input vector x and each of the terminal prototypes pj 2 P . The prototype pk with

the minimum distance is returned. Note that the full search method does not take advantage of the tree

structure to �nd the closest prototype.

The full search method is the slowest among the search methods described in this section. The time

required by the full search method is of the order O(Ntree). However, the full search method guarantees

the return of the closest prototype to the input vector.

3.2. Greedy Search Method

The greedy search method starts at the root of the tree and proceeds in a greedy fashion. When the search

method arrives at a certain node, the distances between the input vector and all prototypes p1;p2; : : : ;pm
of the node are computed. The prototype pk with the minimum distance to the presented feature vector x

is selected and called the winner. If a child-node is assigned to the slot sk that contains the winner, then

the greedy method is applied recursively to that node. Otherwise, the winner pk is returned to the calling

function.

The greedy method expands only one slot per level. Therefore the searched subtree is only a simple

path from the root to the returned prototype. Since the time needed to expand each node is constant, the

greedy search runs in O(Dtree). For trees that are balanced to some extent, the running time is of the order

O(logNtree). The greedy search method is the fastest among the search methods described in this section

and local. However, whenever a prototype is not the winner, the subtree whose root is the corresponding

node is not searched. Since the greedy method will not always return the terminal prototype with the

minimum distance to the presented feature vector x, its performance is expected to be inferior to that of a

CNeT trained using the full search method.

3.3. Local Search Method

The local search method is based on the idea of �nding the prototype pk that is closest to the input vector

even though a prototype on the path from the root to pk has only been the second best prototype in its node.

The local search method searches a subtree that has at most i nodes on the ith level (i = 1; 2; : : : ; Dtree).

The terminal prototypes in this subtree are those which have at most one prototype on their path to the

root that was only second best. The local search method starts at the root of the tree. The distances

between the input vector x and all prototypes p1;p2; : : : ;pm in the node are calculated. Then, the local

search method is called recursively for the winning prototype. In the subtree that is below the winner, the

prototypes are still allowed to loose. The greedy search method is called for the second best prototype. In

its subtree prototypes are not allowed to loose once more. They have to win in order to make the search

method expand them. If a winning prototype has no child-node assigned, it can not be expanded. Instead,

it is returned to the calling function. The two recursive calls to the local and the greedy search method will

both return a prototype that is close to the input. The closer one of the two is determined and returned.

Table 1 shows the local search method in pseudocode.

The local search method uses only information that is locally available to make decisions. At most i

slots are expanded on the ith level of the tree. Therefore, the time required by the local search method

to return a terminal prototype is of the order O(D2

tree
), which is usually O((logNtree)

2). Note that the

method is more e�cient for trees with a higher fan out m. The local search method returns the closest

terminal prototype more often than the greedy method. Thus, the use of the local search method instead of

the greedy search method is expected to improve the performance of the CNeT. Although the local search

method is easy to implement and fast for small trees, its asymptotic running time is quadratic in the depth

of the tree Dtree. If the use of a local method is not necessary for a given application, the time required for

the search can be moderated by using the global search method.

3.4. Global(!) Search Method

The global search method expands the nodes of the tree level by level, starting at the root. Expanding

a node means computing the distances between all of its prototypes p1;p2; : : : ;pm and the feature vector

x. After this is done for all the nodes that are to expand at this level of the tree, the ! prototypes with

the smallest distances are selected. If a selected prototype has a child-node assigned, this child-node will

be expanded during the next expansion step. Suppose a selected prototype is a terminal prototype. If its

distance to the given feature vector is the smallest so far, then the prototype is the new candidate to be

selected for return. When no more prototypes are to expand, the global search algorithm terminates and

returns the best terminal prototype seen. Table 2 shows the global(!) search method in pseudocode.

The global search method searches a subtree that has a width of at most !. Hence, the time required

by the global search method to return a terminal prototype is of the order O(!Dtree). Clearly, the speed

of this search method depends on the choice of !. If ! = 1, then the global and the greedy search methods

are equivalent in terms of their time requirements. If ! > 1, then the search by the global method takes

longer but the probability that the search returns the closest prototype increases. Thus, the selection of

! allows the user to balance the tradeo� between the time required for the search and the performance of

the CNeT. Since ! is a parameter that is not growing with the problem size and complexity, O(!Dtree) is

not su�ciently higher than O(Dtree). In other words, the time required for the global search method grows

with the problem size only as fast as the time required for the greedy search method.

4. Splitting and Stopping Criteria

The splitting criterion must be TRUE when the proposed leaning algorithm splits a slot and creates a new

node. Meaningful splitting criteria are needed for growing balanced trees with satisfactory performance.

It is also important to give each node enough time to �nd a good partition of its input region. For this

reason, splitting of immature nodes must be avoided. The splitting criterion will be FALSE for nodes below

the maturity age � . The stopping criterion is used to terminate the training.

Since vector quantization is an unsupervised process, the examples are not labeled. After the tree

is fully grown, each example x 2 X is represented by a similar prototype. Hence, the objective of the

splitting criterion is to grow the branches of the tree that respond to examples that vary a great deal, while

prohibiting growth at locations where uniform examples arrive. The variation of the examples is assessed

by the variable radik, which maintains in each slot sk an estimate of the deviation of the examples that

resulted in an update of the corresponding prototype pk. In order for this assessment to be independent

from the overall variation of the examples, the splitting criterion also involves the estimate radi0 of the

deviation of the entire set of examples X . The splitting criterion is TRUE when the number of updates for the

prototype pk is greater than �(1 +
 radi0=radik), where � is the maturity age of the node and 0 �
 � 1.

If
 = 0, then the radius of each slot is ignored and the splitting criterion is exclusively based on maturity.

The splitting criterion is increasingly in
uenced by the radius of each slot as
 increases from 0 to 1. The

splitting criterion must be FALSE if the codebook size is �xed to c and the number of terminal prototypes

Ntree is already equal to c.

To ensure su�cient training of the terminal nodes, the learning must continue after the tree stops

growing. Additional training of the terminal prototypes of a grown tree is guaranteed by the following two

stopping criteria:

� Maturity Stop: Stop when all nodes have reached the maturity age � .

� Parametric Stop: If v is the number of example presentations that is needed to grow a tree of

the desired size, then continue to train the tree for �v more steps without further splitting. It was

experimentally found that in most of the applications the value � = 1=4 can be chosen to balance the

tradeo� between performance gain and training time.

5. Recall Procedures

The trained CNeT contains a representation of the examples x 2 X that have been presented to it. Its

terminal prototypes p1;p2; : : : ;pc are representatives of the example clusters R1;R2; : : : ;Rc. The recall

procedure begins with a search. For a given input vector x, the recall procedure computes a reference to

a prototype pk = p(x);pk 2 P that is close to x. The full search method can be used in the recall phase.

The other possible choice is the same search method used in the training phase. Although the second choice

results in faster recall, there is no guarantee that the returned prototype pk will be the one closest to x.

The search will return a terminal prototype pk which represents a cluster Rk that contains the input

vector x. For a given codeword pk, a binary reference can be generated by employing one of the following

two encoding schemes:

� Fixed Length Representation: All codewords are labeled with a bit-string of constant length.

� Variable Length Representation: In a binary tree the label for pk is obtained by traveling the

path from the root of the tree to pk. If pk is located in the left subtree of the actual node, then a 0

is added to the label. Otherwise pk is located in the right subtree and a 1 is added to the label. This

encoding scheme generates a complete description of the location of the prototype pk in the tree.

The variable length representation is useful if the tree is grown in a such way that the codewords

representing many examples are close to the root. In such a case, it is possible to represent frequent inputs

by short references and less frequent input vectors by longer references. The generated code is a pre�x code

and reduces the overall codeword length.

6. Experimental Results

A natural way to apply vector quantization to images is to decompose a sampled image into rectangular

blocks of �xed size and then use these blocks as vectors. The available vectors, also called training vectors, are

divided into clusters, while the prototypes provide the codevectors or codewords. The image is reconstructed

by replacing each image block by its closest codevector. As a result, the quality of the reconstructed image

strongly depends on the codebook design [3].

This section presents an experimental evaluation of the CNeT used in the compression of real image

data. Figure 3(a) shows the original Lena image of size 256 � 256, which was used as a test image. The

image was divided into 4� 4 blocks and the resulting 4096 vectors were used as the training vectors. The

CNeT was used to design codebooks consisting of 2n vectors, which implies the representation of each image

block containing 4� 4 = 16 pixels by n bits. In other words, the compression rate was n=16 bits per pixel

(bpp). The reconstructed images were evaluated by the Peak Signal to Noise Ratio (PSNR), de�ned as

PSNR = 10 log
10

2552

1

N2

P
N

i=1

P
N

j=1
(Fij � F̂ij)2

;

where 255 is the peak gray level of the image, Fij and F̂ij are the pixel gray levels from the original and

reconstructed images, respectively, and N �N is the total number of pixels in the image.

A codebook of size c = 256 was designed using the global(3) search method. Figures 3(b) and 3(c) show

the reconstructed and the di�erence images, respectively. As the di�erence image shows, the reconstructed

image di�ers from the original image mostly at edges. Note that a gamma correction has been applied to

the di�erence image in order to make small di�erences visible.

The role of the strategy employed for splitting nodes during training was investigated in these exper-

iments by evaluating the in
uence on the codebook design of the parameter
, which is involved in the

splitting criterion, and the maturity age � . It was experimentally found that the CNeT achieves a better

reconstruction of smooth areas of the image if the splitting criterion is exclusively based on maturity, that

is, if
 = 0. On the other hand, the CNeT achieves a better reconstruction of the image details if the

splitting criterion is based on the radius of each slot, that is, if
 = 1. It was also found that the quality of

the reconstructed images improved as the maturity age � increased from 16 to 256. However, the quality of

the reconstructed images was not practically a�ected as the maturity age increased above � = 256.

The in
uence of the codebook size on the quality of the reconstructed images is illustrated in Figure 4(a),

which plots the PSNR of the images reconstructed from codebooks with sizes varying from 4 to 512. In

these experiments, the same search method was used for both learning and recall. Clearly, the quality

of the reconstructed image depends strongly on the codebook size. Regardless of the codebook size, the

performance of the CNeT was only slightly a�ected by the search method employed.

The last set of experiments evaluated the e�ect of the codebook size on the computational complexity

of di�erent search methods. Because of the CNeT structure, the codebook size c relates to the size of the

grown CNeT. The computational complexity of each search method is measured by the average number

of evaluations of the distance function d(�; �) in the recall phase. Figure 4(b) shows the computational

complexity of di�erent search methods when the codebook size varied from 4 to 512. The full search

method grows linearly with the codebook size. The local search method grows much slower. The greedy

search method has the shortest recall times, since it grows only logarithmically. The global(3) search method

has some overhead for small trees, but grows only logarithmically. Consequently, for large trees it is much

faster than the local search method.

7. Summary and Conclusions

This paper introduced Competitive Neural Trees, presented learning and recall algorithms, discussed

di�erent search methods, and described criteria for splitting the nodes and stopping the training. The

CNeT combines the advantages of competitive neural networks and decision trees. It performs hierarchical

clustering by employing competitive unsupervised learning at the node level. The main advantage of the

CNeT is its structured, self-organizing architecture that allows for short learning and recall times. The

performance of a trained CNeT depends on the search method employed in the learning and recall phases.

Among the search methods proposed in this paper, the greedy search method achieves the fastest learning

and recall to the expense of performance. On the other hand, the full search method achieves the best

performance to the expense of learning and recall speed. The local and global search methods combine the

advantages of the greedy and full search methods and allow for tradeo�s between speed and performance.

References

[1] A. Buzo, A. H. Gray, R. M. Gray, J. D. Markel, \Speech coding based upon vector quantization," IEEE

Transactions on Acoustics, Speech and Signal Processing, vol. 28, pp. 562{574, 1980.

[2] L. Fang, A. Jennings, W. X. Wen, K.Q.-Q. Li, T. Li \Unsupervised learning for neural trees," Proceed-

ings International Joint Conference on Neural Networks, vol 3, pp. 2709{2715, 1991.

[3] R. M. Gray, \Vector quantization," IEEE ASSP Magazine, vol. 1, pp. 4-29, April 1984.

[4] T. Kohonen, Self-Organization and Associative Memory, 3rd Edition, Springer-Verlag, Berlin, 1989.

[5] T. Kohonen, \The self-organizing map," Proceeding of the IEEE, vol. 78, pp. 1464{1480, 1990.

[6] T. Li, L. Fang, and A. Jennings \Structurally adaptive self-organizing neural trees," Proceedings

International Joint Conference on Neural Networks 92-Seattle, vol. 3, pp. 329{334, 1992.

[7] S. R. Safavian, D. Landgrebe, \A survey of decision tree classi�er methodology," IEEE Transactions

on Systems, Man, and Cybernetics, vol. 21, pp. 660{674, 1991.

[8] A. Sankar, R. J. Mammone, \Growing and pruning neural tree networks," IEEE Transactions on

Computers, vol. 42, pp. 291{299, 1993.

local(x)

� pwin := pk1 2 fp1;p2; : : : ;pmg such that d(x;pk1) � d(x;pj)8j 6= k1

� psec := pk2 2 fp1;p2; : : : ;pmg such that k2 6= k1 and d(x;pk2) � d(x;pj)8j 6= k1; j 6= k2

� swin := the slot pwin belongs to

� if (swin :child 6= NULL) then pwin := swin:child ! local(x)

� ssec := the slot psec belongs to

� if (ssec:child 6= NULL) then let psec be ssec:child! greedy(x)

� if (d(x;psec) < d(x;pwin)) then return (psec)

else return (pwin)

Table: 1: Pseudocode of the local search method.

global(x, !)

� dmin := MAXDISTANCE

� pwin := p1

� active nodes := n0

� while (active nodes 6= �)

do � active slots := �

� for all nodes ni 2 active nodes

do for all slots sj in ni

do pj := the prototype in sj

if (sj .child 6= NULL)

then active slots := active slots [fsjg

else if (d(x;pj) < dmin) then dmin := d(x;pj), pwin := pj
� active nodes := �

� for the ! slots sj 2 active slots that have the smallest d(x;pj)

do active nodes := active nodes [fsj .childg

� return (pwin)

Table: 2: Pseudocode of the global(!) search method.

Slot 1 Slot 2 Slot m

Pointer

Prototype

Radius

 age

count

(a) (b)

Fig. 1: The architecture of the CNeT: (a) the tree structure, (b) a node in detail for unsupervised learning.

(a) (b)

(c) (d)

Fig. 2: Shaded nodes visited by di�erent search methods: (a) greedy search method, (b) local search method, (c) global(3)

search method, (d) full search method.

(a)

(b) (c)

Fig. 3: Image reconstruction from a codebook of size c = 256 designed by a CNeT using the global(3) search method for

learning and recall: (a) The original image of size 256 � 256 with 256 grayscales, (b) the reconstructed image, and (c) the

di�erence image.

20

22

24

26

28

30

32

34

4 8 16 32 64 128 256 512

P
S

N
R

 o
f t

he
 r

ec
on

st
ru

ct
ed

 im
ag

e

number of codewords

Image Compression of LENA image greedy
local

global(3)
full

(a)

4

8

16

32

64

128

256

512

4 8 16 32 64 128 256 512

av
er

ag
e

nu
m

be
r

of
 e

va
lu

at
io

ns
 o

f d
is

ta
nc

e
fu

nc
tio

n
fo

r
re

ca
ll

number of codewords

greedy
local

global(3)
full

(b)

Fig. 4: (a) PSNR of the image reconstructed from codebooks of various sizes designed by the CNeT trained using di�erent

search methods. The same method was used for learning and recall. (b) Computational complexity of di�erent search methods.

